EP0167976B1 - Moteur à combustion interne avec un refroidissement de piston et de la paroi interne du cylindre - Google Patents

Moteur à combustion interne avec un refroidissement de piston et de la paroi interne du cylindre Download PDF

Info

Publication number
EP0167976B1
EP0167976B1 EP85108225A EP85108225A EP0167976B1 EP 0167976 B1 EP0167976 B1 EP 0167976B1 EP 85108225 A EP85108225 A EP 85108225A EP 85108225 A EP85108225 A EP 85108225A EP 0167976 B1 EP0167976 B1 EP 0167976B1
Authority
EP
European Patent Office
Prior art keywords
piston
combustion engine
internal combustion
coolant
engine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85108225A
Other languages
German (de)
English (en)
Other versions
EP0167976A2 (fr
EP0167976A3 (en
Inventor
Hans Stadler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Publication of EP0167976A2 publication Critical patent/EP0167976A2/fr
Publication of EP0167976A3 publication Critical patent/EP0167976A3/de
Application granted granted Critical
Publication of EP0167976B1 publication Critical patent/EP0167976B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid

Definitions

  • the invention relates to an internal combustion engine with a piston cooling and an inner cylinder tube cooling, with at least one cooling space delimited by the piston and the cylinder tube and with suitable sealing means of the piston at its end on the combustion chamber side, for example piston rings, the cooling space extending in the circumferential direction of the piston at least one coolant supply and one coolant discharge for the coolant is provided and has at least two approximately axially extending guide pieces.
  • Such a cooling device is known from DE-A-2 541 566.
  • the cylinder tube and the piston are cooled equally by a coolant, the coolant flowing in a cooling space between the piston and the cylinder tube, the cylinder tube cooling from the inside and being discharged through a second opening.
  • the piston is provided with an annular space on its outer surface.
  • the coolant inlets and outlets are arranged as radial bores in the cylinder tube, the same not being closed by the piston in any position of the piston.
  • the coolant flows through the bore in the cylinder tube wall into the cooling space delimited by the piston and the cylinder tube wall and cools the piston itself and the part of the cylinder tube wall covered by the piston during the upward and downward movement of the piston.
  • the coolant can still cool the piston crown via a separate central space in the piston.
  • axial and radial baffles are provided for particularly good swirling of the coolant in the cooling space.
  • the coolant leaves the cooling chamber via a second outlet bore located opposite the inlet bore in the cylinder tube wall.
  • DE-A-2 541 966 also proposes to seal the piston with piston rings in a pressure-tight manner not only to the combustion chamber but also to the crankcase.
  • the inner cylinder tube and piston cooling device it is known from DE-A-2 541 966 to connect the coolant flow to an overall coolant circuit.
  • the coolant flow can be heated by a heat source, as a result of which the warm coolant flow heats the cylinder unit to reduce wear.
  • this cooling device has the disadvantage that considerable partial flows of the coolant reach the coolant outlet directly from the coolant inlet along the circumference of the piston.
  • a second coolant flow is passed through another separate cooling chamber in the piston crown in order to cool a combustion chamber trough there.
  • the heat capacity of the coolant is therefore poorly utilized, because one coolant partial flow is little used and the second coolant partial flow is heavily used with regard to its heat absorption capacity.
  • the upper ring zone of the piston with the piston rings the thermal load of which is very high, is not reached by the coolant and is therefore cooled only inadequately.
  • the invention has for its object to propose a cooling device for the simultaneous cooling of the piston and the Zilinderrohres, which makes better use of the heat capacity of the available coolant and thus optimizes the overall cooling of the internal combustion engine.
  • the axial guide pieces in the annular cooling space of the piston are designed as partitions which extend almost or completely to the circumference of the piston. This creates at least two separate cooling rooms or sub-rooms.
  • the partition walls do not extend over the entire axial height of the cooling space, but are only arranged in an axial section of the cooling space.
  • the separate subspaces are thus connected to one another via the second axial section of the cooling space, which is free of partition walls.
  • Both the coolant supply and the coolant discharges are located in the axial section of the cooling space provided with dividing walls, the coolant supply being provided in one partial space and the coolant discharge being provided in the adjacent partial space.
  • the particular advantage of such a design of the cooling space is that the coolant cannot flow directly from the coolant inlet to the coolant outlet.
  • the coolant only flows into the partial space of one axial section of the piston provided with a coolant supply and is thrown into the opposite axial wall-free axial section by the upward and downward movement of the piston.
  • the partitions can be arranged either in the lower or in the upper axial section of the piston. In both cases, the coolant is distributed along the circumference of the piston in the axial section without a partition. Only in the following downward stroke or upward stroke does the coolant again reach the axial section of the piston provided with dividing walls, and the part of the coolant which has flowed into the partial space provided with a coolant discharge is at least partially removed. The rest of the coolant remaining in the other sub-area, together with the coolant that has flowed in, increases again Process part.
  • GB-A-1411 a piston / cylinder arrangement is known which has a large number of the features of the piston according to the invention; the known piston / cylinder arrangement, however, only has channels and subspaces for cooling with a gaseous medium, namely air. In this respect, GB-A-1411 was also unable to provide any suggestions for the piston / cylinder arrangement according to the invention, since the knowledge gained with gaseous coolants cannot be readily transferred to cooling with liquid coolants.
  • cooling space In a preferred embodiment of the invention, it is provided to subdivide the cooling space into a plurality of subspaces.
  • a number of four or six sub-rooms is a particularly suitable embodiment. Coolant inflow and outflow are each separately assigned to a subspace. The total number of subspaces therefore corresponds to a multiple of the number two.
  • the coolant inlets and outlets are arranged at the bottom dead center of the piston, radial bores being provided in the cylinder tube wall.
  • at least the coolant discharge can also be designed as a bore in the connecting rod-side wall of the piston, which connects the partial space to the crankcase. If the piston is not at its bottom dead center, the piston skirt closes the coolant inflow. It can thus be achieved that the coolant remains in the cooling space of the piston for a defined time and its cooling effect is used intensively. This applies in particular if the volume of the annular groove corresponds to the volume of the subspaces provided with a coolant supply, because then the entire coolant can cool the piston in the upper region. Furthermore, it is also possible for the coolant to be guided from the annular groove into still further coolant channels or coolant spaces in the interior of the piston and to take on further cooling tasks there.
  • the volumes of the subspaces are approximately the same size.
  • the volumes of the subspaces should be of different sizes.
  • a similar result could be achieved by unevenly dimensioning the coolant inlets and outlets.
  • the flow cross-sections of the coolant inlets and outlets are dimensioned approximately the same, the coolant outlets advantageously having a slightly larger capacity in order to ensure safe outflow of the coolant from the cooling space.
  • the engine oil of the internal combustion engine is provided as the coolant.
  • a separate cooling circuit is saved and the piston need not be made coolant-tight to the crankcase.
  • the engine oil can cool the entire internal combustion engine, in particular the cylinder head and the cylinder tube, from the outside via a cooling circuit.
  • Corresponding designs of the overall cooling system can be used for any coolant if the cooling space is designed to be coolant-tight.
  • the piston 1 shows a piston 1 according to the invention, which is guided axially in a cylinder tube 2.
  • the piston 1 is equipped with a piston skirt 3, a combustion chamber trough 4 and a cooling chamber 5.
  • the cooling chamber 5 extends once around the entire piston 1 in the circumferential direction of the piston 1 and is essentially an annular or tubular notch in the piston peripheral surface 14 of the piston 1, the cooling chamber 5 being opened over the entire circumference of the piston to the cylinder tube 2.
  • the cooling chamber 5 further consists of two axial sections, of which the combustion chamber side is formed as an annular groove 7, which is formed by the inner piston body and an outer ring wall 17, which is a boundary to the cylinder tube 2 and which carries the piston rings.
  • the cooling chamber 5 extends in this axial section to behind the piston rings.
  • the other axial section is open to the cylinder tube 2 almost over its entire axial height and has four partition walls 8. These partitions 8 extend radially from the inner wall of the cooling space 5 to the piston circumferential surface 14 and axially from the connecting rod ends of the cooling space 5 to the axial start of the annular groove 7. As a result, the connecting rod side axial section is divided into four partial spaces 9 of approximately the same size.
  • the dividing walls 8 are parts of the piston 1.
  • the dividing walls 8 could, however, also be produced as separate components, or the two axial sections of the cooling space 5 could be formed by several assembled parts of the piston.
  • radial bores 10 are arranged in the cylinder tube 2 and are located approximately in the middle of the axial height of the lower axial section of the cooling space 5. Viewed in the circumferential direction of the piston, two radial bores 10 are provided for each sub-space 9 in such a way that each bore 10 is assigned an approximately identical angular section of the sub-space.
  • the radial bores 10 in the cylinder tube wall 2 serve to supply coolant, while the axial bores 11 discharge the coolant into the crank chamber.
  • the diameters of the axial bores 11 are designed to be slightly larger than the radial bores 10 of the coolant feeds for safe coolant discharge.
  • a partial space 9 with a coolant supply is always adjacent to a partial space 9 with a coolant discharge.
  • the size of the subspaces is dimensioned such that the subspaces, which are provided with a coolant supply, all together have approximately the volume of the annular groove 7.
  • all subspaces are equal in size to one another. It can also be expedient to form the subspaces of different sizes in order to achieve a desired, different, local cooling of the cylinder tube wall.
  • the entire coolant is thrown into the annular groove 7 of the cooling chamber 5 opposite the partial chambers 9. There it spreads evenly in the circumferential direction due to the axial acceleration.
  • the cooling of the piston 1 is intensified by this flow movement of the coolant within the annular groove 7. Since the volume of all the partial spaces 9 provided with a coolant supply corresponds to the total volume of the annular groove 7, the coolant is completely absorbed by the annular groove 7 (FIG. 4). In the subsequent downward stroke of the piston, the coolant falls back into the divided axial section of the cooling space 5 due to the onset of oppositely directed acceleration.
  • the coolant feeds are provided as radial bores 10 in the cylinder tube 2 and the coolant discharges as axial bores 11 in the piston 1; on the other hand, it is also possible to also provide the coolant outlets in the cylinder tube 2.
  • the coolant supply and discharge can be connected to axially extending grooves in the cylinder tube wall 2 and also in the piston tail 3 for precise control of the coolant supply time or the coolant removal time. This combination of axially extending grooves makes it possible, for example, to maintain the coolant supply into the cooling space 5 from bottom dead center to a maximum of top dead center or up to a defined point in time of the piston path receive.
  • a type of web 13 is provided on the piston 1 on the ring wall 17 carrying the piston rings. This web 13 is arranged on the connecting rod-side lower edge of the ring wall 17 on the side facing the cylinder tube 2 in the cylinder-axial direction. For a higher effect of the web 13, the same is slotted many times in the axial direction and provided with a pretension. As a result of this pretension, the web 13 projects radially out of the piston peripheral surface 14 when the piston 1 is not installed.
  • the web 13 could also be arranged at the connecting rod end of the piston for sealing the cooling space 5 with still further sealing means and could seal the cooling space 5 against the crankshaft space for the use of another coolant.
  • FIG. 7 Various embodiments of the web 13 are shown in FIG. 7.
  • 7c shows an embodiment of the web 13 as an independent component.
  • the web 13 is inserted into an annular, radially extending groove in the ring wall 17 with a base body 16.
  • the actual web 13, which brings about the sealing effect, runs axially from this base body 16 in the direction of the connecting rod end of the piston 1.
  • the entire separate body can be made of a different material than the piston 1. Ceramics or a high-alloy metal material are particularly important.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Claims (17)

1. Moteur à comustion interne à refroidissement du piston et refroidissement interne du délimitée au moins par un piston (1) et le cylindre (2) et de moyens d'étanchéité appropriés sur le piston à son extrémité située du côté de la chambre de combustion par exemple des segments de piston, la chambre de refroidissement (5) s'étendant dans la direction périphérique du piston (1), la chambre de refroidissement (5) étant munie d'au moins une alimentation et d'au moins une évacuation de fluide de refroidissement et la chambre de refroidissement (5) comporte au moins deux pièces directrices sensiblement axiales, moteur à combustion interne caractérisé en ce que les pièces directrices sont des cloisons (8), la hauteur des cloisons (8) mesurée dans la direction axiale du cylindre étant inférieure à la hauteur de la chambre de refroidissement (5) mesurée dans la même direction, les cloisons (8) subdivisant une première section axiale de la chambre de refroidissement (5) dans la direction périphérique du piston (1) en au moins deux chambres partielles (9) séparées l'une de l'autre et qui communiquent entre elles par le second segment axial sans cloison de la chambre de refroidissement (5), une alimentation en fluide de refroidissement (10) étant associée à une chambre partielle (9) et une évacuation de fluide de refroidissement (11) étant associée à une chambre partielle (9) voisine dans la direction périphérique.
2. Moteur à combustion interne selon la revendication 1, caractérisé en ce que les cloisons (8) sont prévues au niveau du segment axial de la chambre de refroidissement (5) situé du côté de la bielle.
3. Moteur à combustion interne selon la revendication 1 ou 2, caractérisé en ce que le segment axial de la chambre de refroidissement (5) sans cloison est en forme de rainure annulaire (7), rainure qui se trouve radialement derrière les moyens d'etanchéité du piston (1).
4. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que le segment axial de la chambre de refroidissement (5) comportant les cloisons (8) est subdivisé en un certain nombre de chambres partielles (9), ce nombre étant un multiple entier du chiffre deux.
5. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que l'évacuation de fluide de refroidissement est assurée par au moins un perçage (11) réalisé dans le piston (1).
6. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que l'évacuation de fluide refroidissement est reliée à une poche ou au moins une rainure axiale ou radiale.
7. Moteur à combustion interne selon l'une quelconque des revendications précédentrs, caractérisé en ce qu'au moins l'une des alimentations ou évacuations de fluide de refroidissement est prévue dans la paroi du cylindre (2) et soit l'alimentation (10), soit l'évacuation (11), soit les deux se trouvent en-dessous du point mort bas du piston (1).
8. Moteur à combustion interne selon la revendication 7, caractérisé en ce qu'au point mort haut du piston (1), le fluide de refrordissement ne peut ni être fourni, ni être évacué.
9. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume de la rainure annulaire (7) correspond sensiblement au volume de toutes les chambres partielles (9) du piston (1) munies d'une alimentation en fluide de refroidissement.
10. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume de toutes les chambres partielles (9) est identique.
11. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé par une cloison mince (13) prévue sur le segment axial de la chambre de refroidissement (5) situé du côté de la chambre de combustion au niveau de l'arête de l'ouverture latérale en direction du cylindre (2).
12. Moteur à combustion interne selon la revendicatron 11, caractérisé en ce que l'entretoise (13) s'étend sur toute la périphérie du piston (1) et est coaxiale à l'axe du cylindre.
13. Moteur à combustion interne selon la revendication 11 ou 12, caractérisé en ce que l'entretoise (13) est prévue sur une paroi annulaire (17) qui forme la rainure annulaire (7) avec une partie intérieure du piston (1 rainure au niveau de la surface extérieure du piston (1) à son extrémité située du côté de la bielle ou tournée vers le cylindre (2).
14. Moteur à combustion interne selon l'une quelconque des revendications 11 à 13, caractérisé en ce que la nervure (13) est fendue plusieurs fois dans la direction de l'axe du cylindre.
15. Motcur à combustion interne selon l'une quelconque des revendications 11 à 14, caractérisé en ce que la nervure (13) est recourbée vers l'extérieur par rapport à l'axe du cylindre suivant un angle aigu de préférence compris entre 0 et 15° et en ce que, lorsque le piston (11) est monté, la nervure (13) s'applique par sa contrainte propre contre la chemise du cylindre (2).
16. Moteur à combustion interne selon l'une quelconque des revendications 11 à 15, caractérisé en ce que la nervure (13) est une pièce séparée de préférence en matière céramique. 17. Moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide de refroidissement est l'huile du moteur à combustion interne.
EP85108225A 1984-07-09 1985-07-03 Moteur à combustion interne avec un refroidissement de piston et de la paroi interne du cylindre Expired EP0167976B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3425228 1984-07-09
DE19843425228 DE3425228A1 (de) 1984-07-09 1984-07-09 Zylinderrohrkuehlung

Publications (3)

Publication Number Publication Date
EP0167976A2 EP0167976A2 (fr) 1986-01-15
EP0167976A3 EP0167976A3 (en) 1987-01-07
EP0167976B1 true EP0167976B1 (fr) 1988-04-27

Family

ID=6240183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108225A Expired EP0167976B1 (fr) 1984-07-09 1985-07-03 Moteur à combustion interne avec un refroidissement de piston et de la paroi interne du cylindre

Country Status (2)

Country Link
EP (1) EP0167976B1 (fr)
DE (2) DE3425228A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747746C1 (de) * 1997-10-29 1998-11-19 Alcan Gmbh Gekühlter Kolben für Verbrennungskraftmaschinen und Verbrennungskraftmaschinen mit derartigen Kolben

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717767A1 (de) * 1987-05-26 1988-12-08 Mahle Gmbh Kuehlbarer tauchkolben fuer verbrennungsmotoren
IN175093B (fr) * 1988-10-21 1995-04-29 Caterpillar Inc
US5469777A (en) * 1994-07-05 1995-11-28 Ford Motor Company Piston assembly having abradable coating
DE19953384C1 (de) * 1999-11-06 2001-01-18 Federal Mogul Wiesbaden Gmbh Kolben
DE102015009568B4 (de) * 2015-07-23 2021-02-11 Audi Ag Brennkraftmaschine mit einer Steuereinrichtung zur gezielten Ansteuerung einer Kolbenkühldüse oder eines Kolbenkühlkanals sowie Verfahren zum Betreiben einer Brennkraftmaschine
CN110763475B (zh) * 2018-07-26 2021-07-06 中国航发商用航空发动机有限责任公司 燃烧室试验设备测量段及燃烧室试验设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541966A1 (de) * 1975-09-19 1977-03-24 Vox Lumatic Gmbh Arbeitskolben fuer brennkraftmaschinen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE225043C (fr) *
GB191401411A (en) * 1914-06-13 1915-01-28 Thomas Transmission Ltd Improvements in the Cooling of Internal Combustion Engines.
US1896124A (en) * 1931-01-31 1933-02-07 James A Speer Piston
DE720660C (de) * 1939-12-13 1942-05-12 Bmw Flugmotorenbau Ges M B H Einrichtung zur Innenkuehlung der Kolben von Brennkraftmaschinen
FR1383334A (fr) * 1964-02-13 1964-12-24 Dispositif de refroidissement d'un piston
DE2424882C2 (de) * 1974-05-22 1983-10-20 Klöckner-Humboldt-Deutz AG, 5000 Köln Kolben für Hubkolben-Brennkraftmaschinen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541966A1 (de) * 1975-09-19 1977-03-24 Vox Lumatic Gmbh Arbeitskolben fuer brennkraftmaschinen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747746C1 (de) * 1997-10-29 1998-11-19 Alcan Gmbh Gekühlter Kolben für Verbrennungskraftmaschinen und Verbrennungskraftmaschinen mit derartigen Kolben

Also Published As

Publication number Publication date
DE3562407D1 (en) 1988-06-01
DE3425228A1 (de) 1986-02-06
EP0167976A2 (fr) 1986-01-15
EP0167976A3 (en) 1987-01-07

Similar Documents

Publication Publication Date Title
EP0477256B1 (fr) Machine a piston
EP3339617B1 (fr) Boîtier de cylindre, procédé de fabrication d'un boîtier de cylindre et noyau de coulée
EP1198667B1 (fr) Piston refroidi par liquide
DE2839199C2 (de) Im Druckgießverfahren herstellbarer Zylinderkopf für wassergekühlte Brennkraftmaschinen
DE2420051A1 (de) Zylinderkopfblock
DE3543747C2 (fr)
DE3540441A1 (de) Brennkraftmaschine mit einem drehbaren absperrorgan zur steuerung des gaswechsels
DE3444661A1 (de) Fluessigkeitsgekuehlter kolben
EP0167976B1 (fr) Moteur à combustion interne avec un refroidissement de piston et de la paroi interne du cylindre
DE60224147T2 (de) Wasserkühlvorrichtung für eine vertikale Mehrzylinderbrennkraftmaschine
DE4040611C2 (fr)
EP0095052B1 (fr) Connexion piston-bielle pour des moteurs à combustion interne
DE69102656T2 (de) Zylinderlaufbüchse für eine wassergekühlte brennkraftmaschine.
DE1961322A1 (de) Wassergekuehlter Zylinderkopf
DE2541966A1 (de) Arbeitskolben fuer brennkraftmaschinen
DE102016100411A1 (de) Hubkolbenvorrichtung sowie Brennkraftmaschine mit einer solchen Hubkolbenvorrichtung
DE4344696A1 (de) Kühlung eines an einen Verbrennungskolbenmotorkopf angrenzenden Motorzylinderabschnitts
DE3511853C1 (de) Ölgekühlter, gebauter Hubkolben einer Brennkraftmaschine
DE1956503B2 (de) Fluessigkeitsgekuehlter kolben fuer brennkraftmaschinen
DE10230746B4 (de) Kolben
DE2621720B2 (de) Flüssigkeitsgekühlter mehreckiger Kolben einer Rotationskolbenmaschine in Trochoidenbauart
AT524215B1 (de) Brennkraftmaschine mit Zylinderlaufbuchse mit integriertem Kühlkanal
DE2729050A1 (de) Zylinderkopf fuer hubkolben-brennkraftmaschinen, insbesondere dieselmotoren
DE477403C (de) Rohrschieber fuer Brennkraftmaschinen, der eine hin und her gehende Bewegung sowie eine Schwingbewegung ausfuehrt
DE3237858A1 (de) Hubkolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19861203

17Q First examination report despatched

Effective date: 19870715

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3562407

Country of ref document: DE

Date of ref document: 19880601

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890607

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890623

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890727

Year of fee payment: 5

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900731

BERE Be: lapsed

Owner name: KLOCKNER-HUMBOLDT-DEUTZ A.G.

Effective date: 19900731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST