EP0161962B1 - Système d'arme et missile pour la destruction structurale d'une cible aérienne au moyen d'une charge focalisée - Google Patents

Système d'arme et missile pour la destruction structurale d'une cible aérienne au moyen d'une charge focalisée Download PDF

Info

Publication number
EP0161962B1
EP0161962B1 EP85400715A EP85400715A EP0161962B1 EP 0161962 B1 EP0161962 B1 EP 0161962B1 EP 85400715 A EP85400715 A EP 85400715A EP 85400715 A EP85400715 A EP 85400715A EP 0161962 B1 EP0161962 B1 EP 0161962B1
Authority
EP
European Patent Office
Prior art keywords
missile
target
instant
charge
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85400715A
Other languages
German (de)
English (en)
Other versions
EP0161962A1 (fr
Inventor
Pierre Laures
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Priority to AT85400715T priority Critical patent/ATE36066T1/de
Publication of EP0161962A1 publication Critical patent/EP0161962A1/fr
Application granted granted Critical
Publication of EP0161962B1 publication Critical patent/EP0161962B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation

Definitions

  • the present invention relates to a weapon system intended for the structural destruction, that is to say the cutting into two distinct sections, of a target by means of a controlled focused charge and comprising a missile carrying said focused charge .
  • Such structural destruction allows the use of small missiles carrying only a small or medium charge (of the order of three to four times lower than that required by the first two effects mentioned above) and having great maneuverability, for example obtained by force control, that is to say using lateral nozzles whose line of action passes at least approximately through the center of gravity of the carrier missile.
  • a missile known for a weapon system intended for structural destruction further comprises calculation means, first means capable of providing the value of the speed of said missile, second means capable of providing the value of the relative speed of the target relative to the missile, third means capable of providing the angle between the longitudinal axis of the missile and said relative speed, as well as fourth proximity detection means capable of indicating the instant of detection of an end of said missile target, said missile being provided with a system for triggering said charge activated with a certain delay after detection of the target.
  • Structural destruction would therefore seem to constitute the most effective method vis-à-vis fast targets with great maneuverability.
  • it is not used in practice, because it requires, for the interception to be successful, that the impact area of the focused burst of shrapnel corresponds to a vulnerable area of the target. So far, it does not seem that we have managed to control the impact zone, on a target, of the fragments of a focused spray.
  • the object of the present invention is to remedy this drawback.
  • the object of the present invention relates to a weapon system making it possible to send the shards of a focused charge into a zone of the target, specified in advance and chosen for its vulnerability.
  • a vulnerable zone corresponds, for example, to the part of the fuselage which is between the wing and the tail.
  • the explosion of the focused charge is controlled, from said instant of detection of one end of the target, with a delay time which is calculated as a function of the real parameters of the interception of the target by the missile and which, in reality, corresponds to a predetermined length of said target from its end detected by said fourth means.
  • the fragments of the focused charge can reach the predetermined region of said target in order to achieve structural destruction of the latter.
  • this calculated duration is zero or negative, the firing will be carried out immediately.
  • the known missiles as described for example in the patents US-A-3,933,097 and DE-A-2,527,368, are generally provided with a charge trigger system actuated with a certain delay, after detection of the target; however, in this case, this delay is foreseen by construction or possibly introduced during the launching of the missile, taking into account the supposed speed of the target and the type of attack carried out by the missile on the target (attack from the front or rear).
  • the delay in the explosion of the focused charge is determined according to the circumstances of the interception, in order to optimize the effects of said charge and to obtain the structural destruction of the target.
  • said first, second and third means are provided to be able to supply their information continuously and then said additional calculation means calculate said duration continuously to provide a series of values, and, from said detection instant provided by said fourth means, said additional calculation means count down the last value of this duration available before said detection instant.
  • said additional calculation means and / or said proximity detection means exhibit an inherent delay in the exposure of said focused charge and in the detection of a target, respectively. If all of these known delays inherent in the system are equal to (To), said additional calculation means send the focused load a firing signal after a period of time (T I ), which is equal to the difference between the duration (T), at the end of which the explosion of the focused charge is desired, and the delay duration (To).
  • said additional calculation means possibly correct the duration (T) of the value (To) of the inherent delays to provide a firing signal at the expiration of the duration (T,).
  • the system according to the invention includes means capable of indicating this constant.
  • Such means may be display means actuated manually when the missile is launched.
  • they consist of automatic means for recognizing the target, either carried by the missile itself, or arranged at a fixed station.
  • these automatic recognition means are advantageously linked to the missile launching and remote control station, which transmits to it by electromagnetic waves the value of to of the target to be destroyed, together with the other information. usual.
  • the value of the duration (T or T i ) applicable at a given instant is calculated from measurements of the speed (Ve) of the missile, of the target relative speed - missile (V R ) and of the angle (D) carried out at an earlier instant and said additional calculation means generate an additional delay time t which is counted from the instant of said measurements and whose expiration allows the start from the countdown of the delay (T or T 1 ) to the ignition of the charge, as soon as the proximity detection means have detected the target.
  • Ve, V R and D are measured and the calculations necessary are carried out at a rate controlled by time t and a delay T, periodically renewed, which is used after detection of the target by the detection means, is developed. proximity, to trigger the charge at the optimal time.
  • said additional delay time t is calculated by said additional calculation means and is proportional to the inverse of the square root of the relative speed (V R ).
  • the weapon system according to the invention shown in FIG. 1 and intended for air defense, comprises a detection and guidance device 1, arranged on the ground, as well as a set of air defense missiles 2.
  • a detection and guidance device 1 arranged on the ground, as well as a set of air defense missiles 2.
  • an air enemy 3 missile, plane, helicopter, etc.
  • the device 1 determines using the computer and the radar that it includes the opportunity and the conditions for an interception of the enemy 3.
  • each air defense missile 2 comprises electronic guide means 4 capable of cooperating with the device 1 and a seeker 5 provided with an inertial unit 5 '. Also, initially, a missile 2 follows a launch trajectory entirely determined by the cooperation of the device 1 and on-board guidance means 4. Then, again thanks to this cooperation, the device 1 directs the missile 2 towards the target 3 by making it follow a trajectory 7. Finally, when the missile 2 is sufficiently well oriented, its guidance towards the target 3 is taken care of by its seeker 5.
  • FIG. 1 we have illustrated the case where the missile 2 goes against the target 3 to attack it from the front, which corresponds to the diagrams of FIGS. 4 and 5. It goes without saying that missile 2 can also attack target 3 from the rear, chasing and catching it, as shown in the diagrams in Figures 6 and 7.
  • the object of the invention is to control the explosion of the focused charge 10 at an instant following the detection of the target 3 by the proximity detection means 8, such as the fragments of said charge 10 reach a structurally fragile region of said target, in order to cut the latter in two.
  • the front and middle parts of an attacking machine 3 are structurally resistant because they include navigation and measuring devices, fuel tanks, military load, etc., so that, in order to obtain structural destruction of said machine 3, it is preferable to project the fragments of the load 10 into a zone 14 of the rear part thereof (see FIGS. 4 and 6).
  • the object of the invention is to determine a time T of delay in the explosion of the charge 10, after the detection of the target 3 by the proximity detection means 8, such as the bursts of said focused charge 10 can reach zone 14, placed at a distance from the first point 15 of the target 3 detected by the front 9 of said proximity detection means 8.
  • the explosion of the charge 10 after firing by the calculation means 13 is not instantaneous and that, moreover, there is a delay in the detection of a target 3 by the detection means of proximity 8; as a result, the delay time T to the explosion must be corrected by a time To, known for a charge 10 and proximity detection means 8 given and corresponding to the explosion delays after ignition and detection by proximity detection means 8.
  • Io is a constant, having the dimension of a length and independent of the parameters Ve, V B and P; lo is attached to each type of target 3 and characteristic of it.
  • the detection and guidance device 1, which performs an at least partial image recognition of the target 3, knows the type of the latter and can therefore send to the calculation means 13 of the missile 2, the value lo suitable for the target 3 being intercepted.
  • the different values 10 respectively correspond to the different types of possible targets are preferably predetermined and stored in the device 1.
  • Each type of target 3 can be associated with a value of 10 for a forward attack and another value lo for a rear attack.
  • the missile 2 may include the means for detecting the type of the target 3 and determining the value to be adopted for the constant lo;
  • Dl 1 ⁇ V B ⁇ te, term in which te is the time taken by the bursts of the focused charge 10 to reach zone 14 of the target 3.
  • the + sign is used for a forward attack and the sign - for a rear attack.
  • the detection and guidance device 1 knows the type of attack (from the front or from the rear) that the missile 2 will carry out on the target 3 and it is therefore able to communicate to the calculation means 13 the sign appropriate.
  • te is an implicit function of h, a and T;
  • DI 2 is a variation in length due to the parameters h and a.
  • Condition (1) is easy to achieve by construction, since it involves only parameters available to the manufacturer of missile 2. If this condition (1) is met, the delay time T is given by the formula that is to say if it is an attack from the front (see Figures 4 and 5), or by the formula: that is to say if it is a rear attack (see Figures 6 and 7).
  • condition (1) is respected and if the time T has been chosen according to the appropriate relation (2 1 ) or (2 2 ), the zone 14 reached by the splinters will be defined from point 15, by the relationship :
  • Circuit 16 controls the measurements and performs the calculations.
  • the up-down counter 17 determines. the instant from which the explosion delay time can be used, while the up-down counter 18 allows the exploitation of this delay.
  • the measurement authorization signal (input 23) is initialized at the time of launching or during the search for seeker 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

  • La présente invention concerne un système d'arme destiné à la destruction structurale, c'est-à-dire au sectionnement en deux tronçons distincts, d'une cible au moyen d'une charge focalisée commandée et comportant un missile porteur de ladite charge focalisée.
  • On sait que la destruction d'une cible aérienne, telle qu'un missile d'attaque, par impact direct d'un missile de défense est très improable, quelle que soit la sophistication du système de guidage dudit missile de défense. Aussi, actuellement, les deux méthodes principales grâce auxquelles un missile de défense peut, au moyen d'une charge militaire classique, détruire une telle cible aérienne, mettent en oeuvre
    • soit l'effet de souffle de l'explosion de ladite charge si celle-ci est importante et si la cible se trouve à proximité immédiate ;
    • soit la projection, grâce à une charge importante, d'une gerbe d'éclats, largement ouverte, dans des zones sensibles de la cible. De tels systèmes sont par exemple décrits dans les brevets US-A-3 858 207 et US-A-4 168 663.
  • Ces deux méthodes classiques présentent l'inconvénient de nécessiter une charge militaire importante, de sorte que les missiles de défense qu'elles mettent en oeuvre présentent une masse relativement importante nuisant à leur manceuvrabilité. Ceci est d'autant plus préjudiciable que les missiles d'attaque peuvent présenter une grande manoeuvrabilité et qu'il est donc souhaitable que la manoeuvrabilité d'un missile de défense soit aussi grande que possible pour permettre l'interception d'un missile d'attaque fortement manoeuvrant.
  • Pour remédier à cet inconvénient des méthodes d'interception classique, on a déjà pensé à projeter, à partir du missile de défense et au moyen d'une charge relativement faible, une gerbe d'éclats focalisée dans une zone fragile de ladite cible se trouvant à proximité immédiate dudit missile de défense, afin d'obtenir la destruction structurale de ladite cible, c'est-à-dire son sectionnement en deux tronçons distincts. Une telle destruction structurale d'une cible nécessite qu'un nombre d'éclats suffisant atteignent ensemble une zone de faible surface de la cible et que la charge utilisée soit focalisée, c'est-à-dire qu'elle projette, lors de l'explosion, des éclats dont les trajectoires forment un angle sensiblement constant avec l'axe du missile.
  • Une telle destruction structurale permet l'utilisation de missiles de faibles dimensions n'emportant qu'une charge faible ou moyenne (de l'ordre de trois à quatre fois plus faible que celle nécessitée par les deux premiers effets cités ci-dessus) et présentant une grande manoeuvrabilité, par exemple obtenue au moyen d'un pilotage en force, c'est-à-dire à l'aide de tuyères latérales dont la ligne d'action passe au moins approximativement par le centre de gravité du missile porteur. Un missile connu pour système d'arme destiné à la destruction structurale comporte de plus des moyens de calcul, des premiers moyens susceptibles de fournir la valeur de la vitesse dudit missile, des seconds moyens susceptibles de fournir la valeur de la vitesse relative de la cible par rapport au missile, des troisièmes moyens susceptibles de fournir l'angle éntre l'axe longitudinal du missile et ladite vitesse relative, ainsi que des quatrièmes moyens de détection de proximité susceptibles d'indiquer l'instant de détection d'une extrémité de ladite cible, ledit missile étant pourvu d'un système de déclenchement de ladite charge actionné avec un certain retard après la détection de la cible.
  • La destruction structurale paraîtrait donc constituer la méthode la plus efficace vis-à-vis des cibles rapides et à grande manoeuvrabilité. Cependant, elle n'est pas utilisée en pratique, car elle nécessite, pour que l'interception soit réussie, que la zone d'impact de la gerbe d'éclats focalisée corresponde à une zone vulnérable de la cible. Il ne semble pas, jusqu'à présent, que l'on ait réussi à maîtriser la zone d'impact, sur une cible, des éclats d'une gerbe focalisée.
  • La présente invention a pour objet de remédier à cet inconvénient.
  • L'objet de la présente invention concerne un système d'arme permettant d'envoyer les éclats d'une charge focalisée dans une zone de la cible, spécifiée à l'avance et choisie pour sa vulnérabilité. Pour une cible aérienne une telle zone vulnérable correspond par exemple à la partie du fuselage qui se trouve entre la voilure et l'empennage.
  • A cette fin, selon l'invention, le système d'arme du type décrit ci-dessus est caractérisé en ce qu'il comporte des moyens de calcul additionnels qui sont montés à bord dudit missile et qui, à partir des valeurs de la vitesse du missile et de la vitesse relative cible-missile, ainsi qu'à partir dudit angle entre l'axe longitudinal du missile et ladite vitesse relative, calculent à un instant proche dudit instant de détection fourni par lesdits quatrièmes moyens une durée, qui est ensuite décomptée par lesdits moyens de calcul additionnels à partir dudit instant de détection et au bout de laquelle lesdits moyens de calcul additionnels commandent ladite charge focalisée, lesdits moyens de calcul calculant ladite durée à partir des formules suivantes :
    Figure imgb0001
    dans lesquelles :
    • T = durée décomptée à partir de l'instant de détection d'une extrémité de la cible par lesdits quatrièmes moyens et au bout de laquelle l'explosion de la charge focalisée est désirée pour que ses éclats atteignent une partie vulnérable prédéterminée de ladite cible ;
    • d = distance séparant, le long de l'axe X-X du missile, le centre F des quatrièmes moyens de détection de proximité du centre 0 de la charge focalisée ;
    • Io = constante, homogène à une longueur, caractéristique de la cible à détruire
    • Ve = vitesse du missile ;
    • VR = vitesse relative de la cible par rapport au missile ;
    • D = angle entre l'axe du missile et VR.
  • On voit ainsi que, selon l'invention, l'explosion de la charge focalisée est commandée, à partir dudit instant de détection d'une extrémité de la cible, avec un temps de retard qui est calculé en fonction des paramètres réels de l'interception de la cible par le missile et qui, en réalité, correspond à une longueur prédéterminée de ladite cible à partir de son extrémité détectée par lesdits quatrièmes moyens.
  • De la sorte, les éclats de la charge focalisée peuvent atteindre la région prédéterminée de ladite cible en vue de réussir la destruction structurale de cette dernière. Dans le cas où cette durée calculée serait nulle ou négative, la mise à feu serait effectuée immédiatement.
  • On remarquera que les missiles connus, comme cela est par exemple décrit dans les brevets US-A-3 933 097 et DE-A-2 527 368, sont généralement pourvus d'un système de déclenchement de la charge actionné avec un certain retard, après la détection de la cible ; cependant, dans ce cas, ce retard est prévu par construction ou éventuellement introduit lors du lancement du missile, compte tenu de la vitesse supposée de la cible et du type d'attaque effectué par le missile sur la cible (attaque par l'avant ou par l'arrière). En revanche, selon l'invention, le retard à l'explosion de la charge focalisée est déterminé en fonction des circonstances de l'interception, afin d'optimiser les effets de ladite charge et d'obtenir la destruction structurale de la cible.
  • De préférence, lesdits premiers, seconds et troisièmes moyens sont prévus pour pouvoir fournir leurs informations en continu et alors lesdits moyens de calcul additionnels calculent ladite durée en continu pour en fournir une suite de valeurs, et, à partir dudit instant de détection fourni par lesdits quatrièmes moyens, lesdits moyens de calcul additionnels décomptent la dernière valeur de cette durée disponible avant ledit instant de détection.
  • De façon connue, lesdits moyens de calcul additionnels et/ou lesdits moyens de détection de proximité présentent un retard inhérent à l'exposition de ladite charge focalisée et à la détection d'une cible, respectivement. Si la totalité de ces retards connus inhérents au système est égale à (To), lesdits moyens de calcul additionnels adressent à la charge focalisée un signal de mise à feu au bout d'une durée (TI), qui est égale à la différence entre la durée (T), au bout de laquelle l'explosion de la charge focalisée est désirée, et la durée de retard (To).
  • Ainsi, lesdits moyens de calcul additionnels corrigent éventuellement la durée (T) de la valeur (To) des retards inhérents pour fournir un signal de mise à feu à l'expiration de la durée (T,).
  • Afin de pouvoir fournir aux moyens de calcul la constante Io, le système selon l'invention comporte des moyens susceptibles d'indiquer cette constante. De tels moyens peuvent être des moyens d'affichage actionnés manuellement au moment du lancement du missile. De préférence, ils sont constitués de moyens automatiques de reconnaissance de la cible, soit portés par le missile lui-même, soit disposés à poste fixe. Dans ce dernier cas, ces moyens automatiques de reconnaissance sont avantageusement liés à la station de lancement et de téléguidage du missile, qui transmet à celui-ci par ondes électromagnétiques la valeur de to de la cible à détruire, en même temps que les autres informations habituelles.
  • On remarquera qu'à des instants très proches de l'interception, c'est-à-dire lorsque le missile et la cible passent par la même verticale, la vitesse relative VR et l'angle D entre l'axe du missile et cette vitesse relative VR subissent des variations rapides et non significatives : VR passe par une valeur nulle et D passe par 90°. Ainsi, pour que le retard à l'explosion calculé T1 ait une signification, il est nécessaire que les mesures de Ve, VR et D aient été effectuées un certain temps avant l'interception, ce temps devant être ni trop grand, ni trop petit pour que VR et D représentent sensiblement les valeurs réelles malgré les accélérations du missile et de la cible..
  • Aussi, selon un mode de réalisation avantageux de l'invention, la valeur de la durée (T ou Ti) applicable à un instant donné est calculée à partir de mesures de la vitesse (Ve) du missile, de la vitesse relative cible-missile (VR) et de l'angle (D) effectuées à un instant antérieur et lesdits moyens de calcul additionnels élaborent un temps de retard supplémentaire t qui est décompté à partir de l'instant desdites mesures et dont l'expiration permet le début du décomptage du retard (T ou T1) à la mise à feu de la charge, dès que les moyens de détection de proximité ont détecté la cible.
  • En pratique, on mesure Ve, VR et D et on effectue les calculs nécessaires à une cadence commandée par le temps t et on élabore un retard T,, périodiquement renouvelé, qui sera utilisé après détection de la cible par les moyens de détection de proximité, pour déclencher la charge à l'instant optimal.
  • De préférence, ledit temps de retard supplémentaire t est calculé par lesdits moyens de calcul additionnels et est proportionnel à l'inverse de la racine carrée de la vitesse relative (VR).
  • Lesdits moyens de calcul peuvent être composés d'un premier circuit commandant les mesures des différents paramètres et effectuant les calculs nécessaires, d'un second circuit déterminant l'instant à partir duquel la durée de retard est exploitable et un troisième circuit permettant l'exploitation de cette durée de retard. De tels moyens de calcul peuvent être constitués, au moins en partie, par un microprocesseur.
    • Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
    • La figure 1 est une vue schématique générale illustrant la mise en oeuvre du système d'arme de défense aérienne selon l'invention.
    • La figure 2 montre schématiquement un missile de défense aérienne selon l'invention.
    • La figure 3 est une vue schématique montrant deux paramètres intervenant dans l'interception d'une cible par le missile selon l'invention.
    • La figure 4 est un schéma représentant l'interception d'une cible par le missile selon l'invention, dans le cas où cette interception est effectuée par l'avant de la cible et où la cible et le missile selon l'invention se trouvent dans un même plan.
    • La figure 5 est un diagramme de vitesses pour le schéma de la figure 4.
    • La figure 6 est un schéma représentant l'interception d'une cible par le missile selon l'invention, dans le cas où cette interception est effectuée par l'arrière de la cible et où la cible et le missile selon l'invention se trouvent dans un même plan.
    • La figure 7 est un diagramme de vitesses pour le schéma de la figure 6.
    • La figure donne le schéma synoptique des moyens de calcul du système selon l'invention, embarqués à bord du missile.
  • Le système d'arme selon l'invention, montré par la figure 1 et destiné à la défense aérienne, comporte un dispositif de détection et de guidage 1, agencé au sol, ainsi qu'un ensemble de missiles de défense aérienne 2. Lorsqu'un ennemi aérien 3 (missile, avion, hélicoptère, etc...) est détecté par le dispositif 1, celui-ci détermine à l'aide du calculateur et du radar qu'il comporte l'opportunité et les conditions d'une interception de l'ennemi 3.
  • Si l'interception est décidée, le dispositif 1 procède au lancement d'un missile 2 contre l'ennemi 3, qui devient alors la cible à abattre. Comme le montre schématiquement la figure 2, chaque missile 2 de défense aérienne comporte des moyens électroniques de guidage 4 susceptibles de coopérer avec le dispositif 1 et un autodirecteur 5 pourvu d'une centrale inertielle 5'. Aussi, dans un premier temps, un missile 2 suit une trajectoire de lancement entièrement déterminée par la coopération du dispositif 1 et des moyens de guidage embarqués 4. Ensuite, toujours grâce à cette coopération, le dispositif 1 dirige le missile 2 vers la cible 3 en lui faisant suivre une trajectoire 7. Enfin, lorsque le missile 2 est suffisamment bien orienté, son guidage vers la cible 3 est pris en charge par son autodirecteur 5.
  • On remarquera que, sur la figure 1, on a illustré le cas où le missile 2 va à la rencontre de la cible 3 pour l'attaquer par l'avant, ce qui correspond aux schémas des figures 4 et 5. Il va de soi que le missile 2 peut également attaquer la cible 3 par l'arrière, en la poursuivant et en la rattrapant, comme cela est figuré par les schémas des figures 6 et 7.
  • Chaque missile 2 comporte :
    • des moyens de détection de proximité 8 dont le front de détection 9 est voisin d'une surface conique concave d'axe confondu avec l'axe longitudinal X-X dudit missile 2 et d'angle au sommet A ;
    • une charge militaire focalisée 10 susceptible de projeter des éclats selon une surface de révolution d'axe confondu avec l'axe longitudinal X-X du missile et d'angle B ;
    • des codeurs angulaires 12 disposés sur le bâti de l'autodirecteur 5 ; et
    • des moyens de calcul 13 pour la commande de la charge focalisée 10.
  • L'objet de l'invention, comme il a été précisé ci-dessus, est de commander l'explosion de la charge focalisée 10 à un instant suivant la détection de la cible 3 par les moyens de détection de proximité 8, tel que les éclats de ladite charge 10 atteignent une région structuralement fragile de ladite cible, afin de couper celle-ci en deux. En général, les parties avant et médiane d'un engin assaillant 3 sont structuralement résistantes car comportant les appareils de navigation et de mesure, les réservoirs de carburant, la charge militaire, etc..., de sorte que, pour obtenir la destruction structurale dudit engin 3, il est préférable de projeter les éclats de la charge 10 dans une zone 14 de la partie arrière de celui-ci (voir les figures 4 et 6). Ainsi, l'objet de l'invention est de déterminer un temps T de retard à l'explosion de la charge 10, après la détection de la cible 3 par les moyens de détection de proximité 8, tel que les éclats de ladite charge focalisée 10 puissent atteindre la zone 14, disposée à une distance du premier point 15 de la cible 3 détectée par le front 9 desdits moyens de détection de proximité 8.
  • On remarquera que l'explosion de la charge 10 après la mise à feu par les moyens de calcul 13 n'est pas instantanée et que, de plus, il existe un retard à la détection d'une cible 3 par les moyens de détection de proximité 8 ; par suite, le temps de retard T à l'explosion doit être corrigé d'un temps To, connu pour une charge 10 et des moyens de détection de proximité 8 donnés et correspondant aux retards d'explosion après mise à feu et de détection par les moyens de détection de proximité 8.
  • En réalité, l'instant de commande de mise à feu doit intervenir avec un temps de retard :
    Figure imgb0002
  • Si l'on cherche à déterminer mathématiquement la distance I entre le premier point détecté 15 et la zone 14, on doit faire intervenir au moins les paramètres suivants :
    • la vitesse Ve du missile de défense aérienne 2 ;
    • la vitesse VB de la cible 3 ;
  • l'angle P de la présentation de la cible 3 par rapport au missile 2, c'est-à-dire l'angle entre la direction de la vitesse Ve et celle de la vitesse VB (voir les figures 5 et 7) ;
    • le temps T de retard à l'explosion de la charge focalisée 10 après détection du point 15 de la cible 3 par le front 9 des moyens de détection de proximité 8 ;
    • la vitesse Vi des éclats de la charge focalisée 10, projetés selon la surface de révolution 11 ;
    • l'angle B de la surface de révolution 11 par rapport à l'axe X-X du missile 2 ;
    • l'angle A du front de détection 9 des moyens de détection de proximité 8, par rapport à l'axe X-X du missile 2 ;
    • la distance d le long de l'axe X-X du missile 2, entre le cente F des moyens de détection de proximité 8 et le centre 0 de la charge focalisée 10 ;
    • la position axiale h du point 15 de la cible 3 détecté par des moyens de détection de proximité 8, par rapport à l'axe X-X du missile 2 ; et
    • l'angle a définissant la position angulaire dudit point 15 par exemple par rapport à la direction H-H perpendiculaire commune à Ve et VB (sur les figures 4 et 5, a = 90°).
    • Il va de soi que la connaissance à l'instant de la détection du point 15 par le front 9 de tous les paramètres ci-dessus, sauf T, permet de calculer T pour que 1 ait une valeur donnée à l'avance. Il est donc possible théoriquement d'atteindre une zone 14 déterminée à l'avance, du moins dans le cas où le calcul de T1 donne un résultat positif. Cependant, en pratique, un tel calcul de T n'est pas possible, car, quoique certains paramètres, tels que Vi, A, B et d, soient connus par construction et que d'autres, tels que Ve, VB et P, puissent être mesurés sur le missile 2 à des instants proches de l'interception, il subsiste une grande indétermination due à la méconnaissance de h et a.
  • La présente invention permet de contourner cette difficulté. En effet, la demanderesse a démontré en étudiant la grandeur I, fonction des dix paamètres précédents, que celle-ci pouvait s'écrire sous la forme d'une somme de trois termes :
    Figure imgb0003
    tels que :
  • Io est une constante, ayant la dimension d'une longueur et indépendante des paramètres Ve, VB et P ; lo est attachée à chaque type de cible 3 et caractéristique de celle-ci. Le dispositif de détection et de guidage 1, qui effectue une reconnaissance d'image au moins partielle de la cible 3, connait le type de celle-ci et peut donc adresser aux moyens de calcul 13 du missile 2, la valeur lo appropriée à la cible 3 en cours d'interception. Les différentes valeurs 10 correspondent respectivement aux différents types de cibles possibles sont de préférence prédéterminées et stockées dans le dispositif 1. A chaque type de cible 3 peut être associée une valeur de 10 pour une attaque par l'avant et une autre valeur lo pour une attaque parl'arrière. Eventuellement, le missile 2 peut comporter les moyens pour détecter le type de la cible 3 et déterminer la valeur à adopter pour la constante lo ;
  • Dl1 = ± VB · te, terme dans lequel te est le temps mis par les éclats de la charge focalisée 10 pour atteindre la zone 14 de la cible 3. Le signe + est utilisé pour une attaque par l'avant et le signe - pour une attaque par l'arrière. Le dispositif de détection et de guidage 1 connaît le type d'attaque (par l'avant ou par l'arrière) que va effectuer le missile 2 sur la cible 3 et il est donc à même de communiquer aux moyens de calcul 13 le signe approprié. On remarquera que te est une fonction implicite de h, a et T ; et
  • DI2 est une variation de longueur due aux paramètres h et a.
  • La condition pour que I puisse être considérée comme la somme des termes lo, DI, et D12 est alors la suivante :
    Figure imgb0004
  • La condition (1) est facile à réaliser par construction, puisque ne faisant intervenir que des paramètres à la disposition du constructeur du missile 2. Si cette condition (1) est respectée, le temps de retard T est donné par la formule
    Figure imgb0005
    c'est-à-dire s'il s'agit d'une attaque par l'avant (voir les figures 4 et 5), ou par la formule :
    Figure imgb0006
    c'est-à-dire s'il s'agit d'une attaque par l'arrière (voir figures 6 et 7).
  • De plus, la demanderesse a montré que si la relation (1) était vérifiée au moins avec une bonne approximation, le terme Dl2 restait petit devant Io et Dl1, au moins dans une gamme étendue des paramètres Ve, VB et P et pouvait donc être négligé.
  • Ainsi, si la condition (1) est respectée et si l'on a choisi le temps T selon la relation (21) ou (22) appropriée, la zone 14 atteinte par les éclats sera définie à partir du point 15, par la relation :
    Figure imgb0007
  • Par suite, si en fonction du diamètre de la zone couverte par les moyens de détection de proximité 8 et de considérations d'efficacité de destruction structurale, on choisit un temps maximal tm de parcours des éclats de la charge focalisée 10, on obtient une grande probabilité de toucher la cible 3 en une zone délimitée entre Io et lo ± VB · tM.
  • On remarquera que le calcul de T peut être facilement effectué à bord du missile 2. En effet, comme le montrent les figures 5 et 7, on a :
    Figure imgb0008
    Figure imgb0009
    en appelant VR, la vitesse relative de la cible 3 par rapport au missile 2 et D, l'angle entre la vitesse Ve du missile et cette vitesse relative VR. Par suite, on peut écrire :
    Figure imgb0010
    avec
    Figure imgb0011
  • Le temps T dépend donc uniquement des trois variables VR, Ve et D, puisque d et Io sont fixées soit par construction (d), soit par prédétermination (lo). Or :
    • VR est disponible de l'autodirecteur 5, qui comporte par exemple un radar à effet Doppler. La vitesse relative VR est une donnée toujours présente à bord d'un missile (2), car nécessaire à l'élaboration du guidage en navigation proportionnelle au moyen de l'autodirecteur 5 ;
    • Ve peut être connue de plusieurs façons différentes, par exemple à partir de la centrale inertielle 5' de l'autodirecteur (5) du missile 2 ou à partir d'accéléromètres ; elle pourrait également être tabulée en fonction du temps de parcours effectué par ledit missile 2 ;
    • l'angle D est donné par les codeurs angulaires 12 disposés sur le bâti de l'autodirecteur 5 ; de tels codeurs sont généralement prévus sur le missile 2, à cause de la nécessité d'orienter préalablement celui-ci (trajectoire 7) avant que la cible 3 puisse être accrochée par l'autodirecteur 5.
    • Sur les figures 4 et 7, on a représenté schématiquement une interception avant et une interception arrière et l'on peut y voir qu'à l'instant de l'explosion de la charge localisée 10, le centre 0 de celle-ci se trouve en 0' de façon que les éclats localisés 11 puissent atteindre la zone prédéterminée 14.
    • Sur la figure 8, on a représenté un exemple de réalisation des moyens de calcul 13 pour la commande de la charge focalisée 10. Ces moyens 13 sont constitués d'un circuit de mesure et de calcul 16 et de deux compteurs-décompteurs 17 et 18, ainsi que de deux horloges 19 et 20 émettant des impulsions à des cadences respectives c1 et c2.
  • Le circuit 16 commande les mesures et effectue les calculs. Le compteur-décompteur 17 détermine . l'instant à partir duquel le temps de retard à l'explosion est exploitable, tandis que le compteur-décompteur 18 permet l'exploitation de ce retard.
  • Le circuit 16 comporte trois entrées 21, 22 et 23 respectivement reliées à l'autodirecteur 5, à l'horloge 19 et au compteur-décompteur 17, ainsi qu'une entrée 24 et une sortie 25 reliées aux capteurs 5, 5', 12 et trois entrées 26, 27 et 28, respectivement pour les paramètres lo, d et To. Il est mis en oeuvre lorsque les conditions suivantes sont réunies :
    • sur l'entrée 21, l'autodirecteur 5 applique un signal indiquant qu'il fonctionne et qu'il a accroché la cible 3 ;
    • sur l'entrée 22, une impulsion de l'horloge 19 est présente ;
    • le circuit 17 adresse une autorisation de mesure sur l'entrée 23 ;
  • Le circuit 16 provoque alors successivement :
    • la lecture de Ve, VR et D sur les capteurs 5, 5' et 12 par l'entrée 24 ;
    • le calcul du temps de retard T1 à la mise à feu et du temps de retard supplémentaire t ;
    • le chargement du compteur-décompteur 17 par le temps de retard t ;
    • l'autorisation de décrémenter ce compteur-décompteur 17 ;
    • la mise en mémoire du temps de retard Ti.
  • Le compteur-décompteur 17 est initialisé au nombre d'impulsions N, = (t/c1) -1. Son chargement par le circuit 16 provoque l'interdiction de mesure de celui-ci par l'entrée 23. Le compteur-décompteur 17 est décrémenté de 1 à chaque impulsion de l'horloge 19 (liaison 29). Lorsque son contenu devient négatif, les opérations suivantes sont réalisées :
    • initialisation du compteur-décompteur 18 (liaison 30) ;
    • chargement de T, dans le compteur-décompteur 18 ;
    • autorisation de mesure sur l'entrée 23, pour débloquer le circuit 16.
  • Le compteur-décompteur 18 est initialisé par le compteur-décompteur 17 à un nombre d'impulsions N2 = (T1/c2) -1. Il est décrémenté de 1 à chaque impulsion de l'horloge 20 (liaison 31) dès que les moyens de détection de proximité 8 détectent la cible 3 et adressent un signal correspondant au compteur-décompteur 18 par la liaison 32. Lorsque son contenu est négatif, il y a mise à feu de la charge explosive 10.
  • Le signal d'autorisation de mesure (entrée 23) est initialisé au moment du lancement ou ·lors de la mise en recherche de l'autodirecteur 5.
  • On remarquera que ce système permet de conserver la dernière valeur de T connue si l'autodirecteur 5 perd la cible 3. Si le calcul de T conduit à un nombre négatif, le retard à l'explosion est alors nul après détection de la cible 3 par les moyens de détection de proximité 8.

Claims (7)

1. Système d'arme destiné à la destruction structurale, c'est-à-dire au sectionnement en deux tronçons distincts, d'une cible (3) au moyen d'une charge focalisée commandée (10) et comportant un missile (2) porteur de ladite charge focalisée et porteur de moyens de calcul, de premiers moyens (5') susceptibles de fournir la valeur de la vitesse (Ve) dudit missile (2), de seconds moyens (5) susceptibles de fournir la valeur de la vitesse relative (VR) de la cible (3) par rapport au missile (2), de troisièmes moyens (12) susceptibles de fournir l'angle (D) entre l'axe longitudinal du missile (2) et ladite vitesse relative, ainsi que de quatrièmes moyens (8) de détection de proximité susceptibles d'indiquer l'instant de détection d'une extrémité de ladite cible (3), ledit missile (2) étant pourvu d'un système de déclenchement de ladite charge actionné avec un certain retard après la détection de la cible, caractérisé en ce qu'il comporte des moyens de calcul additionnels (13) qui sont montés à bord dudit missile (2) et qui, à partir des valeurs de la vitesse (Ve) du missile et de la vitesse relative cible-missile (VR), ainsi qu'à partir dudit angle (D) entre l'axe longitudinal du missile (2) et ladite vitesse relative (VR), calculent à un instant proche dudit instant de détection fourni par lesdits quatrièmes moyens (8) une durée (T), qui est ensuite décomptée par lesdits moyens de calcul additionnels (13) à partir dudit instant de détection et au bout de laquelle lesdits moyens de calcul additionnels (13) commandent ladite charge focalisée (10), lesdits moyens de calcul (13) calculant ladite durée (T) à partir des formules suivantes :
Figure imgb0012
dans lesquelles :
T = durée décomptée à partir de l'instant de détection d'une extrémité de la cible (3) par lesdits quatrièmes moyens (8) et au bout de laquelle l'explosion de la charge focalisée est désirée pour que ses éclats atteignent une partie vulnérable prédéterminée de ladite cible (3) ;
d = distance séparant, le long de l'axe X-X du missile (2), le centre F des quatrièmes moyens (8) de détection de proximité du centre 0 de la charge focalisée (10) ;
Io = constante, homogène à une longueur, caractéristique de la cible (3) à détruire ;
Ve = vitesse du missile (2) ;
VR = vitesse relative de la cible (3) par rapport au missile (2) ;
D = angle entre l'axe du missile (2) et VR.
2. Système d'arme selon la revendication 1, dans lequel lesdits premiers, seconds et troisièmes moyens fournissent leurs informations en continu, caractérisé en ce que lesdits moyens de calcul additionnels (13) calculent ladite durée (T) en continu pour en fournir une suite de valeurs et en ce que, à partir dudit instant de détection fourni par lesdits quatrièmes moyens, lesdits moyens de calcul additionnels (13) décomptent la dernière valeur de cette durée disponible avant ledit instant de détection.
3. Système d'arme selon l'une des revendications 1 ou 2, dans lequel lesdits moyens de calcul additionnels (13) et/ou lesdits moyens de détection de proximité présentent un retard inhérent à l'explosion de ladite charge focalisée et à la détection d'une cible (3), respectivement, caractérisé en ce que, si la totalité de ces retards connus inhérents au système est égale à (To), lesdits moyens de calcul additionnels (13) adressent à la charge focalisée (10) un signal de mise à feu au bout d'une durée (Tl), qui est égale à la différence entre la durée (T), au bout de laquelle l'explosion de la charge focalisée est désirée, et la durée de retard (To).
4. Système d'arme selon la revendication 1, caractérisé en ce qu'il comporte des moyens (1) susceptibles de reconnaître le type de la cible (3) et de fournir la constante io.
5. Système d'arme selon l'une des revendications 1 ou 4, caractérisé en ce que la valeur de la durée (T ou Ti) applicable à un instant donné est calculée à partir de mesures de la vitesse (Ve) du missile, de la vitesse relative cible-missile (VR) et de l'angle (D) effectuées à un instant antérieur et en ce que lesdits moyens de calcul additionnels (13) élaborent un temps de retard supplémentaire t qui est décompté à partir de l'instant desdites mesures et dont l'expiration permet le début du décomptage du retard (T ou T,) à la mise à feu de la charge (10), dès que les moyens de détection de proximité (8) ont détecté la cible (3).
6. Système d'arme selon la revendication 5, caractérisé en ce que ledit temps de retard supplémentaire t est calculé par lesdits moyens de calcul additionnels (13) et est proportionnel à l'inverse de ia racine carrée de la vitesse relative (VR).
7. Système d'arme selon l'une des revendications 5 ou 6, caractérisé en ce que lesdits moyens de calcul additionnels (13) sont composés d'un premier circuit (18) commandant les mesures des différents paramètres et effectuant les calculs nécessaires, d'un second circuit (19) déterminant l'instant à partir duquel la durée de retard (T ou T,) est exploitable et un troisième circuit (20) permettant l'exploitation de cette durée de retard (T ou T,).
EP85400715A 1984-04-13 1985-04-10 Système d'arme et missile pour la destruction structurale d'une cible aérienne au moyen d'une charge focalisée Expired EP0161962B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85400715T ATE36066T1 (de) 1984-04-13 1985-04-10 Waffensystem und rakete zur zerstoerung der struktur eines luftzieles mittels einer konzentrierten ladung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8405913A FR2563000B1 (fr) 1984-04-13 1984-04-13 Systeme d'arme et missile pour la destruction structurale d'une cible aerienne au moyen d'une charge focalisee
FR8405913 1984-04-13

Publications (2)

Publication Number Publication Date
EP0161962A1 EP0161962A1 (fr) 1985-11-21
EP0161962B1 true EP0161962B1 (fr) 1988-07-27

Family

ID=9303170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400715A Expired EP0161962B1 (fr) 1984-04-13 1985-04-10 Système d'arme et missile pour la destruction structurale d'une cible aérienne au moyen d'une charge focalisée

Country Status (7)

Country Link
US (1) US4625647A (fr)
EP (1) EP0161962B1 (fr)
JP (1) JPH0785000B2 (fr)
AT (1) ATE36066T1 (fr)
AU (1) AU570778B2 (fr)
DE (1) DE3564030D1 (fr)
FR (1) FR2563000B1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3617487C1 (en) * 1986-05-24 1990-03-01 Messerschmitt Boelkow Blohm Warhead detonator for guided missile - compares radius vector valve with threshold signal as target is approached
EP0309734A1 (fr) * 1987-09-29 1989-04-05 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Méthode pour l'allumage d'un projectile dans la proximité d'une cible
US4972775A (en) * 1989-12-18 1990-11-27 General Electric Company Electrostatic passive proximity fuzing system
EP0547391A1 (fr) * 1991-12-18 1993-06-23 Oerlikon Contraves AG Procédé pour élever la probabilité de succès pour une défence anti-aérienne utilisant des projectiles à dispersion télé-commandée
SE508651C2 (sv) * 1995-10-05 1998-10-26 Bofors Ab För eldrörsvapen avsedd granat
FR2775341B1 (fr) * 1998-02-20 2000-06-23 Tda Armements Sas Procede de calcul de l'instant de mise a feu d'une charge d'un mobile
US6279478B1 (en) 1998-03-27 2001-08-28 Hayden N. Ringer Imaging-infrared skewed-cone fuze
US6298787B1 (en) 1999-10-05 2001-10-09 Southwest Research Institute Non-lethal kinetic energy weapon system and method
US7827900B2 (en) * 2004-10-07 2010-11-09 Innovative Survivability Technologies, Inc. Explosive round countermeasure system
US9849785B1 (en) * 2012-12-10 2017-12-26 The United States Of America, As Represented By The Secretary Of The Navy Method and apparatus for state space trajectory control of uncertain dynamical systems
CN103837868B (zh) * 2013-12-12 2016-05-25 江南机电设计研究所 一种侧向探测天线引信信号处理装置及其方法
KR102063293B1 (ko) * 2018-11-12 2020-01-07 국방과학연구소 파편화 가능한 직격 방식의 요격 미사일
CN110645843B (zh) * 2019-08-16 2020-08-14 北京理工大学 针对高速机动目标的高动态补偿制导控制系统及方法
CN114763980A (zh) * 2020-12-31 2022-07-19 深圳市卫飞科技有限公司 驱赶弹

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168663A (en) * 1954-12-01 1979-09-25 The United States Of America As Represented By The Secretary Of The Army Computer fuzes
US3858207A (en) * 1966-09-29 1974-12-31 Us Navy Range sensing target detecting device
US3933097A (en) * 1968-01-04 1976-01-20 The United States Of America As Represented By The Secretary Of The Navy Device to determine effective target size for fixed angle fuzes
DE2347374C2 (de) * 1973-09-20 1982-05-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Abstandszünder für einen Gefechtskopf
DE2527368C2 (de) * 1975-06-19 1982-05-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Annäherungszünder
JPS58195800A (ja) * 1982-05-10 1983-11-15 株式会社東芝 誘導飛翔体

Also Published As

Publication number Publication date
AU3981885A (en) 1985-10-17
FR2563000B1 (fr) 1986-06-06
JPH0785000B2 (ja) 1995-09-13
EP0161962A1 (fr) 1985-11-21
AU570778B2 (en) 1988-03-24
JPS6141900A (ja) 1986-02-28
ATE36066T1 (de) 1988-08-15
US4625647A (en) 1986-12-02
FR2563000A1 (fr) 1985-10-18
DE3564030D1 (en) 1988-09-01

Similar Documents

Publication Publication Date Title
EP0161962B1 (fr) Système d'arme et missile pour la destruction structurale d'une cible aérienne au moyen d'une charge focalisée
EP0028966B1 (fr) Procédé de pilotage et de guidage de projectiles en phase terminale de vol
EP2009387B1 (fr) Procédé de commande du déclenchement d'un module d'attaque et dispositif mettant en oeuvre un tel procédé
EP1719969B1 (fr) Procédé de commande d'une munition ou sous-munition, systèm d'attaque, munition et désignateur mettant en oeuvre un tel procédé
EP0273787B1 (fr) Mine à tir indirect d'attaque de véhicule blindé
FR2526149A1 (fr) Systeme d'arme et munition de survol
EP0485292B1 (fr) Dispositif optique de mesure de l'angle de roulis d'un projectile
EP2711732B1 (fr) Ecartomètre à imagerie infrarouge et système de visée et de poursuite automatique de cible
FR2742540A1 (fr) Projectile avec un dispositif de correction de la trajectoire
EP0589746B1 (fr) Sous-munition à effet dirigé
EP0800054B1 (fr) Projectile dont la charge explosive est déclenchée au moyen d'un désignateur de cible
FR2657687A1 (fr) Munition anti-char et son procede d'utilisation.
EP0918205B1 (fr) Projectile ayant une direction d'action radiale
US4819561A (en) Sensor for attacking helicopters
FR2643143A1 (fr) Mine de defense contre des objets en mouvement
EP0316216B1 (fr) Dispositif de stabilisation gyroscopique pour un organe de manoeuvre de projectile
FR2633382A1 (fr) Procede pour attaquer une cible au moyen d'un projectile de survol, et projectile de survol destine a la mise en oeuvre du procede
FR2655140A1 (fr) Systeme a fusee declenchee a distance.
FR2504703A1 (fr) Systeme d'asservissement d'un projectile a une reference axiale pour supprimer l'effet du vent
EP0420760B1 (fr) Procédé et système de guidage autonome vers une cible d'un projectile balistique aéroporté propulsé
FR2558585A1 (fr) Sous-munitions largables pour projectile, notamment antichar
FR2518737A1 (fr) Systeme de defense de zone a grenade gyroplanante
FR2532044A1 (fr) Procede de poursuite d'un engin volant commande par moteur
FR2612622A1 (fr) Dispositif de commande a distance de la mise a feu d'un projectile
FR2741943A1 (fr) Moyens pour determiner la position en rotation d'un missile, systeme de communication d'ordre comprenant de tels moyens et systeme de guidage comprenant un tel systeme de communication d'ordre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19851007

17Q First examination report despatched

Effective date: 19860711

R17C First examination report despatched (corrected)

Effective date: 19870324

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 36066

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3564030

Country of ref document: DE

Date of ref document: 19880901

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85400715.0

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020308

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020313

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020419

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020430

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030228

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030312

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030331

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

BERE Be: lapsed

Owner name: *AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040410