EP0167702B1 - Process for the subsequent treatment of a gas obtained by pyrolyzing trash - Google Patents

Process for the subsequent treatment of a gas obtained by pyrolyzing trash Download PDF

Info

Publication number
EP0167702B1
EP0167702B1 EP85101873A EP85101873A EP0167702B1 EP 0167702 B1 EP0167702 B1 EP 0167702B1 EP 85101873 A EP85101873 A EP 85101873A EP 85101873 A EP85101873 A EP 85101873A EP 0167702 B1 EP0167702 B1 EP 0167702B1
Authority
EP
European Patent Office
Prior art keywords
gas
cooler
condensate
temperature
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85101873A
Other languages
German (de)
French (fr)
Other versions
EP0167702A1 (en
Inventor
Hans Jürgen Dipl.-Ing. Wohner
Wilfried Pappmann
Peter Dr. Dipl.-Ing. Diemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of EP0167702A1 publication Critical patent/EP0167702A1/en
Application granted granted Critical
Publication of EP0167702B1 publication Critical patent/EP0167702B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials

Definitions

  • the invention relates to a process for the further processing of the carbon-containing carbonization gas obtained in the pyrolysis of organic substances, in particular domestic waste, water and liquid hydrocarbons being separated from the gas.
  • the pyrolysis of waste containing organic substances is optionally carried out today with the addition of coal, preferably in closed rotary kilns with the exclusion of air.
  • the waste that is introduced is converted into smoldering coke by appropriate heating of the side walls, at the same time releasing a smoldering gas which, in addition to gaseous hydrocarbons, also contains liquid hydrocarbons and water as condensable components.
  • a smoldering gas which, in addition to gaseous hydrocarbons, also contains liquid hydrocarbons and water as condensable components.
  • the combustion of the smoldering gas produced without further gas treatment is therefore prohibited for economic reasons alone. Instead, efforts will be made to separate the liquid hydrocarbons contained in the gas, which are often also referred to as pyrolysis oil, and to use them separately.
  • DE-A 3 227 896 it is proposed in DE-A 3 227 896 to separate the carbonization gas obtained by condensation into the three fractions water, liquid hydrocarbons and gaseous hydrocarbons.
  • GB-PS 1 398 858 it is known to first subject the carbonization gas emerging from the pyrolysis reactor to hot dust removal and then to pre-cool it to a gas temperature which is above the dew point of the higher-boiling hydrocarbons contained in the gas.
  • DE-A 2 508 666 it is also known to wash the hot gases obtained in coal pressure gasification in several stages with coal tar oil, the gas being cooled down from stage to stage by the washing oil to such an extent that in the last washing stage the Evaporation point of the oil is higher than the temperature of the gas to be cleaned. The aim is to achieve an almost quantitative separation of the oil mist and vapors from the gas.
  • the three fractions resulting from the treatment of the carbonization gas emerging from the pyrolysis reactor can, of course, be further worked up or further processed in different ways. If the resulting gaseous fraction cannot be used directly on the system for indirect heating of internal consumers. the gas must be used for another recycling, e.g. B. for heating or synthesis purposes or for the generation of electrical energy. However, this requires a storable gas.
  • the invention is therefore based on the object of providing a process for the further processing of the carbonization gas obtained in the waste pyrolysis, in which the gas obtained as the end product can be stored over a longer period of time and, if appropriate, can also be fed into another gas supply network.
  • the liquid hydrocarbons present in the gas and the water should of course be separated as quantitatively as possible. At the same time, it should be possible to dispense with the use of external reagents in this process.
  • the pyrolysis reactor is provided with the reference number 1 in the flow diagram. As mentioned at the beginning, this can be a closed rotary kiln. However, it may also be a different type of reactor, such as. B. a fluidized bed reactor can be used. The details of the pyrolysis process need not be discussed here, however, since the process according to the invention is not tied to the use of certain process conditions in pyrolysis.
  • the carbonization gas at about 450 to 700 ° C. leaving the pyrolysis reactor is first introduced into the dust separator 2, in which most of the entrained coke dust is separated from the gas.
  • the dust collector 2 can be a type which is customary for this purpose, e.g. B. a cyclone act.
  • the gas After the hot dedusting, the gas reaches the gas quench 4 via line 3, to which a partial flow of the cold gas occurring behind the indirect cooler 22 is fed via line 5.
  • the hot gas coming from the pyrolysis reactor 1 is to be precooled to a temperature between 200 and 350 ° C. by direct contact with the returned cold gas, at which the gas is introduced via line 6 into the venturi scrubber 7.
  • the gas temperature should be set within the specified temperature range so that it is above the dew point of the higher-boiling hydrocarbons contained in the gas.
  • the temperature controller 8 which measures the temperature of the gas stream flowing in the line 6 and compares it with the predetermined desired value and, with a corresponding deviation from this, opens or throttles the valve 9 in the line 5 such that the supply of cold gas is above this line is increased or decreased accordingly until the desired temperature of the gas in line 6 has been reached.
  • the pre-cooled gas enters the venturi scrubber 7 from the line 6 from above, which is acted upon by line 10 with so-called self-condensate.
  • This self-condensate is a high-boiling hydrocarbon (heavy to medium oil) that is separated from the gas.
  • the self-condensate supplied via line 10 has a temperature of 100 to 200 ° C.
  • the fine dust removal of the gas takes place, which is caused on the one hand by the self-condensate that has been released and on the other hand by the condensation of the higher-boiling hydrocarbons.
  • the constituents separated from the gas are drawn off via line 11 into the so-called first separating tank 12, while the dedusted gas is introduced via line 13 into the direct cooler 14 from below.
  • the gas is cooled in direct contact with the self-condensate supplied via line 15 to a gas outlet temperature between 60 and 120 ° C.
  • the self-condensate supplied via line 15 has been cooled in the indirect cooler 16 to a temperature between 60 and 100 ° C.
  • the gas temperature in the direct cooler 14 is set so that it is above the dew point of the water vapor contained in the gas.
  • the gas emerging from the direct cooler 14 reaches the indirect cooler 22 via the line 17.
  • the gas outlet temperature in the line 17 is monitored and controlled by the temperature controller 18. This works on the same principle as the temperature controller 8 and actuates the valve 19, which is installed in the cooling water bypass line 20.
  • the cooling water supply to the indirect cooler 16 can be controlled and its performance can thus be influenced. This in turn makes it possible to influence the temperature of the self-condensate fed to the direct cooler 14 via the line 15 and thus to ensure the desired cooling effect in the direct cooler 14.
  • the higher-boiling hydrocarbons still present in the gas condense on the free surfaces of the cooled self-condensate.
  • the constituents separated from the gas are likewise introduced into the first separating container 12 via the line 21.
  • the gas from line 17 is introduced from above into the indirect cooler 22, in which it is cooled to a gas outlet temperature of 20 to 30 ° C.
  • the gas is simultaneously sprinkled with self-condensate, which is applied to the indirect cooler 22 via the line 24.
  • the constituents separated from the gas are withdrawn via line 25 and pass into the so-called second separating container 26.
  • the correspondingly cooled gas is withdrawn via line 27 from the direct cooler 22 and pressed by the gas suction device 28 into the indirect final cooler 29, in which it cools down to a final temperature between 0 and 5 ° C.
  • a partial stream of the gas in line 27 is branched off via line 5 and returned to gas quench 4.
  • the amount of this partial flow is, as described above, controlled by the temperature controller 8 with the aid of the valve 9.
  • the gas cooled in the indirect final cooler 29 is drawn off via the line 30 and fed to its further use or intermediate storage.
  • the low-water condensate separating in the final cooler 29 is drawn off by means of the pump 32 via the line 31.
  • a partial flow of this condensate can be fed back to the final cooler 29 via line 33 for flushing purposes, while the excess condensate is introduced via line 34 into the separating container 26.
  • the amount of condensate drawn off through line 34 is controlled by controller 35, which controls valve 36 as a function of the liquid level at the bottom of final cooler 29. If the liquid level rises above a predetermined setpoint, the valve 36 is automatically opened, while it is automatically closed when the liquid level falls below the setpoint.
  • the solid to liquid gas constituents (condensates) drawn off from the venturi washer 7 and the direct cooler 14 are separated into an oil-containing thick tar and an oil phase in the so-called first separating tank 12.
  • the separating container 12 can be a tar separator of a conventional type, as is also used in the treatment of coke oven gases.
  • the resulting oil-containing thick tar, which contains the dust deposited in the venturi washer 7, collects at the bottom of the separating container 12 and is discharged from the separating container 12 by means of the screw conveyor 37.
  • the pump 38 feeds it back via line 39 into the pyrolysis reactor 1, where it is also converted.
  • the oil phase on the other hand, which separates out as a lighter phase over the thick tar, is drawn off from the separating container 12 via the line 40 and pressed into the lines 10 and 15 by the pump 41, via which a re-application to the venturi washer 7 and the direct cooler 14 he follows.
  • the amount of the oil-containing thick tar drawn off is controlled by the controller 43 which, depending on the liquid level at the bottom of the direct cooler 14, actuates the speed controller 44 of the pump 38.
  • the controller 43 works in such a way that the speed of the pump 38 and thus its delivery rate is increased with increasing liquid level, while the speed and delivery rate of the pump 38 are throttled when the liquid level falls.
  • the liquid gas constituents (condensates) separated in the indirect cooler 22 are essentially a water-containing light oil fraction, which is separated into an oil and a water phase in the so-called second separating container 26.
  • the oil phase which separates out over the water phase is withdrawn from the separating tank 26 via the overflow 46 and the line 45 and is pressed into the line 24 by the pump 47. Via this line, the indirect cooler 22 is returned.
  • the line 24 is connected to the line 42 via the valve 48 connected so that excess oil can be removed from the circuit and drawn off through line 42. This is light oil with a boiling range of approx. 30 to 230 ° C.
  • the valve 48 is actuated by the controller 49, the control taking place as a function of the liquid level in the separating container 26 in the manner already described.
  • the water separated in the separating container 26 is pressed by the pump 50 into the line 51, via which it is removed from the process.
  • the water can be fed to a biological wastewater treatment plant or otherwise destroyed.
  • the controller 52 controls the drainage of water depending on the state of the water phase in the separating container 26 via the valve 53.
  • the oil fractions obtained in the individual process stages can also be drawn off separately. and be recycled if this is appropriate due to the operational circumstances.
  • the indirect coolers 16 and 22 are connected to one another by a common cooling water circuit.
  • the cooling water which may have been mixed with an antifreeze, is introduced via line 54 into the cooling coil 23 of the indirect cooler 22. From there it passes via line 55 into indirect cooler 16, from which it is withdrawn via line 56.
  • the removed cooling water can be reused after appropriate re-cooling.
  • the implementation of the method according to the invention is not tied to the cooler embodiments shown in the figure. Rather, other types of coolers can also be used.
  • the gas composition is changed as follows. While the partially dedusted gas in line 3 has a composition in the following range: is the composition of the purified gas withdrawn via line 30 in the following range:
  • This gas is fully storable even at low temperatures and can be used as heating gas without difficulty. Since the self-condensates obtained are also used for gas treatment in the method according to the invention, the use of external reagents can be dispensed with. The removal of the resulting thick tar is also not a problem in the process according to the invention, since it is returned to the pyrolysis reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Industrial Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Weiterverarbeitung des bei der Pyrolyse von organischen Stoffe enthaltenden Abfällen, insbesondere von Hausmüll, anfallenden kohlenwasserstoffhaltigen Schwelgases, wobei Wasser und flüssige Kohlenwasserstoffe aus dem Gas abgeschieden werden.The invention relates to a process for the further processing of the carbon-containing carbonization gas obtained in the pyrolysis of organic substances, in particular domestic waste, water and liquid hydrocarbons being separated from the gas.

Die Pyrolyse von organische Stoffe enthaltenden Abfällen, insbesondere von Hausmüll, wird heute gegebenenfalls unter Kohlezusatz vorzugsweise in geschlossenen Drehrohröfen unter Luftabschluß durchgeführt. In dem als Pyrolysereaktor dienenden Drehrohrofen erfolgt dabei durch entsprechende Beheizung der Seitenwände eine Umwandlung der eingebrachten Abfälle zu Schwelkoks, wobei gleichzeitig ein Schwelgas in Freiheit gesetzt wird, das neben gasförmigen Kohlenwasserstoffen auch flüssige Kohlenwasserstoffe sowie Wasser als kondensierbare Bestandteile enthält. Die Verbrennung des anfallenden Schwelgases ohne weitere Gasbehandlung verbietet sich deshalb schon aus wirtschaftlichen Gründen. Man wird vielmehr bestrebt sein, die im Gas enthaltenen flüssigen Kohlenwasserstoffe, die oft auch als Pyrolyseöl bezeichnet werden, abzuscheiden und einer gesonderten Verwendung zuzuführen.The pyrolysis of waste containing organic substances, in particular domestic waste, is optionally carried out today with the addition of coal, preferably in closed rotary kilns with the exclusion of air. In the rotary kiln serving as a pyrolysis reactor, the waste that is introduced is converted into smoldering coke by appropriate heating of the side walls, at the same time releasing a smoldering gas which, in addition to gaseous hydrocarbons, also contains liquid hydrocarbons and water as condensable components. The combustion of the smoldering gas produced without further gas treatment is therefore prohibited for economic reasons alone. Instead, efforts will be made to separate the liquid hydrocarbons contained in the gas, which are often also referred to as pyrolysis oil, and to use them separately.

So wird beispieltweise in der DE-A 3 227 896 vorgeschlagen, das anfallende Schwelgas durch Kondensation in die drei Fraktionen Wasser, flüssige Kohlenwasserstoffe und gasförmige Kohlenwasserstoffe aufzutrennen. Aus der GB-PS 1 398 858 ist es hierbei bekannt, das aus dem Pyrolysereaktor austretende Schwelgas zunächst einer Heißentstaubung zu unterwerfen und daran anschließend bis auf eine Gastemperatur vorzukühlen, die oberhalb des Taupunktes der im Gas enthaltenen höhersiedenden Kohlenwasserstoffe liegt. Aus der DE-A 2 508 666 ist es ferner bekannt, die bei der Kohle-Druckvergasung anfallenden heißen Gase mehrstufig mit Steinkohlen-Teeröl zu waschen, wobei das Gas von Stufe zu Stufe durch das Waschöl soweit heruntergekühlt wird, daß in der letzten Waschstufe der Verdampfungspunkt des Öles höher liegt als die Temperatur des zu reinigenden Gases. Dadurch soll eine nahezu quantitative Abscheidung der Ölnebel und -dämpfe aus dem Gas erreicht werden.For example, it is proposed in DE-A 3 227 896 to separate the carbonization gas obtained by condensation into the three fractions water, liquid hydrocarbons and gaseous hydrocarbons. From GB-PS 1 398 858 it is known to first subject the carbonization gas emerging from the pyrolysis reactor to hot dust removal and then to pre-cool it to a gas temperature which is above the dew point of the higher-boiling hydrocarbons contained in the gas. From DE-A 2 508 666 it is also known to wash the hot gases obtained in coal pressure gasification in several stages with coal tar oil, the gas being cooled down from stage to stage by the washing oil to such an extent that in the last washing stage the Evaporation point of the oil is higher than the temperature of the gas to be cleaned. The aim is to achieve an almost quantitative separation of the oil mist and vapors from the gas.

Die bei der Behandlung des aus dem Pyrolysereaktor austretenden Schwelgases anfallenden drei Fraktionen können selbstverständlich auf unterschiedliche Art und Weise weiter aufgearbeitet bzw. weiterverwertet werden. Sofern die anfallende gasförmige Fraktion dabei nicht unmittelbar auf der Anlage für die indirekte Beheizung interner Verbraucher genutzt werden kann. muß das Gas einer anderen Verwertung zugeführt werden, z. B. für Heiz- oder Synthesezwecke oder auch für die Erzeugung elektrischer Energie. Dies setzt jedoch ein lagerfähiges Gas voraus.The three fractions resulting from the treatment of the carbonization gas emerging from the pyrolysis reactor can, of course, be further worked up or further processed in different ways. If the resulting gaseous fraction cannot be used directly on the system for indirect heating of internal consumers. the gas must be used for another recycling, e.g. B. for heating or synthesis purposes or for the generation of electrical energy. However, this requires a storable gas.

Der Erfindung liegt deshalb die Aufgabe zu Grunde, ein Verfahren zur Weiterverarbeitung des bei der Abfallpyrolyse anfallenden Schwelgases zu schaffen, bei dem das als Endprodukt anfallende Gas über einen längeren Zeitraum lagerfähig ist und gegebenenfalls auch in ein anderes Gasversorgungsnetz eingespeist werden kann. Dabei sollen beim erfindungsgemäßen Verfahren selbstverständlich die im Gas vorhandenen flüssigen Kohlenwasserstoffe sowie das Wasser möglichst quantitativ abgechieden werden. Gleichzeitig soll auf eine Verwendung von Fremdreagenzien bei diesem Verfahren verzichtet werden können.The invention is therefore based on the object of providing a process for the further processing of the carbonization gas obtained in the waste pyrolysis, in which the gas obtained as the end product can be stored over a longer period of time and, if appropriate, can also be fed into another gas supply network. In the process according to the invention, the liquid hydrocarbons present in the gas and the water should of course be separated as quantitatively as possible. At the same time, it should be possible to dispense with the use of external reagents in this process.

Das der Lösung dieser Aufgabe dienende Verfahren der eingangs genannten Art ist erfindungsgemäß gekennzeichnet durch die Anwendung der Verfahrensschritte a) bis g) des Hauptanspruches.The method of the type mentioned at the outset which is used to achieve this object is characterized according to the invention by the use of method steps a) to g) of the main claim.

Weitere Einzelheiten des erfindungsgemäßen Verfahrens ergeben sich aus den vorliegenden Unteransprüchen und sollen nachfolgend durch ein Ausführungsbeispiel an Hand des in der Abbildung dargestellten Fließschemas erläutert werden. Das Fließschema zeigt dabei nur die für die Verfahrenserläuterung unbedingt erforderlichen Anlagenteile, während Nebeneinrichtungen, die in keinem Zusammenhang mit dem erfindungsgemässen Verfahren stehen, nicht dargestellt sind.Further details of the method according to the invention result from the present subclaims and are to be explained in the following by means of an embodiment using the flow diagram shown in the figure. The flow diagram shows only those parts of the plant that are absolutely necessary for the process explanation, while secondary devices that are not related to the process according to the invention are not shown.

Im Fließschema ist der Pyrolysereaktor mit dem Bezugszeichen 1 versehen. Hierbei kann es sich, wie eingangs erwähnt, um einen geschlossenen Drehrohrofen handeln. Es kann aber gegebenenfalls auch ein anderer Reaktortyp, wie z. B. ein Wirbelbettreaktor, eingesetzt werden. Auf die Einzelheiten des Pyrolyseverfahrens braucht hier aber nicht näher eingegangen zu werden, da das erfindungsgemäße Verfahren nicht an die Anwendung bestimmter Verfahrensbedingungen bei der Pyrolyse gebunden ist. Das den Pyrolysereaktor verlassende, ca. 450 bis 700 °C heiße Schwelgas wird zunächst in den Staubabscheider 2 eingeleitet, in dem der größte Teil des mitgerissenen Koksstaubes aus dem Gas abgeschieden wird. Beim Staubabscheider 2 kann es sich um einen für diesen Zweck gebräuchlichen Typ, z. B. um einen Zyklon, handeln. Über die Leitung 3 gelangt das Gas im Anschluß an die Heißentstaubung in die Gasquench 4, auf die über die Leitung 5 ein Teilstrom des hinter dem indirekten Kühler 22 anfallenden kalten Gases aufgegeben wird. In der Gasquench 4 soll das heiße, vom Pyrolysereaktor 1 kommende Gas durch direkte Berührung mit dem zurückgeführten kalten Gas bis auf eine Temperatur zwischen 200 und 350 °C vorgekühlt werden, mit der das Gas über die Leitung 6 in den Venturiwascher 7 eingeleitet wird. Die Gastemperatur soll dabei innerhalb des angegebenen Temperaturbereiches so eingstellt werden, daß dieselbe oberhalb des Taupunktes der im Gas enthaltenen höhersiedenden Kohlenwasserstoffe liegt. Dies wird mittels des Temperaturreglers 8 erreicht, der die Temperatur des in der Leitung 6 fließenden Gasstromes mißt und mit dem vorgegebenen Sollwert vergleicht und bei entsprechender Abweichung von diesem das Ventil 9 in der Leitung 5 so öffnet oder drosselt, daß die Zufuhr von kaltem Gas über diese Leitung entsprechend erhöht oder verringert wird, bis sich die gewünschte Temperatur des Gases in Leitung 6 eingestellt hat.The pyrolysis reactor is provided with the reference number 1 in the flow diagram. As mentioned at the beginning, this can be a closed rotary kiln. However, it may also be a different type of reactor, such as. B. a fluidized bed reactor can be used. The details of the pyrolysis process need not be discussed here, however, since the process according to the invention is not tied to the use of certain process conditions in pyrolysis. The carbonization gas at about 450 to 700 ° C. leaving the pyrolysis reactor is first introduced into the dust separator 2, in which most of the entrained coke dust is separated from the gas. The dust collector 2 can be a type which is customary for this purpose, e.g. B. a cyclone act. After the hot dedusting, the gas reaches the gas quench 4 via line 3, to which a partial flow of the cold gas occurring behind the indirect cooler 22 is fed via line 5. In the gas quench 4, the hot gas coming from the pyrolysis reactor 1 is to be precooled to a temperature between 200 and 350 ° C. by direct contact with the returned cold gas, at which the gas is introduced via line 6 into the venturi scrubber 7. The gas temperature should be set within the specified temperature range so that it is above the dew point of the higher-boiling hydrocarbons contained in the gas. This is achieved by means of the temperature controller 8, which measures the temperature of the gas stream flowing in the line 6 and compares it with the predetermined desired value and, with a corresponding deviation from this, opens or throttles the valve 9 in the line 5 such that the supply of cold gas is above this line is increased or decreased accordingly until the desired temperature of the gas in line 6 has been reached.

Das vorgekühlte Gas tritt aus der Leitung 6 von oben in den Venturiwascher 7 ein, der über die Leitung 10 mit sogenanntem Eigenkondensat beaufschlagt wird. Bei diesem Eigenkondensat handelt es sich um hochsiedende Kohlenwasserstoffe (Schwer- bis Mittelöl), die aus dem Gas abgeschieden werden. Das über die Leitung 10 zugeführte Eigenkondensat weist eine Temperatur von 100 bis 200 °C auf. Im Venturiwascher 7 erfolgt die Feinentstaubung des Gases, die einerseits durch das aufgegebene Eigenkondensat und andererseits durch die einsetzende Kondensation der höhersiedenden Kohlenwasserstoffe bewirkt wird. Die dabei aus dem Gas abgeschiedenen Bestandteile werden über die Leitung 11 in den sogenannten ersten Scheidebehälter 12 abgezogen, während das entstaubte Gas über die Leitung 13 von unten in den direkten Kühler 14 eingeleitet wird. In diesem wird das Gas in direktem Kontakt mit dem über die Leitung 15 aufgegebenen Eigenkondensat bis auf eine Gasaustrittstemperatur zwischen 60 und 120 °C gekühlt. Zu diesem Zweck ist das über die Leitung 15 zugeführte Eigenkondensat in dem indirekten Kühler 16 bis auf eine Temperatur zwischen 60 und 100 °C gekühlt worden. Die Gastemperatur im direkten Kühler 14 wird dabei so eingestellt, daß dieselbe oberhalb des Taupunktes des im Gas enthaltenen Wasserdampfes liegt. Das aus dem direkten Kühler 14 austretende Gas gelangt über die Leitung 17 in den indirekten Kühler 22. Die Gasaustrittstemperatur in der Leitung 17 wird dabei über den Temperaturregler 18 überwacht und gesteuert. Dieser arbeitet nach dem gleichen Prinzip wie der Temperaturregler 8 und betätigt das Ventil 19, das in der Kühlwasser-Bypassleitung 20 installiert ist. Über diese Bypassleitung 20 kann die Kühlwasserzufuhr zum indirekten Kühler 16 gesteuert und damit dessen Leistung beeinflußt werden. Dadurch ist es wiederum möglich, die Temperatur des über die Leitung 15 auf den direkten Kühler 14 aufgegebenen Eigenkondensates zu beeinflussen und damit den gewünschten Kühleffekt im direkten Kühler 14 sicherzustellen. Die noch im Gas vorhandenen höhersiedenden Kohlenwasserstoffe kondensieren dabei an den freien Oberflächen des gekühlten Eigenkondensates. Die aus dem Gas abgeschiedenen Bestandteile werden über die Leitung 21 ebenfalls in den ersten Scheidedebehälter 12 eingeleitet.The pre-cooled gas enters the venturi scrubber 7 from the line 6 from above, which is acted upon by line 10 with so-called self-condensate. This self-condensate is a high-boiling hydrocarbon (heavy to medium oil) that is separated from the gas. The self-condensate supplied via line 10 has a temperature of 100 to 200 ° C. In the venturi scrubber 7, the fine dust removal of the gas takes place, which is caused on the one hand by the self-condensate that has been released and on the other hand by the condensation of the higher-boiling hydrocarbons. The constituents separated from the gas are drawn off via line 11 into the so-called first separating tank 12, while the dedusted gas is introduced via line 13 into the direct cooler 14 from below. In this, the gas is cooled in direct contact with the self-condensate supplied via line 15 to a gas outlet temperature between 60 and 120 ° C. For this purpose, the self-condensate supplied via line 15 has been cooled in the indirect cooler 16 to a temperature between 60 and 100 ° C. The gas temperature in the direct cooler 14 is set so that it is above the dew point of the water vapor contained in the gas. The gas emerging from the direct cooler 14 reaches the indirect cooler 22 via the line 17. The gas outlet temperature in the line 17 is monitored and controlled by the temperature controller 18. This works on the same principle as the temperature controller 8 and actuates the valve 19, which is installed in the cooling water bypass line 20. Via this bypass line 20, the cooling water supply to the indirect cooler 16 can be controlled and its performance can thus be influenced. This in turn makes it possible to influence the temperature of the self-condensate fed to the direct cooler 14 via the line 15 and thus to ensure the desired cooling effect in the direct cooler 14. The higher-boiling hydrocarbons still present in the gas condense on the free surfaces of the cooled self-condensate. The constituents separated from the gas are likewise introduced into the first separating container 12 via the line 21.

Das Gas aus der Leitung 17 wird von oben in den indirekten Kühler 22 eingeleitet, in dem es bis auf eine Gasaustrittstemperatur von 20 bis 30 °C gekühlt wird. Um Ablagerungen und Verschmutzungen auf der Kühlschlange 23 zu vermeiden, wird das Gas gleichzeitig mit Eigenkondensat berieselt, das über die Leitung 24 auf den indirekten Kühler 22 aufgegeben wird. Die aus dem Gas abgeschiedenen Bestandteile werden über die Leitung 25 abgezogen und gelangen in den sogenannten zweiten Scheidebehälter 26. Das entsprechend gekühlte Gas wird über die Leitung 27 aus dem direkten Kühler 22 abgezogen und von dem Gassauger 28 in den indirekten Schlußkühler 29 gedrückt, in dem seine Abkühlung .bis auf eine Endtemperatur zwischen 0 und 5 °C erfolgt. Dabei wird jedoch ein Teilstrom des Gases in der Leitung 27 über die Leitung 5 abgezweigt und zur Gasquench 4 zurückgeführt. Die Menge dieses Teilstromes wird, wie weiter oben beschrieben worden ist, durch den Temperaturregler 8 mit Hilfe des Ventils 9 gesteuert. Das im indirekten Schlußkühler 29 abgekühlte Gas wird über die Leitung 30 abgezogen und seiner weiteren Verwendung bzw. einer Zwischenlagerung zugeführt. Das sich im Schlußkühler 29 abscheidende wasserarme Kondensat wird vermittels der Pumpe 32 über die Leitung 31 abgezogen. Ein Teilstrom dieses Kondensates kann zu Spülzwecken über die Leitung 33 wieder auf den Schlußkühler 29 aufgegeben werden, während das überschüssige Kondensat über die Leitung 34 in den Scheidebehälter 26 eingeleitet wird. Die Menge des durch die Leitung 34 abgezogenen Kondensates wird durch den Regler 35 gesteuert, der in Abhängigkeit vom Flüssigkeitsstand am Boden des Schlußkühlers 29 das Ventil-36 steuert. Steigt dabei der Flüssigkeitsstand über einen vorgegebenen Sollwert, so wird das Ventil 36 automatisch geöffnet, während es bei einem Absinken des Flüssigkeitsstandes unter den Sollwert automatisch geschlossen wird.The gas from line 17 is introduced from above into the indirect cooler 22, in which it is cooled to a gas outlet temperature of 20 to 30 ° C. In order to avoid deposits and contamination on the cooling coil 23, the gas is simultaneously sprinkled with self-condensate, which is applied to the indirect cooler 22 via the line 24. The constituents separated from the gas are withdrawn via line 25 and pass into the so-called second separating container 26. The correspondingly cooled gas is withdrawn via line 27 from the direct cooler 22 and pressed by the gas suction device 28 into the indirect final cooler 29, in which it cools down to a final temperature between 0 and 5 ° C. However, a partial stream of the gas in line 27 is branched off via line 5 and returned to gas quench 4. The amount of this partial flow is, as described above, controlled by the temperature controller 8 with the aid of the valve 9. The gas cooled in the indirect final cooler 29 is drawn off via the line 30 and fed to its further use or intermediate storage. The low-water condensate separating in the final cooler 29 is drawn off by means of the pump 32 via the line 31. A partial flow of this condensate can be fed back to the final cooler 29 via line 33 for flushing purposes, while the excess condensate is introduced via line 34 into the separating container 26. The amount of condensate drawn off through line 34 is controlled by controller 35, which controls valve 36 as a function of the liquid level at the bottom of final cooler 29. If the liquid level rises above a predetermined setpoint, the valve 36 is automatically opened, while it is automatically closed when the liquid level falls below the setpoint.

Die aus dem Venturiwascher 7 und dem direkten Kühler 14 abgezogenen festen bis flüssigen Gasbestandteile (Kondensate) werden in dem sogenannten ersten Scheidebehälter 12 in eine ölhaltige Dickteer- und eine Ölphase getrennt. Beim Scheidebehälter 12 kann es sich um einen Teerabscheider üblicher Bauart handeln, wie er auch bei der Koksofengasbehandlung eingesetzt wird. Der anfallende ölhaltige Dickteer, der den im Venturiwascher 7 abgeschiedenen Staub eingebunden enthält, sammelt sich am Boden des Scheidebehälters 12 und wird mittels der Förderschnecke 37 aus dem Scheidebehälte 12 ausgetragen. Durch die Pumpe 38 wird er über die Leitung 39 in den Pyrolysereaktor 1 zurückgefördert und dort mit umgesetzt. Die Ölphase dagegen, die sich als leichtere Phase über dem Dickteer abscheidet, wird über die Leitung 40 aus dem Scheidebehälter 12 abgezogen und von der Pumpe 41 in die Leitungen 10 und 15 gedrückt, über die eine Wiederaufgabe auf den Venturiwascher 7 und den direkten Kühler 14 erfolgt. Die Menge des abgezogenen ölhaltigen Dickteeres wird durch den Regler 43 gesteuert, der in Abhängigkeit-vom Flüssigkeitsstand am Boden des direkten Kühlere 14 den Drehzahlregler 44 der Pumpe 38 betätigt. Der Regler 43 arbeitet dabei in der Weise, daß mit steigendem Flüssigkeitsstand die Drehzahl der Pumpe 38 und damit deren Förderleistung erhöht wird, während bei sinkendem Flüssigkeitsstand die Drehzahl und die Förderleistung der Pumpe 38 gedrosselt werden.The solid to liquid gas constituents (condensates) drawn off from the venturi washer 7 and the direct cooler 14 are separated into an oil-containing thick tar and an oil phase in the so-called first separating tank 12. The separating container 12 can be a tar separator of a conventional type, as is also used in the treatment of coke oven gases. The resulting oil-containing thick tar, which contains the dust deposited in the venturi washer 7, collects at the bottom of the separating container 12 and is discharged from the separating container 12 by means of the screw conveyor 37. The pump 38 feeds it back via line 39 into the pyrolysis reactor 1, where it is also converted. The oil phase, on the other hand, which separates out as a lighter phase over the thick tar, is drawn off from the separating container 12 via the line 40 and pressed into the lines 10 and 15 by the pump 41, via which a re-application to the venturi washer 7 and the direct cooler 14 he follows. The amount of the oil-containing thick tar drawn off is controlled by the controller 43 which, depending on the liquid level at the bottom of the direct cooler 14, actuates the speed controller 44 of the pump 38. The controller 43 works in such a way that the speed of the pump 38 and thus its delivery rate is increased with increasing liquid level, while the speed and delivery rate of the pump 38 are throttled when the liquid level falls.

Bei den im indirekten Kühler 22 abgeschiedenen flüssigen Gasbestandteilen (Kondensaten) handelt es sich im wesentlichen um eine wasserhaltige Leichtölfraktion, die im sogenannten zweiten Scheidebehälter 26 in eine Öl- und eine Wasserphase getrennt wird. Die Ölphase, die sich dabei über der Wasserphase abscheidet, wird über den Überlauf 46 und die Leitung 45 aus dem Scheidebehälter 26 abgezogen und von der Pumpe 47 in die Leitung 24 gedrückt. Über diese Leitung erfolgt die Wiederaufgabe auf den indirekten Kühler 22. Die Leitung 24 ist über das Ventil 48 mit der Leitung 42 verbunden, so daß überschüssiges Öl aus dem Kreislauf entfernt und durch die Leitung 42 abgezogen werden kann. Hierbei handelt es sich um Leichtöl mit einem Siedebereich von ca. 30 bis 230 °C. Das Ventil 48 wird von dem Regler 49 betätigt, wobei die Steuerung in Abhängigkeit vom Flüssigkeitsstand im Scheidebehälter 26 in der bereits beschriebenen Art und Weise erfolgt. Das im Scheidebehälter 26 abgeschiedene Wasser wird von der Pumpe 50 in die Leitung 51 gedrückt, über die es aus dem Verfahren entfernt wird. Das Wasser kann dabei einer biologischen Abwasserbehandlungsanlage zugeführt oder anderweitig vernichtet werden.The liquid gas constituents (condensates) separated in the indirect cooler 22 are essentially a water-containing light oil fraction, which is separated into an oil and a water phase in the so-called second separating container 26. The oil phase which separates out over the water phase is withdrawn from the separating tank 26 via the overflow 46 and the line 45 and is pressed into the line 24 by the pump 47. Via this line, the indirect cooler 22 is returned. The line 24 is connected to the line 42 via the valve 48 connected so that excess oil can be removed from the circuit and drawn off through line 42. This is light oil with a boiling range of approx. 30 to 230 ° C. The valve 48 is actuated by the controller 49, the control taking place as a function of the liquid level in the separating container 26 in the manner already described. The water separated in the separating container 26 is pressed by the pump 50 into the line 51, via which it is removed from the process. The water can be fed to a biological wastewater treatment plant or otherwise destroyed.

Der Regler 52 steuert über das Ventil 53 den Wasserabzug in Abhängigkeit vom Stand der Wasserphase im Scheidebehälter 26. Selbstverständlich können in Abweichung vom vorliegenden Ausführungsbeispiel die in den einzelnen Verfahrensstufen anfallenden Ölfraktionen auch getrennt abgezogen. und weiterverwertet werden, wenn dies auf Grund der betrieblichen Gegebenheiten zweckmäßig ist.The controller 52 controls the drainage of water depending on the state of the water phase in the separating container 26 via the valve 53. Of course, in deviation from the present exemplary embodiment, the oil fractions obtained in the individual process stages can also be drawn off separately. and be recycled if this is appropriate due to the operational circumstances.

Die indirekten Kühler 16 und 22 sind durch einen gemeinsamen Kühlwasserkreislauf miteinander verbunden. Hierbei wird das Kühlwasser, das. gegebenenfalls mit einem Frostschutzmittel versetzt worden ist, über die Leitung 54 in die Kühlschlange 23 des indirekten Kühlers 22 eingeleitet. Von dort gelangt es über die Leitung 55 in den indirekten Kühler 16, aus dem es über die Leitung 56 abgezogen wird. Das abgezogene Kühlwasser kann dabei nach entsprechender Rückkühlung wiederverwendet werden. Selbstverständlich ist die Durchführung des erfindungsgemäßen Verfahrens nicht an die- in der Abbildung dargestellten Ausführungsformen der Kühler gebunden. Es können vielmehr auch andere Kühlertypen zur Anwendung gelangen.The indirect coolers 16 and 22 are connected to one another by a common cooling water circuit. Here, the cooling water, which may have been mixed with an antifreeze, is introduced via line 54 into the cooling coil 23 of the indirect cooler 22. From there it passes via line 55 into indirect cooler 16, from which it is withdrawn via line 56. The removed cooling water can be reused after appropriate re-cooling. Of course, the implementation of the method according to the invention is not tied to the cooler embodiments shown in the figure. Rather, other types of coolers can also be used.

Durch die Anwendung des erfindungsgemäßen Verfahrens wird die Gaszusammensetzung wie folgt verändert. Während das teilentstaubte Gas in Leitung 3 eine Zusammensetzung in folgendem Bereich aufweist :

Figure imgb0001
liegt die Zusammensetzung des über die Leitung 30 abgezogenen gereinigten Gases in folgendem Bereich :
Figure imgb0002
By using the method according to the invention, the gas composition is changed as follows. While the partially dedusted gas in line 3 has a composition in the following range:
Figure imgb0001
is the composition of the purified gas withdrawn via line 30 in the following range:
Figure imgb0002

Dieses Gas ist auch bei tiefen Temperaturen voll lagerfähig und kann ohne Schwierigkeiten als Heizgas verwendet werden. Da außerdem beim erfindungsgemäßen Verfahren die anfallenden Eigenkondensate zur Gasbehandlung genutzt werden, kann auf die Verwendung von Fremdreagenzien verzichtet werden. Die Beseitigung des anfallenden Dickteers stellt beim erfindungsgemäßen Verfahren ebenfalls kein Problem dar, da dieser in den Pyrolysereaktor zurückgeführt wird.This gas is fully storable even at low temperatures and can be used as heating gas without difficulty. Since the self-condensates obtained are also used for gas treatment in the method according to the invention, the use of external reagents can be dispensed with. The removal of the resulting thick tar is also not a problem in the process according to the invention, since it is returned to the pyrolysis reactor.

Claims (8)

1. Process for the subsequent treatment of low-temperature carbonization gas which contains hydrocarbons and which is produced during the pyrolysis of wastes, especially household refuse, which contain organic materials, the water and liquid hydrocarbons being separated from the gas, characterized by the application of the following process steps :
a) the gas leaving the pyrolysis reactor is, after hot de-dusting, pre-cooled to as gas temperature between 200 and 350 °C, the gas temperature being set so that it is above the dew point of the higher- boiling hydrocarbons contained in the gas ;
b) the gas leaving the pre-cooling system is subjected to fine de-dusting in a Venturi scrubber with the addition of captive condensate ;
c) the de-dusted gas leaving the Venturi scrubber is cooled in a direct cooler counter-current to cooled captive condensate down to a gas outlet temperature between 60 and 120 °C, the gas temperature being set so that it is above the dew point of the water vapour contained in the gas ;
d) the gas is then cooled in an indirect cooler to a gas outlet temperature of 20 to 30 °C, being sprayed at the same time with captive condensate as a scavenging medium ;
e) the gas is finally brought to an end temperature between 0 and 5 °C in an indirect final cooler, at which temperature it is transferred to a process for its further utilization or to intermediate storage ;
f) the constituents (condensates) separated from the gas in the Venturi scrubber and in the direct cooler are drawn off into a first decantation tank and separated there into a heavy tar phase and an oil phase, the oil-containing heavy tar which is produced being returned to the pyrolysis reactor for further conversion while the oil phase is reused, totally or in part, as so-called captive condensate for gas treatment in the Venturi scrubber and the direct cooler ;
g) the constituents (condensates) separated from the gas in the indirect cooler are drawn off into a second decantation tank and separated there into a water phase and an oil phase, the separated water being immediately removed from the process while the oil phase is re-used, totally or in part, as so-called captive condensate for gas treatment in the indirect cooler.
2. Process according to Claim 1, characterized in that the pre-cooling of the gas (process step a) is carried out either by gas quenching with a partial stream of the cool gas produced after the indirect cooler or else by indirect cooling with a heat transfer medium.
3. Process according to Claims 1 and 2, characterized in that the quantity of the cold gas supplied to the gas quench is controlled as a function of the gas temperature of the pre-cooled gas after the gas quench.
4. Process according to Claims 1 to 3, characterized in that the captive condensate is fed to the Venturi scrubber at a temperature of 100 to 200 °C.
5. Process according to Claims 1 to 4, characterized in that the captive condensate is fed to the direct cooler at a temperature of 60 to 100 °C.
6. Process according to Claims 1 to 5, characterized in that the gas outlet temperature after the direct cooler is controlled by appropriate cooling of the captive condensate fed to this cooler.
7. Process according to Claims 1 to 6, characterized in that the oil phase separated in the decantation tanks is, unless it is re-used as so-called captive condensate for gas treatment, drawn off from the process.
8. Process according to Claims 1 to 7, characterized in that part of the condensate separated in the final cooler is fed to the said final cooler again as a scavenging medium.
EP85101873A 1984-06-08 1985-02-21 Process for the subsequent treatment of a gas obtained by pyrolyzing trash Expired EP0167702B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843421393 DE3421393A1 (en) 1984-06-08 1984-06-08 METHOD FOR PROCESSING SMOKE GAS FROM WASTE PYROLYSIS
DE3421393 1984-06-08

Publications (2)

Publication Number Publication Date
EP0167702A1 EP0167702A1 (en) 1986-01-15
EP0167702B1 true EP0167702B1 (en) 1987-10-21

Family

ID=6237943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85101873A Expired EP0167702B1 (en) 1984-06-08 1985-02-21 Process for the subsequent treatment of a gas obtained by pyrolyzing trash

Country Status (5)

Country Link
US (1) US4591366A (en)
EP (1) EP0167702B1 (en)
JP (1) JPS6128585A (en)
DD (1) DD237182A5 (en)
DE (2) DE3421393A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609292A1 (en) * 1985-10-15 1987-04-16 Linde Ag METHOD FOR REMOVING IMPURITIES FROM A GAS
DE3720258A1 (en) * 1987-06-19 1988-12-29 Marresearch Process for reducing the hydrocarbon emissions arising at tank farms, tanker truck filling stations and ships and plant for carrying out the process
DE3721451C1 (en) * 1987-06-30 1988-12-08 Asea Brown Boveri Process for operating a pyrolysis plant
DE3721450C1 (en) * 1987-06-30 1988-12-08 Asea Brown Boveri Process for cooling hot pyrolysis gas
DE3721475C1 (en) * 1987-06-30 1989-03-23 Asea Brown Boveri Plant for pyrolysis of waste material
EP0308669A1 (en) * 1987-08-29 1989-03-29 Asea Brown Boveri Aktiengesellschaft Process for utilising a halogenated hydrocarbon-containing starting material
DE3835038A1 (en) * 1987-11-19 1990-04-19 Asea Brown Boveri METHOD FOR REDUCING BY-PRODUCTS IN GENERATING VN PYROLYSEGAS
EP0494240A1 (en) * 1989-09-29 1992-07-15 Product-Control Limited Method and apparatus for refinement or treatment of material
US5824122A (en) * 1992-10-23 1998-10-20 Siemans Aktiengesellschaft Process and apparatus for purifying flammable gas
DE19512850A1 (en) * 1995-04-06 1996-10-10 Veba Oel Technologie & Automatisierung Gmbh Process for dedusting carbonization gas
DE19529536B4 (en) * 1995-08-11 2005-10-20 Schroeder Sascha Process for the treatment and conditioning of fuel gas
DE19611119C2 (en) * 1996-03-21 2001-05-23 Sueddeutsche Kalkstickstoff Process for cleaning hot, dusty and tarry exhaust gases
CN1089270C (en) * 1997-11-21 2002-08-21 刘兆彦 Latticed plate type polyester polycondensing tower
NL1018803C2 (en) * 2001-08-22 2003-02-25 Stichting Energie Method and system for gasifying a biomass.
DE10159133A1 (en) * 2001-12-01 2003-06-26 Andreas Unger Gas cleaning with conditioned condensates
JP4547244B2 (en) * 2004-12-14 2010-09-22 有限会社 八太環境技術事務所 Organic gasifier
WO2011128990A1 (en) * 2010-04-14 2011-10-20 Michimae Kiyoharu Dry distillation apparatus
US10767114B2 (en) * 2013-05-31 2020-09-08 Tolero Energy, Llc Pyrolysis system and method for bio-oil component extraction
JP6467805B2 (en) * 2014-08-07 2019-02-13 新日鐵住金株式会社 Exhaust gas treatment method and exhaust gas treatment equipment for tar utilization equipment
JP6540645B2 (en) * 2016-09-28 2019-07-10 Jfeスチール株式会社 Method and apparatus for thermal decomposition of organic substance
US10793797B2 (en) 2017-08-16 2020-10-06 Praxair Technology, Inc. Integrated process and unit operation for conditioning a soot-containing syngas
JP2019147872A (en) * 2018-02-26 2019-09-05 Jfeスチール株式会社 Thermodecomposition method and thermodecomposition facility of organic substance
FI128804B (en) 2019-06-10 2020-12-31 Neste Oyj Method for processing plastic waste pyrolysis gas
EP4043539A1 (en) * 2021-02-12 2022-08-17 Bernhard Grimm Device and method for cleaning and / or condensing pyrolysis gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2508666A1 (en) * 1975-02-28 1976-09-09 Heinz Hoelter Pressurized coal gasification gases - scrubbed in stages with tar oil at final temperature below oil vaporization point

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518812A (en) * 1968-07-10 1970-07-07 Ernest L Kolm Process for removing dust from hot dust-laden gases
GB1398858A (en) * 1972-08-02 1975-06-25 Occidental Petroleum Corp Production and recovery of chemical values from waste solids
FR2300126A1 (en) * 1975-02-06 1976-09-03 Hoelter H PROCESS FOR PURIFYING THE GAS FORMED DURING THE CARBONATION OF PRESSURIZED COAL
DE2646568B2 (en) * 1976-10-15 1981-01-29 Steag Ag, 4300 Essen Process for purifying the raw gas emerging from a reactor for pressurized coal gasification
GB1544002A (en) * 1976-10-21 1979-04-11 Shell Int Research Process for the separation of dry particulate matter from a hot gas
FI67030B (en) * 1981-06-26 1984-09-28 Outokumpu Oy FOER REFRIGERATION FOR ORGANIZATION OF A GASER INNEHAOLLANDEFASTA OCH GASFORMIGA FOERORENINGAR
DE3203062A1 (en) * 1982-01-30 1983-08-04 Dr. C. Otto & Co. Gmbh, 4630 Bochum Process for utilising the sensible heat of raw coke oven gas
GB2125060B (en) * 1982-08-04 1986-08-28 British Gas Corp Purifying aqueous effluents in synthesis gas purification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2508666A1 (en) * 1975-02-28 1976-09-09 Heinz Hoelter Pressurized coal gasification gases - scrubbed in stages with tar oil at final temperature below oil vaporization point

Also Published As

Publication number Publication date
DE3421393A1 (en) 1985-12-12
JPH0514755B2 (en) 1993-02-25
DD237182A5 (en) 1986-07-02
EP0167702A1 (en) 1986-01-15
JPS6128585A (en) 1986-02-08
US4591366A (en) 1986-05-27
DE3560795D1 (en) 1987-11-26

Similar Documents

Publication Publication Date Title
EP0167702B1 (en) Process for the subsequent treatment of a gas obtained by pyrolyzing trash
EP0226895B1 (en) Process for the pyrolytic upgrading of starting material
DE1914053A1 (en) Process for processing crude oil
DE2851358C2 (en)
DE19738106C2 (en) Process for the thermal treatment of volatile material containing combustible components
EP0297424B1 (en) Process for cooling hot pyrolysis gas
DE2415412A1 (en) METHOD AND DEVICE FOR TREATMENT OF HIGH MOLECULAR HYDROCARBONATES OR ALTOELE
DE1804995A1 (en) Purification of acetylene by removal of acet - solvents used in the purification process
DE2928676B1 (en) Process for the condensation of carbonization gases from waste pyrolysis
WO1994010266A1 (en) Process and arrangement for scrubbing fuel gas
DE3715158C1 (en) Process for extracting sulfur
DE3305994A1 (en) METHOD FOR DRY DISTILLING BITUMIOUS OR OIL-BASED SOLIDS
DE4215143C2 (en) Process for cleaning and cooling hot gases under pressure and device for carrying out the process
DE636060C (en) Method and device for splitting hydrocarbon oils
DE655429C (en) Device for the distillation of tar with the extraction of pitch
DE2200607A1 (en) PROCESS FOR DIRECT COOLING OF RAW COOKING GAS
DD240906A1 (en) METHOD AND DEVICE FOR QUICKLY PYROLYSIS OF CARBON AND COKE-FORMING SUBSTANCES
DE682033C (en) Process for the decomposition of hydrocarbon oils under pressure
DE10007503B4 (en) Process for the treatment of raw coke oven gas
DE1015828B (en) Process for utilizing the heat content of hot gases
DE4126431A1 (en) Thermal cleaning process for electrostatic filter for airflow in wood panel production - has electrodes heated periodically to fluidise deposited layers for disposal
EP1419221A2 (en) Method for scavenging precoolers of a coking plant
DD271124A1 (en) METHOD FOR PROCESSING WATER AS WASH WATER OF COOLING GASIFICATION
DE19612346A1 (en) Combined solid fuel drying and gaseous fuel treatment process
DE432882C (en) Process and device for distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19860109

17Q First examination report despatched

Effective date: 19861017

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 3560795

Country of ref document: DE

Date of ref document: 19871126

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 85101873.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970113

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970114

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970116

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970130

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

BERE Be: lapsed

Owner name: KRUPP KOPPERS G.M.B.H.

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980221

EUG Se: european patent has lapsed

Ref document number: 85101873.9

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST