EP0162515B1 - Dispositif de transduction ultrasonore à réseau d'éléments transducteurs piézoélectrique - Google Patents

Dispositif de transduction ultrasonore à réseau d'éléments transducteurs piézoélectrique Download PDF

Info

Publication number
EP0162515B1
EP0162515B1 EP85200735A EP85200735A EP0162515B1 EP 0162515 B1 EP0162515 B1 EP 0162515B1 EP 85200735 A EP85200735 A EP 85200735A EP 85200735 A EP85200735 A EP 85200735A EP 0162515 B1 EP0162515 B1 EP 0162515B1
Authority
EP
European Patent Office
Prior art keywords
piezoelectric
resonance frequencies
thickness
zones
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85200735A
Other languages
German (de)
English (en)
Other versions
EP0162515A1 (fr
Inventor
Roger Henri Coursant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0162515A1 publication Critical patent/EP0162515A1/fr
Application granted granted Critical
Publication of EP0162515B1 publication Critical patent/EP0162515B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • the present invention relates to an ultrasonic transduction device comprising a linear array of parallel piezoelectric transducer elements.
  • the transducer elements have in such a device a length L large compared to the other dimensions (the width W and the thickness T).
  • This device can be used for example in the field of non-destructive testing of materials or in that of the exploration of biological tissues.
  • the unimodal operation of the device described in the cited patent is obtained by imposing on the W / T ratio an upper limit of the order of 0.8, a value below which, in addition, the effective electromechanical coupling coefficient takes a higher value (a variation curve of the electromechanical coupling coefficient, such as that of FIG. 9 of the cited patent, provides information on the relative amplitude of the vibrations obtained in the vibration mode considered, depending on the choice of W / T).
  • W / T a variation curve of the electromechanical coupling coefficient, such as that of FIG. 9 of the cited patent, provides information on the relative amplitude of the vibrations obtained in the vibration mode considered, depending on the choice of W / T.
  • the inherent constraint in the choice of such values of W / T is a greater complexity of production, the grooving between successive piezoelectric elements of the strip being all the more difficult to achieve the narrower the width of these elements.
  • the object of the invention is to propose a new bar structure which is no longer subject to this constraint relating to the W / T ratio and which is therefore simpler to produce while remaining efficient.
  • the originality rests on the way of exploiting vibrational modes coexisting in the so-called coupling zones of the diagram of dispersion of the resonance frequencies of the piezoelectric material used.
  • This operation is carried out by a judicious choice of the geometrical characteristics of the piezoelectric elements, and in particular of their thickness, and by placing themselves voluntarily in areas of operation of the transduction device where this operation is not unimodal.
  • the transduction sensitivity is thus increased due to the exploitation of several resonance modes having high electromechanical couplings and, simultaneously, due to the good damping of the residual and harmonic modes.
  • the vibratory state of the resonant cavity that it constitutes is said to be decoupled when the elastic vibrations along the thickness T are independent of those along the width W (and vice versa).
  • the resonance frequencies according to the thickness T of the cavity are then given by the expression: where n is a positive or zero integer, and v T the propagation speed of the ultrasonic waves according to T (assumed to be independent of the W / T ratio). Consequently, the product FT (which is the quantity represented on the ordinate on the Fabian-Sato diagrams) is given by the expression: which corresponds to a network of lines parallel to the abscissa axis (see Figure 1 attached).
  • the resonance frequencies of the cavity along the width W are given by the expression: where v w is the propagation speed according to W (also assumed to be independent of the W / T ratio), and the product FT by the expression: to which corresponds a network of hyperbolas also represented in FIG. 1.
  • This network of lines and this network of hyperbolas are ideal networks of asymptotes which are the limits obtained in the case of a decoupled bar, asymptotes of the dispersion curves observed in the case of a piezoelectric bar whose states vibratory according to the thickness and the width are coupled.
  • the frequency dispersion diagram takes the form of that shown in FIG. 2.
  • the ultrasonic transduction device described here preferably comprises the following structure, namely a network of piezoelectric transducer elements in the form of rectangular plates of piezoelectric material (generally produced from a single plate which has been cut out) , these plates of length L, of width W and of thickness T having their front and rear faces equipped with electrodes and being arranged parallel to each other and at regular intervals with their faces of dimensions L and T facing each other.
  • the structure according to the invention is then characteristic, in the sense that the thickness of the piezoelectric elements is chosen to be equal to half the wavelength corresponding to a frequency substantially equal to the average of two successive resonant frequencies of the piezoelectric material concerned.
  • the impedance curve of FIG. 3 corresponds to a curve of the associated one-dimensional transfer function (examples corresponding to the paired modes of the boxed zones B and C of FIG. 2 are given in FIGS. 4 and 5 respectively), which translates the variation of the! RVEI module of the vibratory speed / electrical excitation ratio at the terminals as a function of the frequency. If such a transfer function takes into account the internal losses of the piezoelectric material, the resonances presented by this transfer function are damped (see FIG. 6, corresponding to the area C of FIG. 2).
  • the device can be equipped with an interference transmittance structure resonating on the frequency F A , this structure comprising one or more adaptation layers at the front, or at the rear, or at the front and at the rear.
  • F A is the average frequency, in the example of FIG. 6, of the frequencies F R2 and F R3 corresponding to the maximums of the transfer function, these maximums corresponding themselves, as we have seen, to the minima of the curve associated electrical impedance.
  • the adaptation is carried out for example with a single interference layer known as a quarter wave tuned to the frequency F A.
  • the difference l: 1F visible in FIG. 7 shows the transfer function corresponding to this adaptation structure, and is more precisely the width at half height of the transmittance of the quarter wave layer tuned to F A with tap taking into account the acoustic impedances of the adjacent media.
  • load conditions can also be used to improve, via electrical adaptation, the Guassian aspect of the module of the spectrum of the impulse response.
  • the relative difference of the coupled modes 1 and 2 is such that it is then necessary to associate with the transduction device not only a structure d broadband adaptation-several layers of quarter-wave type, with possibly offset chords-but also an electrical adaptation network, for example simply consisting of a resistor in series and an inductor in parallel.
  • any simple, arithmetic or geometric average, or an average of a more complex nature, such as a quadratic average, or a weighted average the weighting of each frequency can then for example be effected by the electromechanical coupling coefficient associated with each of them in the vibration mode concerned.
  • the invention is applicable in a rigorously similar manner to the case of three-dimensional vibrational states, when the ultrasonic transduction device is a grooved two-dimensional strip with a network of piezoelectric parallelepipedal transducer elements.
  • the FT product this time being expressed not as a function only of the W / T ratio but of the two geometrical configuration reports. W / T and L / T.
  • a two-dimensional Fabian-Sato diagram such as that of FIG. 2 is the limit, when L and therefore L / T become large, of a three-dimensional Fabian-Sato diagram.
  • the plane coupling zones observed on the three-dimensional diagrams become, in this case of the three-dimensional generalization, three-dimensional coupling zones, tubular regions, such as for example the region R indicated by an arrow in FIG. 9 which shows the look of a three-dimensional Fabian-Sato diagram. It will also be noted that, given the reversibility between the dimensions L and W depending on whether one or the other is greater than the other, this three-dimensional diagram and the particular coupling zones which are observed there have symmetry with respect to the bisector plane of the axes (0, LIT), (0, W / T).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

  • La présente invention concerne un dispositif de transduction ultrasonore comprenant une barrette linéaire d'éléments transducteurs piézoélectriques parallèles. Les éléments transducteurs ont dans un tel dispositif une longueur L grande devant les autres dimensions (la largeur W et l'épaisseur T). Ce dispositif est utilisable par exemple dans le domaine du contrôle non destructif de matériaux ou dans celui de l'exploration de tissus biologiques.
  • Le brevet des Etats-Unis d'Amérique N° 4101795 délivré le 18 juillet 1978 au nom de la société cessionnaire Matsushita Electric Industrial Company décrit un dispositif de transduction ultrasonore dont les éléments transducteurs piézoélectriques (voir les figures 1 à 3 de ce brevet) peuvent, grâce à des dispositions géométriques particulières, vibrer en mode d'épaisseur pur, c'est-à-dire de la façon idéale dont un piston se déplace, sans couplage indésirable avec des modes vibratoires perturbateurs.
  • La connaissance des modes de vibration d'éléments minces piézoélectriques est importante pour la conception de barrettes linéaires de transducteurs. Une telle connaissance peut être apportée de façon expérimentale (ou bien de façon théorique au moyen d'une modélisation bi- ou tridimensionnelle exploitée par exemple par une méthode d'éléments finis) en effectuant l'opération dite de caractérisation d'un matériau piézoélectrique déterminé, qui consiste à établir de façon aussi complète que possible les relations entre les paramètres dont dépend le fonctionnement du dispositif de transduction réalisé avec ce matériau. Ces relations peuvent être visualisées sous la forme de diverses courbes, et notamment sous la forme des diagrammes dits de Fabian-Sato qui représentent les courbes de dispersion des fréquences de résonance du matériau concerné (voir E. L. Fabian, études présentées dans MASON, "Physical Acoustics", volume 1, partie A, chapitre 6, pages 456 et 457, Edition Academic Press, 1964; voir aussi le brevet cité plus haut, dont Mr. Sato est codéposant). Ces courbes montrent pour les différents modes de vibration du matériau (fondamental et harmoniques) la relation entre le rapport W/T et le produit F. T. de la fréquence de résonance par l'épaisseur des éléments piézoélectriques: la figure 4 du document cité montre un exemple d'un tel réseau de courbes.
  • Comme permet de le prévoir l'examen de ce réseau, le fonctionnement unimodal du dispositif décrit dans le brevet cité est obtenu en imposant au rapport W/T une limite supérieure de l'ordre de 0,8, valeur au-dessous de laquelle, en outre, le coefficient de couplage électromécanique effectif prend une valeur plus élevée (une courbe de variation du coefficient de couplage électromécanique, telle que celle de la figure 9 du brevet cité, renseigne sur l'amplitude relative des vibrations obtenues dans le mode de vibration considéré, selon le choix de W/T). Cependant la contrainte inhérente au choix de telles valeurs de W/T est une plus grande complexité de réalisation, le rainurage entre éléments piézoélectriques successifs de la barrette étant d'autant plus difficile à réaliser que la largeur de ces éléments est plus faible.
  • Le but de l'invention est de proposer une nouvelle structure de barrette qui ne soit plus soumise à cette contrainte relative au rapport W/T et qui soit par conséquent plus simple de réalisation tout en restant performante.
  • L'invention concerne à cet effect un dispositif de transduction ultrasonore comprenant une barrette linéaire d'éléments transducteurs piézoélectriques parallèles de largeur W, caractérisé en ce que l'épaisseur T desdits éléments transducteurs est égale à la moitié de la longueur d'onde correspondant à une fréquence F égale à la moyenne de deux fréquences de résonance piézoélectrique successives du matériau piézoélectrique concerné, pour lesquelles les produits de cette épaisseur par lesdites fréquences de résonance encadrent, sur le diagramme bidimensionnel des courbes F.T=f(W/T) de dispersion des fréquences de résonance relatif au matériau piézoélectrique concerné, des zones dites de couplage des deux modes vibratoires successifs correspondant auxdites deux fréquences, lesdites zones de couplage étant définies par le fait que, dans ces zones, les fréquences de résonance et les efficacités de couplage électromécanique de ces deux modes sont respectivement voisines.
  • L'invention concerne aussi un dispositif de transduction ultrasonore comprenant plusieurs barrettes linéaires parallèles d'éléments transducteurs piézoélectriques parallélépipédiques de longueur L et de largeur W, caractérisé en ce que l'épaisseur T desdits éléments transducteurs est égale à la moitié de la longueur d'onde correspondant à une fréquence F égale à la moyenne de deux fréquences de résonance piézoélectrique successives du matériau piézoélectrique concerné, pour lesquelles les produits de cette épaisseur par lesdites fréquences de résonance encadrent, sur le diagramme tridimensionnel des courbes F.T=f(W/T, LfT) de dispersion des fréquences de résonance relatif au matériau piézoélectrique concerné, des zones dites de couplage des deux modes vibratoires successifs correspondant auxdites deux fréquences, lesdites zones de couplage étant définies par le fait que, dans ces zones, les fréquences de résonance et les efficacités de couplage électromécanique de ces deux modes sont respectivement voisines.
  • Dans les structures ainsi proposées, l'originalité repose sur la manière d'exploiter des modes vibratoires coexistant dans les zones dites de couplage du diagramme de dispersion des fréquences de résonance du matériau piézoélectrique utilisé. Cette exploitation s'effectue par un choix judicieux des caractéristiques géométriques des éléments piézoéléctriques, et notamment de leur épaisseur, et en se plaçant volontairement dans des zones de fonctionnement du dispositif de transduction où ce fonctionnement n'est pas unimodal. On augmente ainsi la sensibilité de transduction en raison de l'exploitation de plusieurs modes de résonance ayant des couplages électromécaniques élevés et, simultanément, en raison du bon amortissement des modes résiduels et harmoniques.
  • Les particularités et avantages de l'invention apparaîtront maintenant de façon plus précise dans la description qui suit et qui se réfère aux figures annexées, dans lesquelles:
    • les figures 1 et 2 donnent des exemples de diagrammes de Fabian-Sato montrant respectivement les courbes de dispersion des fréquences de résonance piézoélectrique et de résonance élastique rigidifiée, ou antirésonance, du dispositif de transduction selon son épaisseur et selon sa largeur;
    • la figure 3 montre la courbe de variation du module IIEI de l'impédance électrique en fonction de la fréquence dans le cas de la zone de couplage correspondant à l'encadré C de la figure 2;
    • les figures 4 et 5 montrent les courbes de variation de la fonction de transfert unidimensionnelle RVE (rapport vitesse vibratoire/excitation électrique) associées à la figure 3 dans le cas des zones de couplage correspondant respectivement aux encadrés B et C de la figure 2;
    • les figures 6 et 8 montrent l'évolution de la courbe de la figure 5 d'une part lorsque seules les pertes internes du matériau sont prises en compte par rapport à cette figure 5 et d'autre part lorsque le dispositif de transduction a été adapté à l'aide d'une structure interférentielle de fonction de transfert TFE donnée par la figure 7;
    • la figure 9 montre un exemple de diagramme tridimensionnel de Fabian-Sato;
  • Si l'on considère un simple barreau parallélépipédique supposé élastique, l'état vibratoire de la cavité résonnante qu'il constitue est dit découplé lorsque les vibrations élastiques suivant l'épaisseur T sont indépendantes de celles suivant la largeur W (et réciproquement). Les fréquences de résonance suivant l'épaisseur T de la cavité sont alors données par l'expression:
    Figure imgb0001
    où n est entier positif ou nul, et vT la vitesse de propagation des ondes ultrasonores suivant T (supposée indépendante du rapport W/T). En conséquence, le produit F.T (qui est la grandeur représentée en ordonnée sur les diagrammes de Fabian-Sato) est donné par l'expression:
    Figure imgb0002
    à laquelle correspond un réseau de droites parallèles à l'axe des abscisses (voir la figure 1 ci- jointe).
  • De même, les fréquences de résonance de la cavité suivant la largeur W sont données par l'expression:
    Figure imgb0003
    où vw est la vitesse de propagation suivant W (supposée aussi indépendante du rapport W/T), et le produit F.T par l'expression:
    Figure imgb0004
    à laquelle correspond un réseau d'hyperboles également représenté sur la figure 1.
  • Ce réseau de droites et ce réseau d'hyperboles sont des réseaux idéaux d'asymptotes qui sont les limites, obtenues dans les cas d'un barreau découplé, des asymptotes des courbes de dispersion observées dans le cas d'un barreau piézoélectrique dont les états vibratoires suivant l'épaisseur et la largeur sont couplés. Dans ce dernier cas, le diagramme de dispersion des fréquences prend une allure telle que celle représentée sur la figure 2. L'observation des courbes de ce diagramme montre par exemple que, au voisinage de W/T=0,5 (voir l'encadré A de cette figure 2), la résonance fondamentale d'épaisseur RFE (première asymptote "horizontale") correspond approximativement à la moité de la résonance fondamentale de largeur RFL (première asymptote hyperbolique) ou, ce qui est équivalent, que la résonance fondamentale de largeur RFL correspond approximativement à l'harmonique 2 de la résonance fondamentale d'épaisseur RFE. Du point de vue piézoélectrique, l'excitation de la résonance d'épaisseur n'implique donc qu'une faible excitation de la résonance de largeur, ce qui se traduit aussi par une augmentation, au voisinage de W/T=0,5, du coefficient de couplage électromécanique effectif associé à la résonance d'épaisseur. C'est l'obtention de cette résonance unimodale qui est exploitée dans le brevet cité précédemment, où l'on s'affranchit donc de modes vibratoires perturbateurs au profit d'un mode vibratoire unique.
  • Dans le cas de l'invention, on effectue paradoxalement la démarche inverse, à savoir que l'on sélectionne sur le diagramme de Fabian-Sato correspondant à un matériau piézoélectrique déterminé des zones de couplage des résonances. Cette sélection est opérée en choisissant des valeurs du rapport W/T correspondant aux intersections des asymptotes des caractéristiques de résonance latérale et d'épaisseur (des exemples de telles intersections sont indiqués dans les encadrés B et C de la figure 2). En effet, dans les zones entourant ces intersections, on observe la présence simultanée de deux modes de résonance dont les fréquences et les efficacités de couplage électromécanique sont voisines. Par rapport à ces modes dits jumelés, les autres modes sont, comme le montre la figure 2, nettement plus éloignés en fréquence (ou sont d'efficacité de couplage électromécanique beaucoup plus faible).
  • Lors de la caractérisation d'un matériau piézoélectrique, il est intéressant d'établir un autre type de relation que les diagrammes déjà cités, à savoir celle qui lie le module de l'impédance électrique IE du matériau et la fréquence de travail du dispositif de transduction ultrasonore réalisé avec ce matériau. Une courbe traduisant cette relation est représentée sur la figure 3. La lecture de cette courbe permet de connaître les valeurs des fréquences de résonance piézoélectrique du matériau (ce sont les valeurs de fréquence pour lesquelles, l'impédance présentant un minimum relatif, la conversion d'énergie opérée par le dispositif de transduction est maximale) ainsi que les valeurs de ses fréquences d'antirésonance, dites fréquences de résonance élastique rigidifiée et auxquelles correspondent au contraire des maximums relatifs de la valeur de l'impédance électrique.
  • Le dispositif de transduction ultrasonore ici décrit comprend de préférence la structure suivante, à savoir un réseau d'éléments transducteurs piézoélectriques se présentant sous la forme de plaquettes rectangulaires de matériau piézoélectrique (réalisées en général à partir d'une plaque unique qui a été découpée), ces plaquettes de longueur L, de largeur W et d'épaisseur T ayant leurs faces avant et arrière équipées d'électrodes et étant disposées parallèlement les unes aux autres et à intervalles réguliers avec leurs faces de dimensions L et T en regard. La structure selon l'invention est alors caractéristique, en ce sens que l'épaisseur des éléments piézoélectriques est chosie égale à la moitié de la longueur d'onde correspondant à une fréquence sensiblement égale à la moyenne de deux fréquences de résonance successives du matériau piézoélectrique concerné.
  • A la courbe d'impédance de la figure 3 correspond une courbe de la fonction de transfert unidimensionnelle associée (des exemples correspondant aux modes jumelés des zones encadrées B et C de la figure 2 sont donnés sur les figures 4 et 5 respectivement), qui traduit la variation du module !RVEI du rapport vitesse vibratoire/excitation électrique aux bornes en fonction de la fréquence. Si une telle fonction de transfert prend en compte les pertes internes du matériau piézoélectrique, les résonances présentées par cette fonction de transfert s'amortissent (voir la figure 6, correspondant à la zone C de la figure 2).
  • L'étude menée jusqu'à présent considérait le cas d'un dispositif de transduction ultrasonore sans couches d'adaptation, avec simplement deux milieux de propagation de type semi-infini sur les faces électrodées avant et arrière. On peut équiper le dispositif d'une structure interférentielle de transmittance résonnant sur la fréquence FA, cette structure comportant une ou plusieurs couches d'adaptation à l'avant, ou à l'arrière, ou à l'avant et à l'arrière du matériau piézoélectrique; FA est la fréquence moyenne, dans l'exemple de la figure 6, des fréquences FR2 et FR3 correspondant aux maximums de la fonction de transfert, ces maximums correspondant eux-mêmes, on l'a vu, aux minimums de la courbe d'impédance électrique associée. L'adaptation est réalisée par exemple avec une seule couche interférentielle dite quart d'onde accordée sur la fréquence FA. L'écart l:1F visible sur la figure 7 montre la fonction de transfert correspondant à cette structure d'adaptation, et est plus précisément la largeur à mi-hauteur de la transmittance de la couche quart d'onde accordée sur FA avec prise en compte des impédances acoustiques des milieux adjacents. Si l'adaptation ainsi réalisée est telle que l'étendue AF/FA est supérieure à l'écart relatif entre les modes jumelés concernés, (FR3-FR2)IFp dans le cas des modes 2 et 3 concernés par la zone C de la figure 2, alors la fonction de transfert qui, sur la figure 6, laissait encore apparaître malgré l'amortissement dû aux pertes les maximums dûs à la coexistence de deux modes, présente maintenant la forme apparaissant sur la figure 8. Plus précisément, on se trouve alors ramené au cas de l'unimodalité quasi-guassienne dont les avantages sont connus et qui permet d'obtenir une réponse impulsionnelle d'enveloppe quasi-guassienne, l'absence ou la présence d'harmoniques supérieures pouvant en outre être contrôlée par le biais des conditions de charge électrique du dispositif de transduction en émission et en réception.
  • Ces conditions de charge peuvent aussi être utilisées pour améliorer, par l'intermédiaire de l'adaptation électrique, l'aspect guassien du module du spectre de la réponse impulsionnelle. Par exemple, dans le cas des modes jumelés correspondant à la zone encadrée B de la figure 2, l'écart relatif des modes 1 et 2 couplés est tel qu'il est alors nécessaire d'associer au dispositif de transduction non seulement une structure d'adaptation à large bande-plusieurs couches de type quart d'onde, à accords éventuellement décalés-mais aussi un réseau d'adaptation électrique, constitué par exemple simplement d'une résistance en série et d'une inductance en parallèle.
  • Par aitleurs, dans toute la description, il est nécessaire d'entendre, par moyenne, toute moyenne simple, arithmétique ou géométrique, ou une moyenne de nature plus complexe, telle qu'une moyenne quadratique, ou une moyenne pondérée, la pondération de chaque fréquence pouvant alors par exemple être effectuée par le coefficient de couplage électromécanique associé à chacune d'elles dans le mode vibratoire concerné.
  • Enfin, on peut préciser que l'invention est applicable de façon rigoureusement similaire au cas d'états vibratoires tridimensionnels, lorsque le dispositif de transduction ultrasonore est une barrette bidimensionnelle rainurée à réseau d'éléments transducteurs piézoélectriques parallélépipédiques. Il suffit pour cela de considérer une généralisation tridimensionnelle des digrammes de Fabian-Sato, le produit F.T. étant cette fois exprimé en fonction non plus du seul rapport W/T mais des deux rapports de configuration géométrique W/T et L/T. Il est d'ailleurs manifeste qu'un diagramme bidimensionnel de Fabian-Sato tel que celui de la figure 2 est la limite, lorsque L et donc L/T deviennent grands, d'un diagramme tridimensionnel de Fabian-Sato. Les zones de couplage planes observées sur les diagrammes tridimensionnels deviennent, dans ce cas de la généralisation tridimensionnelle, des zones de couplage à trois dimensions, des régions tubulaires, telles par exemple que la région R indiquée d'une flèche sur la figure 9 qui montre l'allure d'un diagramme tridimensionnel de Fabian-Sato. On notera d'ailleurs qu'étant donné la réversibilité entre les dimensions L et W selon que l'une, ou l'autre, est plus grande que l'autre, ce diagramme tridimensionnel et les zones de couplage particulières qui y sont observées présentent une symétrie par rapport au plan bissecteur des axes (0, LIT), (0, W/T).

Claims (2)

1. Dispositif de transduction ultrasonore comprenant une barrette linéaire d'éléments transducteurs piézoélectriques parallèles de largeur W, caractérisé en ce que l'épaisseur T desdits éléments transducteurs est égale à la moitié de la longueur d'onde correspondant à une fréquence F égale à la moyenne de deux fréquences de résonance piézoélectrique successives du matériau piézoélectrique concerné, pour lesquelles les produits de cette épaisseur par lesdites fréquences de résonance encadrent, sur le diagramme bidimensionnel des courbes F.T=f(W/T) de dispersion des fréquences de résonance relatif au matériau piézoélectrique concerné, des zones dites de couplage des deux modes vibratoires successifs correspondant auxdites deux fréquences, lesdites zones de couplage étant définies par le fait que, dans ces zones, les fréquences de résonance et les efficacités de couplage électromécanique de ces deux modes sont respectivement voisines.
2. Dispositif de transduction ultrasonore selon la revendication 1 comprenant plusieurs barrettes linéaires parallèles d'éléments transducteurs piézoélectriques parallélépipédiques de longueur L et de largeur W, caractérisé en ce que l'épaisseur T desdits éléments transducteurs est égale à la moitié de la longueur d'onde correspondant à une fréquence F égale à la moyenne de deux fréquences de résonance piézoélectrique successives du matériau piézoélectrique concerné, pour lesquelles les produits de cette épaisseur par lesdites fréquences de résonance encadrent, sur le diagramme tridimensionnel des courbes F.T=f(W/T, L/T) de dispersion des fréquences de résonance relatif au matériau piézoélectrique concerné, des zones dites de couplage des deux modes vibratoires successifs correspoondant auxdites deux fréquences, lesdites zones de couplage étant définies par le fait que, dans ces zones, les fréquences de résonance et les efficacités de couplage électromécanique de ces deux modes sont respectivement voisines.
EP85200735A 1984-05-22 1985-05-10 Dispositif de transduction ultrasonore à réseau d'éléments transducteurs piézoélectrique Expired - Lifetime EP0162515B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8407957A FR2565033B1 (fr) 1984-05-22 1984-05-22 Dispositif de transduction ultrasonore a reseau d'elements transducteurs piezoelectriques
FR8407957 1984-05-22

Publications (2)

Publication Number Publication Date
EP0162515A1 EP0162515A1 (fr) 1985-11-27
EP0162515B1 true EP0162515B1 (fr) 1990-08-08

Family

ID=9304258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85200735A Expired - Lifetime EP0162515B1 (fr) 1984-05-22 1985-05-10 Dispositif de transduction ultrasonore à réseau d'éléments transducteurs piézoélectrique

Country Status (7)

Country Link
US (1) US4603276A (fr)
EP (1) EP0162515B1 (fr)
JP (1) JPH0695088B2 (fr)
CA (1) CA1230409A (fr)
DE (1) DE3579039D1 (fr)
FR (1) FR2565033B1 (fr)
IL (1) IL75246A (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589247B1 (fr) * 1985-10-25 1988-06-10 Labo Electronique Physique Appareil d'exploration de milieux par echographie ultrasonore comprenant un reseau d'elements transducteurs piezoelectiques
US4713572A (en) * 1986-06-06 1987-12-15 Accuray Corporation Ultrasonic transducers for on-line applications
EP0480045A4 (en) * 1990-03-20 1993-04-14 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
US5329496A (en) * 1992-10-16 1994-07-12 Duke University Two-dimensional array ultrasonic transducers
US5744898A (en) * 1992-05-14 1998-04-28 Duke University Ultrasound transducer array with transmitter/receiver integrated circuitry
US5311095A (en) * 1992-05-14 1994-05-10 Duke University Ultrasonic transducer array
KR20010021135A (ko) * 1999-08-05 2001-03-15 사토 히로시 압전공진자 및 압전공진부
US6771785B2 (en) * 2001-10-09 2004-08-03 Frank Joseph Pompei Ultrasonic transducer for parametric array
US8264126B2 (en) 2009-09-01 2012-09-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US8987976B2 (en) * 2011-09-23 2015-03-24 Qualcomm Incorporated Piezoelectric resonator having combined thickness and width vibrational modes
US9270254B2 (en) 2011-09-30 2016-02-23 Qualcomm Mems Technologies, Inc. Cross-sectional dilation mode resonators and resonator-based ladder filters
US8811636B2 (en) 2011-11-29 2014-08-19 Qualcomm Mems Technologies, Inc. Microspeaker with piezoelectric, metal and dielectric membrane
CN107580721B (zh) 2015-05-11 2021-02-19 测量专业股份有限公司 用于具有金属保护结构的超声波换能器的阻抗匹配层
JP6852727B2 (ja) * 2016-02-22 2021-03-31 日本電気株式会社 検査装置、検査方法、及び、検査プログラム
JP7127977B2 (ja) * 2017-10-19 2022-08-30 古野電気株式会社 送受波器
CN108889589B (zh) * 2018-04-23 2023-09-12 中国科学院苏州生物医学工程技术研究所 超声换能器及超声装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH608335B (de) * 1976-09-14 Ebauches Sa Microresonateur piezoelectrique.
JPS5353393A (en) * 1976-10-25 1978-05-15 Matsushita Electric Ind Co Ltd Ultrasonic probe
FR2426338A1 (fr) * 1978-05-19 1979-12-14 Seiko Instr & Electronics Resonateur a quartz rectangulaire en coupe at
DE2829570C2 (de) * 1978-07-05 1979-12-20 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ultraschallkopf
US4525647A (en) * 1983-12-02 1985-06-25 Motorola, Inc. Dual frequency, dual mode quartz resonator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Acta Electronica, 25, 4, 1983, pp. 325-340 *
Proc IEEE, 1983, Ultrasonics Symposium, Atlanta, pp. 773-777 *

Also Published As

Publication number Publication date
FR2565033A1 (fr) 1985-11-29
FR2565033B1 (fr) 1987-06-05
EP0162515A1 (fr) 1985-11-27
IL75246A (en) 1988-11-15
CA1230409A (fr) 1987-12-15
JPH0695088B2 (ja) 1994-11-24
US4603276A (en) 1986-07-29
IL75246A0 (en) 1985-09-29
JPS60260849A (ja) 1985-12-24
DE3579039D1 (de) 1990-09-13

Similar Documents

Publication Publication Date Title
EP0162515B1 (fr) Dispositif de transduction ultrasonore à réseau d'éléments transducteurs piézoélectrique
CA2553861C (fr) Structure resonante hybride
EP0142178B1 (fr) Transducteur ultrasonore
EP2909932B1 (fr) Transducteur a ondes de volume guidees en surface par des structures d'excitation synchrone
EP0014115B1 (fr) Oscillateur accordable hyperfréquence à ondes magnétostatiques
FR2484735A1 (fr) Resonateur a ondes acoustiques de surface
FR2834593A1 (fr) Resonateur piezoelectrique et filtre piezoelectrique, duplexeur et appareil de communication l'incluant
FR2882205A1 (fr) Dispositif a ondes acoustiques haute frequence
EP1222735A1 (fr) Filtre a ondes acoustiques d'interface notamment pour les liaisons sans fil
WO2009156658A1 (fr) Resonateur hbar a stabilite en temperature elevee
FR3115428A1 (fr) Dispositif électromécanique à fréquence de résonance ajustable
FR2811828A1 (fr) Dispositif a ondes acoustiques comprenant des domaines de polarisation alternee
FR2488094A1 (fr) Transducteur ultrasonique
CH620801A5 (fr)
EP0982859B1 (fr) Filtre acoustique à deux canaux différents à compensation de réjection
EP3032742A2 (fr) Dispositif de capteur à ondes élastiques de surface interrogeable à distance
EP2901551B1 (fr) Dispositif acoustique comprenant un cristal phononique reglable a base d'elements piezoelectriques
EP0022690A1 (fr) Cellules de filtre électromécanique et filtre passe-bande les incorporant
EP3903417B1 (fr) Dispositif à onde acoustique de surface amélioré
FR2906421A1 (fr) Nouvelle solution technique pour ameliorer les performances des capteurs a ondes acoustiques de surface
WO2023222282A1 (fr) Dispositif a ondes acoustiques de surface integrant une couche mince de materiau metallique
WO2023209138A1 (fr) Dispositif a ondes élastiques de surface a electrodes encastrées dans une couche piezoelectrique, conception et fabrication de celui-ci
FR3046090A1 (fr) Perfectionnement aux transducteurs a ondes de volume guidees en surface
BE453092A (fr)
FR2745667A1 (fr) Resonateur piezoelectrique a excitation selective

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19860509

17Q First examination report despatched

Effective date: 19880223

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19900808

REF Corresponds to:

Ref document number: 3579039

Country of ref document: DE

Date of ref document: 19900913

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: PHILIPS' GLOEILAMPENFABRIEKEN N.V.

Effective date: 19910531

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

Effective date: 19910531

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000523

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000531

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000719

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301