EP0167460B1 - Procédé d'élaboration, par métallurgie des poudres, d'alliage à base de titane à faible dimension de grain - Google Patents

Procédé d'élaboration, par métallurgie des poudres, d'alliage à base de titane à faible dimension de grain Download PDF

Info

Publication number
EP0167460B1
EP0167460B1 EP85401371A EP85401371A EP0167460B1 EP 0167460 B1 EP0167460 B1 EP 0167460B1 EP 85401371 A EP85401371 A EP 85401371A EP 85401371 A EP85401371 A EP 85401371A EP 0167460 B1 EP0167460 B1 EP 0167460B1
Authority
EP
European Patent Office
Prior art keywords
particles
alloy
titanium
powder
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85401371A
Other languages
German (de)
English (en)
Other versions
EP0167460A1 (fr
Inventor
Michel Marty
Henri Octor
André Walder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP0167460A1 publication Critical patent/EP0167460A1/fr
Application granted granted Critical
Publication of EP0167460B1 publication Critical patent/EP0167460B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium

Definitions

  • the subject of the invention is a process for the preparation of a titanium-based alloy having a small grain size, the term “alloy to be interpreted as extending to a product containing, in addition to titanium, only elements addition at a sufficiently low content so that the ⁇ - ⁇ phase transformation remains.
  • Titanium pure and above all in the form of an alloy of which it is the main constituent, has properties of lightness, mechanical strength and temperature which are leading to the use of it more and more in many fields, and in particular in aeronautics.
  • a titanium powder containing the addition elements densifies by spinning or isostatic compression and performs a heat treatment.
  • the invention starts from the observation that the harmful influence of passing through a temperature above the transformation point is not inherent in the acicular structure, but is linked to the size of the ⁇ -grain, which increases very rapidly during maintaining the temperature until it reaches and exceeds 0.5 mm, and leads after the final quenching operation to a structure whose grain size (ex ⁇ ) depends directly on that obtained at the end of heat treatment.
  • Document GB-A-928 407 also discloses a method according to the preamble of claim 1; but the process according to the patent includes a cold homogenization treatment step. It provides for the addition of a metal or alloy soluble in titanium; cerium and lanthanum do not meet this condition.
  • the invention aims to provide a process for the production of a titanium-based alloy which meets the requirements of the practice better than those previously known, in particular in that it provides the advantages associated with a heat treatment at high temperature, while avoiding exaggerated magnification of grain in ⁇ phase, magnification detrimental to mechanical properties.
  • the invention provides a process for the production of an alloy based on titanium of the above-defined type in accordance with claim 1.
  • a first phenomenon is constituted by a blocking of the ⁇ -grain joints by the fine particles of the species which remain stable or are transformed during the development, distributed around the periphery of the other powder particles.
  • the metallurgical grains appearing during the transition to the ⁇ phase are then confused with the particles of the original powder.
  • a second phenomenon consists of braking the migration of the grain seal ⁇ during the heat treatment.
  • the particles of the adduct, stable or transformed are then inside the metallurgical grain ⁇ which is larger than the initial powder grains, but remains smaller than the metallurgical grains in free control samples. of adduct and this up to very low contents of adduct (which constitutes a very favorable factor insofar as it is envisaged the use of an adduct having a weakening effect) .
  • metalloids in elementary form or of compounds, in particular boron, BN, B4C, B4Si, B6Si and LaB6.
  • Sulfur, WS, MoS2, ZnS can also be considered, as well than phosphorus, which however requires special precautions due to its high flammability.
  • the particles of pre-alloyed titanium are advantageously produced by a process giving rise to approximately spherical particles, with a regular and fine particle size, the size of the particles conditioning that of the grains.
  • the particle size range from 40 to 300 ! Lm will generally be acceptable.
  • pre-alloyed titanium powders obtained by sputtering according to a rotary electrode method it is possible in particular to use pre-alloyed titanium powders obtained by sputtering according to a rotary electrode method, currently well known and widely used for the production of powders of titanium alloys.
  • the median value of the diameter of TA6V alloy particles obtained by this process is of the order of 160 wm. It is possible by sieving to limit as much as desired the fraction retained.
  • the essential criterion for the choice of the initial particles of the additive intended to slow down the growth of the grain is dimensional stability. This dimensional stability can be obtained if the adduct used is chemically stable in the presence of the titanium alloy. However, this condition is not essential. The particles can react and chemically transform without dissolving in the metal matrix. One of the factors which oppose this dissolution is the very low solubility in titanium of an element entering into the composition of the initial particle and experience has shown that this factor is preponderant.
  • the particle size of the initial particles of the adduct acts on the content C to be adopted. It can therefore be seen that the use of excessively coarse initial particles leads to the introduction of a high content, detrimental to the mechanical properties of the alloy, in particular to its ductility. In practice, a particle size of the particles smaller by two orders of magnitude or more than that of the titanium powder generally gives good results.
  • the heat treatment temperature has little influence on the results obtained.
  • a temperature approximately 50 ° C above the point of transformation is generally satisfactory.
  • a one hour hold at a temperature between 1050 ° C and 1100 ° C before quenching is satisfactory.
  • the method according to the invention can be implemented with a view to obtaining various results, but all linked to the possibility of retaining a reduced grain size despite exceeding the transformation temperature in the ⁇ phase.
  • the method according to the invention makes it possible to control the grain size p, and, consequently, that of the alloy grains after quenching.
  • This size only depends practically on the particle size of the original powder. We can therefore obtain combinations of mechanical properties which take advantage of the beneficial effects of the acicular structures, while avoiding the handicap of a grain that is too large.
  • the process according to the invention also makes it possible to accelerate the homogenization of an alloy, without any adverse effect on its final mechanical properties.
  • the diffusion coefficient of an element in an alloy is in fact an increasing function of the temperature, which shows the advantage of working at a temperature as high as possible to obtain rapid homogenization.
  • the diffusion coefficient of many elements undergoes a notable discontinuity. in the direction of an increase, if at a fixed temperature phase a becomes phase j3. So the homogenization of an alloy containing particles enriched in alpha-element such as aluminum, oxygen, carbon, nitrogen will be accelerated if the treatment temperature exceeds that where the particle in question passes completely in phase p. Particles of this kind, as well as inclusions of elements foreign to the alloy, can be found in the products obtained by the processes of powder metallurgy.
  • This technique can be combined with the previous one: it makes it possible to use a starting mixture comprising powders produced from shavings with a high content of oxygen, nitrogen and carbon, fine parts of titanium sponge and powder of master alloy, the latter components being lightly loaded with interstitial elements.
  • FIGS. 1 to 10 are simplified reproductions of micrographs of alloys obtained after heat treatment and quenching, the solid lines showing the grain boundaries ⁇ and the possible lines in dashes showing the original particle limits, when they do not coincide with the grain boundaries p.
  • the starting powder was obtained by spraying with TA6V alloy according to the method with a rotating arc electrode under neutral gas and sieving at a particle size less than 160 ⁇ m.
  • Figure 1 shows only a fraction of three adjacent grains in the control sample having undergone all of the treatments.
  • FIG. 2 corresponds to the case of the sample containing 300 vpm of boron, shows that there has been complete blocking of the grain boundaries ⁇ and maintenance of a very fine grain size. It is essential to note that the optical magnification is not the same in Figures 1 and 2.
  • FIG. 4 shows that a content of 100 vpm still considerably slows down the growth of ⁇ grain, the size of which remains much smaller than that of the control sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

  • L'invention a pour objet un procédé d'élaboration d'alliage à base de titane ayant une faible dimension de grain, le terme « alliage devant être interprété comme s'étendant à un produit ne contenant, en plus du titane, que des éléments d'addition à teneur suffisamment faible pour que la transformation de phase α-β subsiste.
  • Le titane, pur et surtout sous forme d'alliage dont il est le constituant principal, présente des propriétés de légèreté, de tenue mécanique et en température qui conduisent à l'utiliser de plus en plus dans de nombreux domaines, et notamment en aéronautique. En règle générale, pour élaborer des pièces de titane par métallurgie des poudres, on part d'une poudre de titane contenant les éléments d'addition, on densifie par filage ou compression isostatique et on effectue un traitement thermique. On a jusqu'ici généralement jugé avantageux d'effectuer ce traitement à une température inférieure au point de transformation en phase p, car au delà de ce point on constate un grossissement excessif des grains métallurgiques, grossissement qui est préjudiciable à certaines caractéristiques mécaniques, par exemple à la ductilité et à la résistance en traction du produit obtenu, même après retour partiel de la phase monophasée 13 en phase a lors du refroidissement à la température ambiante qui suit le traitement thermique.
  • Mais le choix d'une température inférieure au point de transformation conduit à se priver des avantages que présente la structure de type aciculaire que donne la transformation partielle de la phase β obtenue à haute température, en phase α: parmi ces avantages on peut citer la meilleure résistance à la propagation brutale de fissures (c'est-à-dire la ténacité de l'alliage), à la propagation de fissures en fatigue, au fluage, et à la corrosion sous tension dans l'eau salée.
  • L'invention part de la constatation que l'influence néfaste d'un passage par une température supérieure au point de transformation n'est pas inhérente à la structure aciculaire, mais est liée à la taille du grain β, qui augmente très rapidement au cours du maintien en température jusqu'à atteindre et dépasser 0,5 mm, et conduit après l'opération finale de trempe à une structure dont la taille de grain (ex β) dépend directement de celle obtenue en fin de traitement thermique.
  • Le document GB-A-928 407 fait par ailleurs connaître un procédé suivant le préambule de la revendication 1 ; mais le procédé suivant le brevet comporte une étape de traitement a froid d'homogénéisation. Il prévoit l'adjonction d'un métal ou alliage soluble dans le titane ; le cérium et le lanthane ne répondent pas cette condition.
  • L'invention vise à fournir un procédé d'élaboration d'alliage à base de titane répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en ce qu'il fournit les avantages liés à un traitement thermique à haute température, tout en évitant le grossissement exagéré de grain en phase β, grossissement néfaste aux propriétés mécaniques.
  • L'invention propose dans ce but un procédé d'élaboration d'alliage à base .de titane du type c-dessus défini conforme à la revendication 1.
  • On peut penser, sans que le caractère complet et rigoureux de cette explication doive être considéré comme un impératif pour la validité du présent brevet, que deux phénomènes interviennent pour limiter la taille de grain.
  • Un premier phénomène est constitué par un blocage des joints de grain β par les particules fines de l'espèce qui restent stables ou se transforment au cours de l'élaboration, réparties à la périphérie des autres particules de poudre. Les grains métallurgiques apparaissant lors du passage en phase β sont alors confondus avec les particules de la poudre d'origine.
  • Un second phénomène est constitué par un freinage de la migration du joint de grain β pendant le traitement thermique. Dans ce cas, les particules du produit d'addition, stables ou transformées, sont alors à l'intérieur du grain métallurgique β qui est plus gros que les grains de poudre initiaux, mais reste plus petit que les grains métallurgiques dans des échantillons témoins exempts de produit d'addition et ce jusqu'à de très basses teneurs en produit d'addition (ce qui constitue un facteur très favorable dans la mesure ou l'on envisage l'emploi d'un produit d'addition ayant un effet fragilisant).
  • Les deux phénomènes ci-dessus ont été observés, l'un ou l'autre pouvant être seul présent ou prépondérant pour certains. produits d'addition ou certaines plages de teneur.
  • On pouvait a priori penser qu'il serait impossible de trouver un produit pouvant être utilisé en fines particules et remplissant la fonction requise, du fait de la très grande réactivité du titane vis-à-vis d'espèces chimiques pourtant réputées difficiles à décomposer. Par exemple la silice, le carbure de tantale, l'alumine sont rapidement dissous à des températures voisines de 1000 °C, c'est-à-dire à proximité du point de transformation en phase β.
  • Cependant, l'examen de l'enthalpie libre de formation de certains oxydes, et notamment d'oxydes de terre rare, fait apparaître des valeurs à 1000 cC suffisantes pour laisser espérer la possibilité d'obtenir des résultats favorables. De même, l'examen des propriétés de divers éléments fréquemment utilisés en métallurgie montrent une solubilité suffisamment faible pour répondre aux conditions requises. Effectivement, on a notamment ou utiliser divers oxydes, et notamment Y203 et Dy203.
  • On a pu également utiliser des métalloïdes sous forme élémentaire ou de composés, notamment le bore, BN, B4C, B4Si, B6Si et LaB6. Le soufre, WS, MoS2, ZnS peuvent également être envisagés, ainsi que le phosphore, celui-ci nécessitant cependant des précautions particulières en raison de sa grande inflammabilité. On peut également utiliser des éléments des colonnes 5 et 6 du tableau périodique qui sont apparentés à S et à P (Se, Te, As). Tous ces éléments ont une faible solubilité dans le titane.
  • Des résultats satisfaisants sont obtenus moyennant le respect de diverses conditions portant sur la poudre de départ (particules pré-alliées ou mélange), produit d'addition et le traitement thermique.
  • Ces conditions seront maintenant envisagées, en faisant notamment référence au cas particulièrement intéressant de l'alliage de titane dénommé TA6V, à 6 % en poids d'aluminium et 4 % de vanadium.
  • Les particules de titane pré-allié (ou de titane et d'éléments d'addition) sont avantageusement élaborées par un procédé donnant naissance à des particules approximativement sphériques, avec une granulométrie régulière et fine, la taille des particules conditionnant celle des grains. La plage de granulométrie allant de 40 à 300 !Lm sera généralement acceptable.
  • On peut notamment utiliser des poudres de titane pré-allié obtenues par pulvérisation suivant un procédé à l'électrode tournante, actuellement bien connu et largement utilisé pour l'élaboration de poudres d'alliages de titane.
  • La valeur médiane du diamètre de particules d'alliage de TA6V obtenu par ce procédé est de l'ordre de 160 wm. On peut par tamisage limiter autant qu'on le souhaite la fraction retenue.
  • Le critère essentiel du choix des particules initiales du produit d'addition destiné à freiner la croissance du grain est la stabilité dimensionnelle. Cette stabilité dimensionnelle peut être obtenue si le produit d'addition utilisé est stable chimiquement en présence de l'alliage de titane. Toutefois cette condition n'est pas indispensable. Il peut y avoir réaction et transformation chimique des particules sans qu'il y ait dissolution dans la matrice métallique. L'un des facteurs qui s'opposent à cette dissolution est la très faible solubilité dans le titane, d'un élément entrant dans la composition de la particule initiale et l'expérience a prouvé que ce facteur est prépondérant.
  • On peut donc adopter :
    • les composés présentant une grande stabilité chimique vis-à-vis du titane, c'est-à-dire surtout les oxydes possédant une enthalpie libre de formation inférieure à celle de l'alumine, en particulier les composés de la famille des lanthanides comme l'oxyde de lutétium, l'oxyde de néodyme, l'oxyde de dysprosium ;
  • les composés contenant au moins un élément très peu soluble dans le titane, c'est-à-dire notamment ceux déjà évoqués ci-dessus et dont la solubilité dans le titane est (en % en poids) :
    Figure imgb0001
  • La plage de concentration en produit d'addition la plus favorable dépend de nombreux facteurs, parmi lesquels la granulométrie des particules et celle de la poudre de départ. Elle pourra être déterminée par l'expérience pour chaque produit particulier utilisé. Toutefois, la concentration en volume C des particules du produit d'addition devra en régie générale être maintenue entre deux valeurs, qui correspondent l'une à la formation d'une couche continue de particules sur les grains de poudre de titane allié (couche qui pourrait conduire à une fragilisation de l'alliage par décohésion à la limite des grains de poudre primitifs), l'autre à un écartement excessif des particules du produit d'addition à la surface des grains de poudre métallique.
    • En supposant les particules sphériques, et si on désigne par ;
    • d le diamètre moyen des particules du produit d'addition,
    • 1 la distance de centre à centre des particules du produit d'addition,
    • D le diamètre moyen des particules de poudre d'alliage,
    • le revêtement de particules du produit d'addition sera efficace en général pour ;
    • Figure imgb0002
    • Or, dans le cas de particules sphériques
      Figure imgb0003
    • ce qui conduit, pour une valeur moyenne de D égale à 100 µm qu'on peut considérer comme représentative. à :
      Figure imgb0004
    • Dans cette formule, C est un nombre sans dimension, d est en micromètres.
  • Ce critère conduira par exemple aux plages suivantes, exprimées en vpm (volume par million)
    Figure imgb0005
    Figure imgb0006
  • La granulométrie des particules initiales du produit d'addition agit sur la teneur C à adopter. On voit en conséquence que l'emploi de particules initiales trop grossières conduit à introduire une teneur élevée, néfaste aux propriétés mécaniques de l'alliage, notamment à sa ductilité. Dans la pratique, une granulométrie des particules inférieures de deux ordres de grandeurs ou davantage à celle de la poudre de titane donne en général de bons résultats.
  • Une réduction de la granulométrie des particules initiales du produit d'addition, à concentration C constante, entraîne une diminution de la distance entre particules 1 et donc une plus grande efficacité dans la limitation de taille du grain β. Ce résultat a notamment été constaté en comparant les tailles de grain obtenues avec du bore de granulométrie d'environ 0.2 µm et avec des particules de type céramique, telles que l'yttrine Y203, pour lesquelles la granulométrie est d'environ 2 µm.
  • La température de traitement thermique à peu d'influence sur les résultats obtenus. Une température supérieure de 50 °C environ au point de transformation est en général satisfaisante. Lorsque par exemple, on veut élaborer l'alliage TA6V pour lequel le point de transformation α + β/β est situé entre 995 °C et 1 000 °C, un maintien d'une heure à une température comprise entre 1 050 °C et 1 100 °C avant trempe est satisfaisant.
  • Le procédé suivant l'invention peut être mis en oeuvre en vue de l'obtention de résultats divers, mais tous liés à la possibilité de conserver une dimension de grain réduite en dépit du dépassement de la température de transformation en phase β.
  • Tout d'abord, comme on l'a déjà indiqué, le procédé suivant l'invention permet de contrôler la taille de grain p, et, par voie de conséquence, celle des grains d'alliage après trempe. Cette taille ne dépend en effet pratiquement plus que de la granulométrie de la poudre d'origine. On peut en conséquence obtenir des combinaisons de propriétés mécaniques qui tirent parti des effets bénéfiques des structures aciculaires, tout en évitant le handicap d'un grain a trop gros.
  • Le procédé suivant l'invention permet également d'accélérer l'homogénéisation d'un alliage, sans effet défavorable sur ses propriétés mécaniques finales. Le coefficient de diffusion d'un élément dans un alliage est en effet une fonction croissante de la température, ce qui montre l'intérêt de travailler à température aussi élevée que possible pour obtenir une homogénéisation rapide. De plus, dans le cas d'une matrice en titane, le coefficient de diffusion de nombreux éléments subit une discontinuité notable. dans le sens d'une augmentation, si à température fixée la phase a se transforme en phase j3. Donc l'homogénéisation d'un alliage contenant des particules enrichies en élément alphagène comme l'aluminium, l'oxygéne, le carbone, l'azote sera accélérée si la température de traitement dépasse celle où la particule en question passe totalement en phase p. Des particules de ce genre, ainsi que des inclusions d'éléments étrangers à l'alliage, peuvent se rencontrer dans les produits obtenus par les procédés de la métallurgie des poudres.
  • En dépit de son intérêt dans ce cas, on ne peut cependant envisager un traitement d'homogénéisation à une température supérieure au point de transformation en phase 13 en l'absence de produit d'addition, car il conduit à un grossissement inacceptable du grain β. L'invention écarte cet inconvénient. De plus, comparée à un recuit de la poudre à haute température avant densification, elle offre l'avantage de permettre un échange d'éléments entre différents granules de poudre par diffusion à l'état solide.
  • Parmi les cas où l'accélération du processus d'homogénéisation présente un grand intérêt, on peut citer les suivants, à titre non limitatif :
    • Amélioration de l'homogénéité chimique des alliages : cet effet trouve une application importante dans le processus de récupération des copeaux d'usinage de titane allié lorsque cette récupération comporte une transformation en poudre. Les copeaux d'usinage sont contaminés par l'oxygène, l'azote, le carbone et des particules étrangères à l'alliage. Le niveau moyen de contamination peut être abaissé en mélangeant, aux copeaux pulvérisés puis tamisés, de la poudre à teneur plus basse en interstitiels. Cette opération diminue au surplus la taille des particules les plus nocives. Dans la pratique le broyage de copeaux hydrurés permet d'obtenir des poudres particulièrement fines, jusqu'à environ 40 µm. Après mélange de ces poudres avec des particules de produit d'addition et densification, un traitement d'homogénéisation à haute température permet d'améliorer la qualité des produits finis, sans grossissement exagéré du grain p.
  • Synthèse d'alliage par frittage d'un mélange de parties fines d'éponge de titane et de poudre d'alliage-mère ; cette solution, séduisante du point de vue économique, à l'inconvénient de conduire, lorsqu'elle est réalisée par les techniques actuelles à des produits contenant du chlore provenant de l'éponge de titane. Il en résulte une structure métallurgique qui présente une grande stabilité au cours des traitements thermiques mais dont la porosité ne peut être complètement fermée par pressage isostatique. La résistance à la fatigue de ces produits en est considérablement dégradée. L'élimination du chlore des parties fines de l'éponge entraîne un grossissement exagéré du grain β au cours de. l'homogénéisation de l'alliage à une température supérieure au transus 13. Ces produits peuvent être améliorés par mise en oeuvre du procédé suivant l'invention, car ce dernier permet d'effectuer les traitements de diffusion et de pressage isostatique dans le domaine 13 sans grossissement exagéré du grain métallurgique d'où une homogénéisation et la fermeture des pores.
  • Cette technique peut être combinée avec la précédente : elle permet d'utiliser un mélange de départ comprenant des poudres élaborées à partir de copeaux à teneur élevée en oxygène, azote et carbone, des parties fines d'éponge de titane et de la poudre d'alliage-mère, ces derniers composants étant peu chargés en éléments interstitiels.
  • Mise en solution d'éléments tels que Si ou Ge dont la solubilité en phase p croît rapidement avec la température.
  • On décrira maintenant divers exemples particuliers de mise en oeuvre de l'invention, correspondant à l'élaboration d'alliage de titane TA6V par métallurgie des poudres. La description fait référence aux dessins qui l'accompagnent et dans lesquels les figures 1 à 10 sont des reproductions simplifiées de micrographies d'alliages obtenus après traitement thermique et trempe, les lignes en traits pleins montrant les joints de grain β et les lignes éventuelles en tirets montrant les limites de particules d'origine, lorsqu'elles ne coïncident pas avec les joints de grain p.
  • Dans tous les cas, la poudre de départ a été obtenue par pulvérisation d'alliage TA6V suivant le procédé à l'électrode tournante à arc sous gaz neutre et tamisage à une granulométrie inférieure à 160 µm.
  • Plusieurs teneurs, égales ou inférieures à 2200 vpm de particules initiales, ont été essayées. Les mêmes traitements métallurgiques ont été appliqués au mélange contenant le produit d'addition et à un échantillon témoin de poudre d'alliage. Les traitements effectués ont comporté une densification par compression isostatique à chaud dans des conditions représentatives, c'est-à-dire à une température inférieure au point de transformation du TA6V, ou par filage, puis un traitement d'une heure au-dessus de la température de transformation, suivi d'une trempe.
  • Exemple 1
  • On a ajouté 0,16 g de poudre de bore ayant une granulométrie d'environ 0,2 µm à 1 kg de poudre d'alliage TA6V tamisée à une granulométrie inférieure à 160 µm. La teneur ainsi obtenue était de 300 vpm. Le mélange a été effectué dans un mélangeur rotatif en présence de billes de verre, de type « TURBULA », pendant 4 heures. Le mélange a été dégazé à chaud sous vide secondaire et en lit mince, suivant le processus connu en métallurgie des poudres. Il a été ensuite placé dans une enveloppe en acier doux de forme correspondant à celle de la pièce à obtenir. L'enveloppe a été fermée de façon étanche sous vide secondaire par soudage au faisceau d'électrons. L'alliage a été densifié par pressage isostatique à chaud à 950 °C sous 1 000 bars pendant trois heures. L'enveloppe a été retirée par usinage ou attaque chimique. Enfin, un traitement thermique à 1 050 °C pendant une heure, suivi d'une trempe à l'eau, a été effectué.
  • Les mêmes opérations ont également été réalisées sur un témoin contenant uniquement de la poudre d'alliage TA6V.
  • La figure 1 montre une fraction seulement de trois grains adjacents dans l'échantillon témoin ayant subi l'ensemble des traitements. Une comparaison avec la figure 2, qui correspond au cas de l'échantillon contenant 300 vpm de bore, montre qu'il y a eu blocage complet des joints de grain β et maintien d'une taille de grain très fine. Il est essentiel de noter que le grossissement optique n'est pas le même sur les figures 1 et 2.
  • Exemples 2 et 3
  • Les mêmes traitements que dans l'exemple 1 ont été effectués avec des teneurs en bore respectivement de 200 vpm et 100 vpm. Les figures 3 et 4 montrent les tailles de grain obtenues. On voit sur la figure 3, qui correspond à une teneur de 200 vpm, qu'on obtient un quasi-blocage des joints de grain. Les limites des grains β sont, dans la plupart des cas, confondues avec les limites des anciennes particules (indiquées en tirets là où il y a absence de coïncidence).
  • La figure 4 montre qu'une teneur de 100 vpm freine encore de façon notable la croissance de grain β, dont la taille reste très inférieure à celle de l'échantillon témoin.
  • Exemples 4, 5, 6 et 7
  • Le même traitement métallurgique a été appliqué à des échantillons contenant respectivement 400, 550, 1 100 et 2 200 vpm de bore. Dans tous les cas on a obtenu un blocage complet des joints de grain.
  • Exemples 8 et 9
  • Le même traitement métallurgique que dans les exemples précédents a été effectué sur des échantillons contenant respectivement 550 vpm et 1 100 vpm de dysprosine Dy203. Les résultats obtenus apparaissent sur les figures 5 et 6. Sur la figure 5, correspondant à une teneur de 550 vpm, on constate un freinage des joints de grains, limitant la croissance des grains β. Sur la figure 6. pour une teneur de 1 100 vpm, un blocage complet apparaît, la limite des grains β étant confondue avec les limites des anciennes particules.
  • Exemples 10, 11 et 12
  • Le même traitement thermique que dans le cas précédent, si ce n'est que le maintien en température a été à 1 100°C au lieu de 1 050 °C, a été appliqué à un échantillon témoin (figure 7), à un échantillon à 550 vpm de Y203 (figure 8), à un échantillon de 550 vpm de DY2O3 (figure 9) et à un échantillon à 1 100 vpm de DY2O3 (figure 10).
  • On a constaté un blocage du joint de grain p, pour 1 100 vpm de Dy203 et 550 vpm de Y203, un freinage notable pour 550 vpm de DY2O3.
  • Les résultats ci-dessus et des résultats complémentaires sont résumés sur le tableau ci-aprés, où il faut noter que les résultats moins favorables obtenus avec B6 Si semblent attribuables à une répartition insuffisamment homogène du produit d'addition dans le mélange.
    Figure imgb0007

Claims (2)

1. Procédé d'élaboration d'alliage à base de titane comportant les étapes de :
compression à chaud d'une poudre constituée d'une part, de particules de titane préallié ou de particules de titane et d'alliage-mère, d'autre part, de particules fines d'un produit d'addition dispersées ;
traitement thermique à une température supérieure au point de transformation en phase β caractérisé en ce que les particules dispersées sont en un produit d'addition freinant la croissance de la taille de grains, choisi parmi S, P, B, As, Se, Te, Y et les lanthanides, à l'état élémentaire ou en combinaison et à une teneur volumique inférieure à celle qui conduirait à la formation d'une couche continue de particules fines autour des particules de la poudre de titane et en ce que l'alliage est soumis à une trempe après traitement thermique.
2. Procédé selon la revendication 1 d'élaboration d'alliage TA6V, caractérisé en ce que le traitement thermique est effectué à une température supérieure d'environ 50 °C au point de transformation en phase β et suivi d'une trempe.
EP85401371A 1984-07-06 1985-07-05 Procédé d'élaboration, par métallurgie des poudres, d'alliage à base de titane à faible dimension de grain Expired - Lifetime EP0167460B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8410829A FR2567153B1 (fr) 1984-07-06 1984-07-06 Procede d'elaboration, par metallurgie des poudres, d'alliage a base de titane a faible dimension de grain
FR8410829 1984-07-06

Publications (2)

Publication Number Publication Date
EP0167460A1 EP0167460A1 (fr) 1986-01-08
EP0167460B1 true EP0167460B1 (fr) 1990-01-24

Family

ID=9305902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401371A Expired - Lifetime EP0167460B1 (fr) 1984-07-06 1985-07-05 Procédé d'élaboration, par métallurgie des poudres, d'alliage à base de titane à faible dimension de grain

Country Status (4)

Country Link
US (1) US4601874A (fr)
EP (1) EP0167460B1 (fr)
DE (1) DE3575578D1 (fr)
FR (1) FR2567153B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622433A1 (de) * 1986-07-03 1988-01-21 Deutsche Forsch Luft Raumfahrt Verfahren zur verbesserung der statischen und dynamischen mechanischen eigenschaften von ((alpha)+ss)-titanlegierungen
US4714587A (en) * 1987-02-11 1987-12-22 The United States Of America As Represented By The Secretary Of The Air Force Method for producing very fine microstructures in titanium alloy powder compacts
US4927458A (en) * 1988-09-01 1990-05-22 United Technologies Corporation Method for improving the toughness of brittle materials fabricated by powder metallurgy techniques
US4923513A (en) * 1989-04-21 1990-05-08 Boehringer Mannheim Corporation Titanium alloy treatment process and resulting article
US5120350A (en) * 1990-07-03 1992-06-09 The Standard Oil Company Fused yttria reinforced metal matrix composites and method
DE69128692T2 (de) * 1990-11-09 1998-06-18 Toyoda Chuo Kenkyusho Kk Titanlegierung aus Sinterpulver und Verfahren zu deren Herstellung
US5830288A (en) * 1994-09-26 1998-11-03 General Electric Company Titanium alloys having refined dispersoids and method of making
SG49564A1 (en) * 1995-10-07 1998-06-15 Univ Singapore Sintered titanium-graphite composite having improved wear resistance and low frictional characteristics
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US10245639B2 (en) 2012-07-31 2019-04-02 United Technologies Corporation Powder metallurgy method for making components
DK3231536T3 (en) 2016-04-14 2018-05-14 Element 22 GmbH PROCEDURE FOR POWDER METAL SURGICAL MANUFACTURING COMPONENTS OF TITANIUM OR TITANIUM ALLOYS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181947A (en) * 1957-01-15 1965-05-04 Crucible Steel Co America Powder metallurgy processes and products
GB887922A (en) * 1959-05-15 1962-01-24 Gen Electric Co Ltd Improvements in or relating to the manufacture of titanium alloys
US3084042A (en) * 1960-02-23 1963-04-02 Du Pont Metal production
US3622406A (en) * 1968-03-05 1971-11-23 Titanium Metals Corp Dispersoid titanium and titanium-base alloys
US3679403A (en) * 1970-05-05 1972-07-25 Rmi Co Method of improving macrostructure of titanium-base alloy products
JPS5839902B2 (ja) * 1976-04-28 1983-09-02 三菱重工業株式会社 内部摩擦の大きいチタン合金
US4219357A (en) * 1978-03-30 1980-08-26 Crucible Inc. Method for producing powder metallurgy articles

Also Published As

Publication number Publication date
DE3575578D1 (de) 1990-03-01
US4601874A (en) 1986-07-22
EP0167460A1 (fr) 1986-01-08
FR2567153B1 (fr) 1991-04-12
FR2567153A1 (fr) 1986-01-10

Similar Documents

Publication Publication Date Title
EP0167460B1 (fr) Procédé d'élaboration, par métallurgie des poudres, d'alliage à base de titane à faible dimension de grain
EP0208631B1 (fr) Alliages d'Al à hautes teneurs de Li et Si et un procédé de fabrication
EP0465376A1 (fr) Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d'obtention par solidification rapide
FR2784690A1 (fr) Poudres metalliques microniques a base de tungstene et/ou de molybdene et de materiaux de transition 3d
EP0375571A1 (fr) Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité
EP0391815B1 (fr) Alliage à base d'A1 à haut module et à resistance mécanique élevée et procédé d'obtention
CH639138A5 (fr) Alliages de magnesium.
WO2000008222A1 (fr) Procede de fabrication d'un alliage intermetallique fer-aluminium renforce par des dispersoides de ceramique et alliage ainsi obtenu
Prasad et al. Composite strengthening in 6061 and Al-4 Mg alloys
EP0102892B1 (fr) Procédé de fabrication de métaux ou d'alliages de pureté élevée
FR2573094A1 (fr) Alliage de molybdene et son procede de fabrication
FR2805828A1 (fr) Alliage a base d'aluminium contenant du bore et son procede de fabrication
CH640884A5 (fr) Procede de fabrication d'un platinoide comportant une phase dispersee d'un oxyde refractaire et produit.
JP3245893B2 (ja) 微細結晶粒タングステン合金およびその製造方法
FR2596067A1 (fr) Procede de fabrication de pieces en acier rapide fritte
FR2658183A1 (fr) Article ceramique moule a base de cuivre, et son procede de fabrication.
FR2672619A1 (fr) Materiau composite a base de tungstene et procede pour sa preparation.
FR2661922A1 (fr) Alliages de cuivre a decomposition spinodale et leur procede d'obtention.
JP7266269B2 (ja) Mg基焼結複合材とその製造方法および摺動部材
EP0438338B1 (fr) Procédé d'obtention d'un produit à partir de poudres préalliées et produit obtenu à partir dudit procédé
JPH01212730A (ja) セラミックス粒子分散型アルミニウム基複合材料の製造方法
RU2789324C1 (ru) Износостойкий антифрикционный материал на основе двухфазного сплава Al-Sn, легированного железом, и способ его получения
CH536672A (fr) Procédé de fabrication d'un produit métallique et produit obtenu par ce procédé
CH617371A5 (en) Mixture of metal powders
WO2001000892A1 (fr) Materiau tungstene a haute densite fritte a basse temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB SE

17P Request for examination filed

Effective date: 19860111

17Q First examination report despatched

Effective date: 19861111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REF Corresponds to:

Ref document number: 3575578

Country of ref document: DE

Date of ref document: 19900301

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940702

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940731

Year of fee payment: 10

EAL Se: european patent in force in sweden

Ref document number: 85401371.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

EUG Se: european patent has lapsed

Ref document number: 85401371.1