EP0161127A1 - Plane antenna with fast mechanical scan - Google Patents

Plane antenna with fast mechanical scan Download PDF

Info

Publication number
EP0161127A1
EP0161127A1 EP85400517A EP85400517A EP0161127A1 EP 0161127 A1 EP0161127 A1 EP 0161127A1 EP 85400517 A EP85400517 A EP 85400517A EP 85400517 A EP85400517 A EP 85400517A EP 0161127 A1 EP0161127 A1 EP 0161127A1
Authority
EP
European Patent Office
Prior art keywords
mirror
guide
antenna according
plane
transmission network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85400517A
Other languages
German (de)
French (fr)
Other versions
EP0161127B1 (en
Inventor
Joseph Roger
Jean-Louis Pourailly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0161127A1 publication Critical patent/EP0161127A1/en
Application granted granted Critical
Publication of EP0161127B1 publication Critical patent/EP0161127B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable

Definitions

  • the invention relates to a flat antenna with rapid mechanical scanning and in particular a flat antenna with scanning in one plane by frequency and, in the other plane, by rapid mechanical scanning.
  • This antenna has the advantage of not presenting any moving part visible to an observer.
  • an antenna In the case where it is desired to monitor a determined portion of territory, an antenna is used, the scanning angles of which are in azimuth and in elevation. This type of antenna can be used in particular in radars called “anti-mortar radar” making it possible to observe part of a battlefield.
  • Such antennas use electronic scanning systems in the two planes and are therefore of high cost. These systems indeed require an electronic phase shifter at the input of each radiating element. They also require a power distribution device between the phase shifters. Furthermore, the phase shifters must be subject to precise adjustment, which is always difficult to achieve.
  • the invention provides an inexpensive flat radar antenna, not using a diode or ferrite phase shifter, therefore having no losses like electronic phase shifters.
  • the invention therefore relates to a fast mechanical scanning flat antenna comprising a source of emission emitting a divergent beam on a collimator device, which transmits a collimated beam of direction of determined linear polarization, to a transmission network made up of dispersive linear networks. , the direction of radiation of which depends on the frequency emitted, characterized in that it further comprises: two planar and parallel guide means arranged on either side of the collimated beam, parallel to the direction of linear polarization of the beam, and delimiting a beam guiding medium, an orientable reflection device disposed between the two planar guide means and reflecting the beam towards the transmission network.
  • the constitution of the radar antenna according to the invention will be described by replacing each constituent element in an Oxyz trirectangle trihedron.
  • This radar antenna includes a source of emission 1.
  • This source of emission could be a monopulse emission horn.
  • the emission source 1 emits a divergent beam 10 in a direction parallel to the axis Ox. This beam is received by a collimator device 2 of the collimator lens type which emits a collimated beam 11. Two flat plates 3 and 4 of conductive material, parallel to the xOy plane, allow the beams 10 and 11 to be guided.
  • the network 8 consists of the juxtaposition of dispersing radiating lines parallel to Oy and whose direction of radiation depends on the frequency emitted.
  • the network 8 consists of slot guides, such as the guide 80, arranged in a plane xOy and comprising emission slots 81.
  • This type of guide is well known in the art.
  • the grating 8 emits a beam radiating in a direction carried by a cone with an axis Oy and whose angle at the top varies with frequency.
  • the mirror 6 is movable around an axis 9. It can rotate as indicated by the arrows FI and F2, around this axis.
  • the height h of this plate is less than the distance d separating the two plates 3 and 4 so that there is no friction between the mirror 6 and the plates 3 and 4.
  • the direction of polarization E of the plane wave 11 is parallel to the axis Oy, that is to say transverse and parallel to the guide plates 3 and 4. Under these conditions, the play existing between the mirror 6 and plates 3 and 4 do not give rise to energy losses.
  • the residual gap constitutes a space guided at "breaking", taking into account the wavelength of the energy propagating between the plates 3 and 4, therefore preventing propagation beyond the mirror 6.
  • the beam transmitted to the dispersive network 8 is substantially equiphase.
  • the direction of the emitted beam is at the intersection of the cone of axis Oy previously described and of a cone of axis Ox of angle at the apex dependent on the position of the mirror 6.
  • the angle of the inclination of the mirror 6 of ⁇ / 4 radians corresponds to an angle at the top of radians, therefore a degenerate cone confused with the plane yOz.
  • the variations of the angle at the top of the first cone described allow a first type of scanning which will be used as elevation scanning
  • the variations of the angle at the top of the second cone described (scanning mechanical by tilting the mirror 6) allow a second type of sweep then used as sweep in deposit.
  • the antenna produced according to the invention thus allows a site sweeping thanks to the frequency agility of the system and the field sweeping is due to the oscillation of the mirror 6 between the plates 3 and 4.
  • the hinge axis 9 has been placed as close as possible to the dispersive network 8 so that the transverse sliding of the reflected plane wave is as low as possible.
  • This arrangement makes it possible to limit the increase in the length of the network to around 10% for the chosen deflections. It is quite obvious that the axis could be located in a different place from that chosen, one would then obtain a lower output.
  • the frequency of oscillation of the mirror 6 and therefore of the scanning in the field will, for example, be between 2 and 3 Hz, and may reach 10 Hz by making a very light mobile assembly, of the resonant mechanical type, for the mirror 6.
  • the antenna thus produced is therefore extremely flat. Seen from the outside, although there is a mechanical sweep between the plates 3 and 4, the assembly is fixed which guarantees its discretion.
  • the emission source 1 and the collimator device 2 can be mounted between two plates 12 and 13 attached, in the antenna operating position, to the plates 3 and 4 guiding the beam 11 in the oscillation zone of the mirror 6.
  • a hinge pin 20 connects the plate 12 to the plate 3. It is therefore possible to fold the assembly of plates 12, 13, emission source 1 and collimator device 2, below the guide plate 3, which will facilitate handling and transport of the antenna.
  • the network 9 of guides 80 is arranged so that the inlet openings of each guide have their long side perpendicular to the planes of the plates 3 and 4 and therefore their short side parallel to these planes.
  • the adaptation to the entry of the network can be done without complicated intermediary, the polarization of the incident wave then being perpendicular to the longitudinal direction of the guides to within + 20 ° for example and also perpendicular to the long sides of these same guides.
  • transition line 14 between the guide plates 3 and 4, and the dispersive plane network 8 are provided coupling means called transition line 14.
  • This transition line makes it possible to retransmit to the dispersive network 8 all of the energy reflected by the mirror 6.
  • the entrance face of the dispersive network 8 may have dimensions different from those of the reflected beam.
  • the transition line is produced in the form of an equiphase distributor 14, as shown in FIG. 7.
  • This equiphase distributor ensures that the distance traveled between the exit from the guide planes 3 and 4, and the entry of the network 8 is the same at all points of the beam. This is shown in Figure 6 by more or less wavy connections depending on the route adopted. This equiphase distributor thus ensures conservation of the phases as imposed by the reflection on the mirror 6.
  • the guided space 5, comprised between the guide plates 3 and 4 is provided with a dielectric material as shown in FIGS. 8 to 10.
  • the plates 3 and 4 are provided with dielectric plates 15 and 16. Between the plates 15 and 16 is left an empty space 17 of thickness f intended to receive the mirror 6.
  • the thickness of the mirror 6 has therefore a thickness e less than the thickness f to allow oscillation around the axis 9.
  • the overall dielectric constant of the plate 15, 16 and space 17 assembly is greater than unity.
  • the width b of the mirror 6 is at least equal to the wavelength guided in the dielectric medium so that there is a cut and the wave does not propagate beyond the mirror 6.
  • the advantage of the variant thus described lies in the fact that the dimensions of the antenna can be reduced.
  • the amplitude of oscillation of the mirror 6 can be reduced, which is important from the mechanical point of view.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

1. Plane antenna allowing a mechanical scan and comprising an emission source (1) adapted to transmit a divergent beam (10) onto a collimating device (2), which transmits a collimated beam (11) having a predetermined linear direction of polarization (E), to a transmission network (8), which is constituted of dispersive linear networks (80), whose direction of radiation depends upon the transmission frequency, the antenna further comprising : - two plane and parallel guide means (3, 4) disposed on either side of the collimated beam (11) parallel to the direction of the linear polarization (E) of the beam and delimiting a guide medium (5) for the beam ; and - an adjustable reflexion device (6) disposed between the two plane guide means (3 and 4), the reflexion device being a plane mirror (6), whose reflexion plane (7) is perpendicular to the planes of the guide means (3, 4) ; characterized in that the height (h) of the mirror is inferior to the distance (d) which separates the two guide plates (3, 4), such that no friction occurs between the mirror (6) and the guide plates (3, 4) ; and in that transition means (14, Fig. 7) are provided and placed between the mirror (6) and the transmission network (8) and comprise microwave guides (14) of equal electric length, adapted to ensure the phases between the mirror (6) and the transmission network (8) to remain unaltered.

Description

L'invention concerne une antenne plate à balayage mécanique rapide et notamment une antenne plate à balayage dans un plan par la fréquence et, dans l'autre plan, par balayage mécanique rapide. Cette antenne présente l'avantage de ne présenter aucune pièce mobile visible pour un observateur.The invention relates to a flat antenna with rapid mechanical scanning and in particular a flat antenna with scanning in one plane by frequency and, in the other plane, by rapid mechanical scanning. This antenna has the advantage of not presenting any moving part visible to an observer.

Dans le cas où l'on désire surveiller une portion de territoire déterminée, on utilise une antenne dont on connaît les angles de balayage en azimut et en site. Ce type d'antenne peut être utilisé notamment dans les radars appelés "radar antimortier" permettant d'observer une partie d'un champ de bataille.In the case where it is desired to monitor a determined portion of territory, an antenna is used, the scanning angles of which are in azimuth and in elevation. This type of antenna can be used in particular in radars called "anti-mortar radar" making it possible to observe part of a battlefield.

De telles antennes utilisent des systèmes de balayages électroniques dans les deux plans et sont de ce fait d'un coût élevé. Ces systèmes nécessitent en effet un déphaseur électronique à l'entrée de chaque élément rayonnant. Ils nécessitent également un dispositif de répartition d'alimentation entre les déphaseurs. Par ailleurs, les déphaseurs doivent faire l'objet d'un réglage précis, toujours délicat à réaliser.Such antennas use electronic scanning systems in the two planes and are therefore of high cost. These systems indeed require an electronic phase shifter at the input of each radiating element. They also require a power distribution device between the phase shifters. Furthermore, the phase shifters must be subject to precise adjustment, which is always difficult to achieve.

L'invention fournit une antenne radar plate peu coûteuse, n'utilisant pas de déphaseur à diodes ou à ferrites, ne présentant donc pas de pertes comme les déphaseurs électroniques.The invention provides an inexpensive flat radar antenna, not using a diode or ferrite phase shifter, therefore having no losses like electronic phase shifters.

L'invention concerne donc une antenne plate à balayage mécanique rapide comprenant une source d'émission émettant un faisceau divergent sur un dispositif collimateur, lequel transmet un faisceau collimaté de direction de polarisation linéaire déterminée, à un réseau d'émission constitué de réseaux linéaires dispersifs, dont la direction de rayonnement dépend de la fréquence émise, caractérisée en ce qu'il comporte en outre : deux moyens de guidage plans et parallèles disposés de part et d'autre du faisceau collimaté, parallèles à la direction de polarisation linéaire du faisceau, et délimitant un milieu de guidage du faisceau, un dispositif de réflexion orientable disposé entre les deux moyens de guidage plans et réfléchissant le faisceau vers le réseau d'émission.The invention therefore relates to a fast mechanical scanning flat antenna comprising a source of emission emitting a divergent beam on a collimator device, which transmits a collimated beam of direction of determined linear polarization, to a transmission network made up of dispersive linear networks. , the direction of radiation of which depends on the frequency emitted, characterized in that it further comprises: two planar and parallel guide means arranged on either side of the collimated beam, parallel to the direction of linear polarization of the beam, and delimiting a beam guiding medium, an orientable reflection device disposed between the two planar guide means and reflecting the beam towards the transmission network.

L'invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description qui suit faite en référence aux figures annexées parmi lesquelles :

  • - la figure 1, représente une vue isométrique d'une antenne selon l'invention,
  • - les figures 2 à 5 représentent des vues explicatives de l'antenne de la figure 1,
The invention will be better understood and other characteristics will appear from the following description made with reference to the appended figures among which:
  • FIG. 1 represents an isometric view of an antenna according to the invention,
  • FIGS. 2 to 5 represent explanatory views of the antenna of FIG. 1,

la figure 6 représente une variante de réalisation de l'antenne selon l'invention,

  • - la figure 7 est une autre variante de réalisation de l'antenne selon l'invention,
  • - les figures 8 à 10 représentent une autre variante de réalisation de l'antenne radar selon l'invention.
FIG. 6 represents an alternative embodiment of the antenna according to the invention,
  • FIG. 7 is another alternative embodiment of the antenna according to the invention,
  • - Figures 8 to 10 show another alternative embodiment of the radar antenna according to the invention.

En se reportant à la figure 1, on va décrire la constitution de l'antenne radar selon l'invention en replaçant chaque élément constitutif dans un trièdre trirectangle Oxyz.Referring to FIG. 1, the constitution of the radar antenna according to the invention will be described by replacing each constituent element in an Oxyz trirectangle trihedron.

Cette antenne radar comporte une source d'émission 1. Cette source d'émission pourra être un cornet d'émission monopulse.This radar antenna includes a source of emission 1. This source of emission could be a monopulse emission horn.

La source d'émission 1 émet un faisceau divergent 10 selon une direction parallèle à l'axe Ox. Ce faisceau est reçu par un dispositif collimateur 2 du type lentille collimatrice qui émet un faisceau 11 collimaté. Deux plaques planes 3 et 4 en matériau conducteur, parallèles au plan xOy, permettent de guider les faisceaux 10 et 11.The emission source 1 emits a divergent beam 10 in a direction parallel to the axis Ox. This beam is received by a collimator device 2 of the collimator lens type which emits a collimated beam 11. Two flat plates 3 and 4 of conductive material, parallel to the xOy plane, allow the beams 10 and 11 to be guided.

Entre les plaques 3 et 4 est disposée une plaque réflectrice ou miroir 6 permettant de réfléchir, par sa face 7, le faisceau 11, dans une direction sensiblement perpendiculaire à la direction du faisceau 11, aux entrées d'un réseau dispersif plan 8. Le réseau 8 est constitué par la juxtaposition de lignes rayonnantes dispersives parallèles à Oy et dont la direction de rayonnement dépend de la fréquence émise.Between the plates 3 and 4 is disposed a reflecting plate or mirror 6 making it possible to reflect, by its face 7, the beam 11, in a direction substantially perpendicular to the direction of the beam 11, at the entrances of a planar dispersive network 8. The network 8 consists of the juxtaposition of dispersing radiating lines parallel to Oy and whose direction of radiation depends on the frequency emitted.

Selon un mode de réalisation, le réseau 8 est constitué de guides à fentes, tel que le guide 80, disposés selon un plan xOy et comportant des fentes d'émission 81. Ce type de guide est bien connu dans la technique. Le réseau 8 émet un faisceau rayonnant dans une direction portée par un cône d'axe Oy et dont l'angle au sommet varie avec la fréquence.According to one embodiment, the network 8 consists of slot guides, such as the guide 80, arranged in a plane xOy and comprising emission slots 81. This type of guide is well known in the art. The grating 8 emits a beam radiating in a direction carried by a cone with an axis Oy and whose angle at the top varies with frequency.

Le miroir 6 est mobile autour d'un axe 9. Elle peut tourner comme indiqué par les flèches FI et F2, autour de cet axe. La hauteur h de cette plaque est inférieure à la distance d séparant les deux plaques 3 et 4 de telle façon qu'il n'y ait pas frottement entre le miroir 6 et les plaques 3 et 4.The mirror 6 is movable around an axis 9. It can rotate as indicated by the arrows FI and F2, around this axis. The height h of this plate is less than the distance d separating the two plates 3 and 4 so that there is no friction between the mirror 6 and the plates 3 and 4.

Par ailleurs, la direction de polarisation E de l'onde plane 11 est parallèle à l'axe Oy c'est-à-dire transverse et parallèle aux plaques de guidage 3 et 4. Dans ces conditions, le jeu existant entre le miroir 6 et les plaques 3 et 4 ne donne pas lieu à des pertes d'énergie. L'interstice résiduel constitue un espace guidé à "la coupure", compte-tenu de la longueur d'onde de l'énergie se propageant entre les plaques 3 et 4, donc interdisant la propagation au-delà du miroir 6.Furthermore, the direction of polarization E of the plane wave 11 is parallel to the axis Oy, that is to say transverse and parallel to the guide plates 3 and 4. Under these conditions, the play existing between the mirror 6 and plates 3 and 4 do not give rise to energy losses. The residual gap constitutes a space guided at "breaking", taking into account the wavelength of the energy propagating between the plates 3 and 4, therefore preventing propagation beyond the mirror 6.

Lorsque le miroir 6 est incliné de π/4 radians par rapport à la direction du faisceau 11, comme cela est représenté sur les figures 2 et 4, le faisceau transmis au réseau dispersif 8 est sensiblement équiphase. La direction du faisceau émis est à l'intersection du cône d'axe Oy précédemment décrit et d'un cône d'axe Ox d'angle au sommet dépendant de la position du miroir 6. L'angle de l'inclinaison du miroir 6 de π/4 radians correspond à un angle au sommet de radians, donc un cône dégénéré confondu avec le plan yOz.When the mirror 6 is inclined by π / 4 radians relative to the direction of the beam 11, as shown in Figures 2 and 4, the beam transmitted to the dispersive network 8 is substantially equiphase. The direction of the emitted beam is at the intersection of the cone of axis Oy previously described and of a cone of axis Ox of angle at the apex dependent on the position of the mirror 6. The angle of the inclination of the mirror 6 of π / 4 radians corresponds to an angle at the top of radians, therefore a degenerate cone confused with the plane yOz.

Lorsqu'on donne au miroir 6, une position différente de π/4 radians par rapport à la direction du faisceau 11, comme cela est représenté sur les figures 3 ou 5, on établit un gradient de phase le long de la face d'entrée du réseau dispersif 8 et on introduit un déphasage entre les différentes ondes fournis aux différentes lignes rayonnantes du réseau dispersif 8. En donnant un mouvement d'oscillation à la plaque réflectrice 6, l'angle au sommet du cône, précédemment décrit, varie.When the mirror 6 is given a position different from π / 4 radians with respect to the direction of the beam 11, as shown in FIGS. 3 or 5, a phase gradient is established along the input face of the dispersive network 8 and a phase shift is introduced between the different waves supplied to the different radiating lines of the dispersive network 8. By giving an oscillating movement to the reflective plate 6, the angle at the top of the cone, previously described, varies.

Dans ces conditions, les variations de l'angle au sommet du premier cône décrit (variations de fréquences) permettent un premier type de balayage qui sera utilisé comme balayage en site, et les variations de l'angle au sommet du deuxième cône décrit (balayage mécanique par inclinaison du miroir 6) permettent un deuxième type de balayage utilisé alors comme balayage en gisement.Under these conditions, the variations of the angle at the top of the first cone described (frequency variations) allow a first type of scanning which will be used as elevation scanning, and the variations of the angle at the top of the second cone described (scanning mechanical by tilting the mirror 6) allow a second type of sweep then used as sweep in deposit.

L'antenne réalisée selon l'invention permet ainsi un balayage en site grâce à l'agilité en fréquences du système et le balayage en gisement est dû à l'oscillation du miroir 6 entre les plaques 3 et 4.The antenna produced according to the invention thus allows a site sweeping thanks to the frequency agility of the system and the field sweeping is due to the oscillation of the mirror 6 between the plates 3 and 4.

A titre d'exemple, on peut envisager une zone de balayage en site de l'ordre de 15 degrés en utilisant une bande de fréquences située autour de 9000 MHz. En ce qui concerne le balayage en gisement, une rotation de + 25 degrés du miroir 6, par exemple, permet d'obtenir un balayage de + 50 degrés, ce qui convient parfaitement.As an example, one can consider a site scanning area around 15 degrees using a frequency band around 9000 MHz. With regard to the sweeping in bearing, a rotation of + 25 degrees of the mirror 6, for example, makes it possible to obtain a scanning of + 50 degrees, which is perfectly suitable.

Il est à noter que selon les figures 1 à 5, l'axe d'articulation 9 a été placé le plus près possible du réseau dispersif 8 pour que le glissement transversal de l'onde plane réfléchi soit le plus faible possible. Cette disposition permet de limiter l'accroissement de la longueur du réseau à 10 % environ pour les déflexions choisies. Il est bien évident que l'axe pourrait être situé en un endroit différent de celui choisi , on obtiendrait alors un rendement inférieur.It should be noted that according to FIGS. 1 to 5, the hinge axis 9 has been placed as close as possible to the dispersive network 8 so that the transverse sliding of the reflected plane wave is as low as possible. This arrangement makes it possible to limit the increase in the length of the network to around 10% for the chosen deflections. It is quite obvious that the axis could be located in a different place from that chosen, one would then obtain a lower output.

La fréquence d'oscillation du miroir 6 et donc du balayage en gisement sera à titre d'exemple situé entre 2 et 3 Hz, et pourra atteindre 10 Hz en réalisant un équipage mobile très léger, du type mécanique résonnant, pour le miroir 6.The frequency of oscillation of the mirror 6 and therefore of the scanning in the field will, for example, be between 2 and 3 Hz, and may reach 10 Hz by making a very light mobile assembly, of the resonant mechanical type, for the mirror 6.

L'antenne ainsi réalisée est donc extrêmement plate. Vue de l'extérieur, bien qu'il y ait un balayage mécanique entre les plaques 3 et 4, l'ensemble est fixe ce qui garantit sa discrétion.The antenna thus produced is therefore extremely flat. Seen from the outside, although there is a mechanical sweep between the plates 3 and 4, the assembly is fixed which guarantees its discretion.

Selon une variante de réalisation telle que représentée par la figure 6, la source d'émission 1 et le dispositif collimateur 2 peuvent être montés entre deux plaques 12 et 13 accolées, en position de fonctionnement de l'antenne, aux plaques 3 et 4 guidant le faisceau 11 dans la zone d'oscillation du miroir 6. Un axe d'articulation 20 relie la plaque 12 à la plaque 3. Il est donc possible de replier l'ensemble plaques 12, 13, source d'émission 1 et dispositif collimateur 2, en dessous de la plaque de guidage 3, ce qui facilitera la manutention et le transport de l'antenne.According to an alternative embodiment as shown in FIG. 6, the emission source 1 and the collimator device 2 can be mounted between two plates 12 and 13 attached, in the antenna operating position, to the plates 3 and 4 guiding the beam 11 in the oscillation zone of the mirror 6. A hinge pin 20 connects the plate 12 to the plate 3. It is therefore possible to fold the assembly of plates 12, 13, emission source 1 and collimator device 2, below the guide plate 3, which will facilitate handling and transport of the antenna.

Il est à noter que le réseau 9 de guides 80 est disposé de telle façon que les ouvertures d'entrée de chaque guide aient leur grand côté perpendiculaire aux plans des plaques 3 et 4 et donc leur petit côté parallèle à ces plans. Dans ces conditions, l'adaptation à l'entrée du réseau peut se faire sans intermédiaire compliqué, la polarisation de l'onde incidente étant alors perpendiculaire à la direction longitudinale des guides à + 20° près par exemple et également perpendiculaire aux grands côtés de ces mêmes guides.It should be noted that the network 9 of guides 80 is arranged so that the inlet openings of each guide have their long side perpendicular to the planes of the plates 3 and 4 and therefore their short side parallel to these planes. Under these conditions, the adaptation to the entry of the network can be done without complicated intermediary, the polarization of the incident wave then being perpendicular to the longitudinal direction of the guides to within + 20 ° for example and also perpendicular to the long sides of these same guides.

Selon une autre variante de l'invention, entre les plaques de guidage 3 et 4, et le réseau plan dispersif 8 sont prévus des moyens de couplage appelés ligne de transition 14. Cette ligne de transition permet de retransmettre au réseau dispersif 8 toute l'énergie réfléchie par le miroir 6. Pour des raisons de technologie, la face d'entrée du réseau dispersif 8 peut avoir des dimensions différentes de celles du faisceau réfléchi. Il peut également y avoir des discontinuités entre des lignes rayonnantes du réseau 8. Dans ces conditions la ligne de transition est réalisée sous forme d'un répartiteur équiphase 14, comme représenté sur la figure 7. Ce répartiteur équiphase assure que la distance parcourue entre la sortie des plans de guidage 3 et 4, et l'entrée du réseau 8 est la même en tout point du faisceau. Ce qui est représenté sur la figure 6 par des liaisons plus ou moins ondulées selon le parcours adopté. Ce répartiteur equiphase assure ainsi une conservation des phases tel qu'imposé par la réflexion sur le miroir 6.According to another variant of the invention, between the guide plates 3 and 4, and the dispersive plane network 8 are provided coupling means called transition line 14. This transition line makes it possible to retransmit to the dispersive network 8 all of the energy reflected by the mirror 6. For technological reasons, the entrance face of the dispersive network 8 may have dimensions different from those of the reflected beam. There may also be discontinuities between radiating lines of the network 8. Under these conditions the transition line is produced in the form of an equiphase distributor 14, as shown in FIG. 7. This equiphase distributor ensures that the distance traveled between the exit from the guide planes 3 and 4, and the entry of the network 8 is the same at all points of the beam. This is shown in Figure 6 by more or less wavy connections depending on the route adopted. This equiphase distributor thus ensures conservation of the phases as imposed by the reflection on the mirror 6.

Selon une variante de l'invention l'espace guidé 5, compris entre les plaques de guidage 3 et 4, est muni d'un matériau diélectrique comme cela est représenté sur les figures 8 à 10.According to a variant of the invention, the guided space 5, comprised between the guide plates 3 and 4, is provided with a dielectric material as shown in FIGS. 8 to 10.

Par exemple, les plaques 3 et 4 sont munies de plaques de diélectrique 15 et 16. Entre les plaques 15 et 16 est laissé un espa.ce vide 17 d'épaisseur f destiné à recevoir le miroir 6. L'épaisseur du miroir 6 a donc une épaisseur e inférieure à l'épaisseur f pour permettre une oscillation autour de l'axe 9.For example, the plates 3 and 4 are provided with dielectric plates 15 and 16. Between the plates 15 and 16 is left an empty space 17 of thickness f intended to receive the mirror 6. The thickness of the mirror 6 has therefore a thickness e less than the thickness f to allow oscillation around the axis 9.

La constante diélectrique globale de l'ensemble plaques 15, 16 et espace 17 est supérieure à l'unité.The overall dielectric constant of the plate 15, 16 and space 17 assembly is greater than unity.

La largeur b du miroir 6 est au moins égale à la longueur d'onde guidée dans le milieu diélectrique de telle façon qu'il y ait coupure et que l'onde ne se propage pas au-delà du miroir 6.The width b of the mirror 6 is at least equal to the wavelength guided in the dielectric medium so that there is a cut and the wave does not propagate beyond the mirror 6.

L'avantage de la variante ainsi décrite réside dans le fait qu'on peut diminuer les dimensions de l'antenne. De plus à angle de balayage gisement équivalent, on peut diminuer l'amplitude d'oscillation du miroir 6 ce qui est important du point de vue mécanique.The advantage of the variant thus described lies in the fact that the dimensions of the antenna can be reduced. In addition, at an equivalent bearing scanning angle, the amplitude of oscillation of the mirror 6 can be reduced, which is important from the mechanical point of view.

Claims (11)

1/ Antenne plate à balayage mécanique comprenant une source d'émission (1) émettant un faisceau divergent (10) sur un dispositif collimateur (2) lequel transmet un faisceau collimaté (11) de direction de polarisation (E) linéaire déterminée, à un réseau d'émission (8) constitué de réseaux linéaires dispersifs (80), dont la direction de rayonnement dépend de la fréquence émise, caractérisée en ce qu'il comporte en outre : deux moyens de guidage (3, 4) plans et parallèles disposés de part et d'autre du faisceau collimaté (11), parallèles à la direction de polarisation (E) linéaire du faisceau, et délimitant un milieu de guidage (5) du faisceau, un dispositif de réflexion (6) orientable disposé entre les deux moyens de guidage plans (3 et 4) et réfléchissant le faisceau vers le réseau d'émission (8).1 / Flat antenna with mechanical scanning comprising an emission source (1) emitting a divergent beam (10) on a collimating device (2) which transmits a collimated beam (11) of direction of determined linear polarization (E), to a transmission network (8) made up of linear dispersive networks (80), the direction of radiation of which depends on the frequency emitted, characterized in that it further comprises: two planar and parallel guide means (3, 4) arranged on either side of the collimated beam (11), parallel to the direction of linear polarization (E) of the beam, and delimiting a medium for guiding the beam (5), an orientable reflection device (6) disposed between the two planar guidance means (3 and 4) and reflecting the beam towards the transmission network (8). 2/ Antenne selon la revendication 1, caractérisée en ce que le dispositif de réflexion est un miroir plan (6) dont le plan de réflexion (7) est perpendiculaire aux plans des moyens de guidage (3, 4), et dont la hauteur (h) est inférieure à la distance (d) séparant les deux plaques de guidage (3, 4) de telle façon qu'il n'y ait pas de frottement entre le miroir (6) et les plaques de guidage (3, 4).2 / antenna according to claim 1, characterized in that the reflection device is a plane mirror (6) whose reflection plane (7) is perpendicular to the planes of the guide means (3, 4), and whose height ( h) is less than the distance (d) separating the two guide plates (3, 4) so that there is no friction between the mirror (6) and the guide plates (3, 4) . 3/ Antenne selon la revendication 1, caractérisée en ce qu'elle comporte également entre le miroir (6) et le réseau d'émission (8) des moyens de transition (14) évitant toute perte d'énergie et assurant la conservation des phases entre le miroir (6) et le réseau d'émission (8).3 / antenna according to claim 1, characterized in that it also comprises between the mirror (6) and the transmission network (8) transition means (14) preventing any loss of energy and ensuring the conservation of the phases between the mirror (6) and the transmission network (8). 4/ Antenne selon l'une des revendications 1 ou 2, caractérisée en ce que le miroir (6) est articulé selon un axe d'articulation (9) perpendiculaire aux deux plaques de guidage (3, 4).4 / Antenna according to one of claims 1 or 2, characterized in that the mirror (6) is articulated along a hinge axis (9) perpendicular to the two guide plates (3, 4). 5/ Antenne selon la revendication 4, caractérisée en ce que l'axe d'articulation (9) de miroir (6) est situé au bord du faisceau collimaté (11) le plus proche du réseau d'émission (8).5 / antenna according to claim 4, characterized in that the axis of articulation (9) of mirror (6) is located at the edge of the collimated beam (11) closest to the transmission network (8). 6/ Antenne selon la revendication 1, caractérisée en ce que le milieu de guidage (5) est constitué d'un matériau dont la constante diélectrique globale est supérieure à l'unité.6 / antenna according to claim 1, characterized in that the guide medium (5) consists of a material whose overall dielectric constant is greater than unity. 7/ Antenne selon l'une des revendications 1 ou 6, caractérisée en ce que le dispositif de réflexion comporte une lame conductrice (6) orientable dont la dimension (b) transversale et parallèle aux plans des moyens de guidage (3, 4) est au moins égale à la longueur d'onde guidée dans le milieu diélectrique composite.7 / antenna according to one of claims 1 or 6, characterized in that the reflection device comprises a conductive strip (6) orientable whose dimension (b) transverse and parallel to the planes of the guide means (3, 4) is at least equal to the guided wavelength in the composite dielectric medium. 8/ Antenne selon la revendication 7, caractérisée en ce que le milieu de guidage (5) comporte une lame d'air plane (17) parallèle aux moyens de guidage dans lequel est placé la lame conductrice (6), et de dimensions telles qu'elle permet la rotation de la lame conductrice.8 / antenna according to claim 7, characterized in that the guide medium (5) comprises a plane air space (17) parallel to the guide means in which is placed the conductive strip (6), and of dimensions such that 'it allows the rotation of the conductive blade. 9/ Antenne selon la revendication 8, caractérisée en ce que l'espace plan (17) a les mêmes dimensions selon le plan parallèle aux moyens de guidage, que la lame conductrice (6).9 / antenna according to claim 8, characterized in that the planar space (17) has the same dimensions along the plane parallel to the guide means, as the conductive strip (6). 10/ Antenne selon l'une des revendications 7, 8 ou 9, selon laquelle l'épaisseur de la lame conductrice (6) est telle que l'épaisseur du diélectrique située de part et d'autre de la lame conductrice ne permet pas la propagation de l'énergie de part et d'autre de la lame.10 / Antenna according to one of claims 7, 8 or 9, according to which the thickness of the conductive strip (6) is such that the thickness of the dielectric situated on either side of the conductive strip does not allow the propagation of energy on both sides of the blade. 11/ Antenne selon l'une des revendications 1 à 8, caractérisée en ce qu'elle comporte une première et une deuxième plaques de guidage (12 et 13), encadrant la source d'émission (1) et le dispositif collimateur (2) et permettant de guider les faisceaux émis (10 et 11) ; une troisième et une quatrième plaques de guidage (3 et 4), disposées respectivement dans le prolongement des première et deuxième plaques de guidage, encadrant le miroir 6 et guidant le faisceau 11 ; un axe d'articulation reliant lesdites première et troisième plaques (12 et 3) et permettant de replier l'ensemble constitué par les première et deuxième plaques (12 et 13) ainsi que la source (1) et le dispositif collimateur (2), sur la troisième plaque 3.11 / Antenna according to one of claims 1 to 8, characterized in that it comprises first and second guide plates (12 and 13), surrounding the emission source (1) and the collimator device (2) and for guiding the emitted beams (10 and 11); a third and a fourth guide plates (3 and 4), respectively arranged in the extension of the first and second guide plates, framing the mirror 6 and guiding the beam 11; a hinge pin connecting said first and third plates (12 and 3) and making it possible to fold the assembly constituted by the first and second plates (12 and 13) as well as the source (1) and the collimator device (2), on the third plate 3.
EP19850400517 1984-03-23 1985-03-18 Plane antenna with fast mechanical scan Expired - Lifetime EP0161127B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8404552A FR2561824B1 (en) 1984-03-23 1984-03-23 FLAT MECHANICAL FAST ANTENNA
FR8404552 1984-03-23

Publications (2)

Publication Number Publication Date
EP0161127A1 true EP0161127A1 (en) 1985-11-13
EP0161127B1 EP0161127B1 (en) 1990-09-12

Family

ID=9302396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850400517 Expired - Lifetime EP0161127B1 (en) 1984-03-23 1985-03-18 Plane antenna with fast mechanical scan

Country Status (3)

Country Link
EP (1) EP0161127B1 (en)
DE (1) DE3579618D1 (en)
FR (1) FR2561824B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404000B (en) * 2017-07-14 2020-03-31 南京邮电大学 Sugar shovel type fan-shaped wave beam horizontal scanning antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE882430C (en) * 1951-10-02 1953-07-09 Siemens Ag Antenna for very short electric waves
GB745038A (en) * 1953-12-31 1956-02-15 British Thomson Houston Co Ltd Improvements relating to scanning aerials
FR1269316A (en) * 1960-07-01 1961-08-11 Csf Power distribution device between transmission lines
FR1370602A (en) * 1962-04-04 1964-08-28 Marconi Co Ltd Antenna improvements
DE1937583A1 (en) * 1969-07-24 1972-03-30 North American Rockwell Multiple antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE882430C (en) * 1951-10-02 1953-07-09 Siemens Ag Antenna for very short electric waves
GB745038A (en) * 1953-12-31 1956-02-15 British Thomson Houston Co Ltd Improvements relating to scanning aerials
FR1269316A (en) * 1960-07-01 1961-08-11 Csf Power distribution device between transmission lines
FR1370602A (en) * 1962-04-04 1964-08-28 Marconi Co Ltd Antenna improvements
DE1937583A1 (en) * 1969-07-24 1972-03-30 North American Rockwell Multiple antenna

Also Published As

Publication number Publication date
EP0161127B1 (en) 1990-09-12
FR2561824A1 (en) 1985-09-27
DE3579618D1 (en) 1990-10-18
FR2561824B1 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
CA2243603C (en) Radiating structure
EP0012055B1 (en) Microstrip monopulse primary feed and antenna using same
EP0057121B1 (en) High-frequency dual-band feeder and antenna incorporating the same
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
WO2008135677A1 (en) Antenna with resonator having a filtering coating and system including such antenna
EP0147325B1 (en) Antenna with two orthogonal parabolic cylindrical reflectors and process for making it
FR2704358A1 (en) Waveguide polarisation duplexer
EP0091343B1 (en) Inverse cassegrain antenna for a multifunction radar
EP0170154A1 (en) Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites
EP0014605B1 (en) Reverse cassegrain antenna for multipurpose radar
EP0161127B1 (en) Plane antenna with fast mechanical scan
EP1191630A1 (en) High frequency diverging dome shaped lens and antenna incorporating such lens
FR2954858A1 (en) ANTENNA RADIANT A SIGNAL IN A DIRECTION OF THE SPACE DEPENDENT OF THE FREQUENCY OF THIS SIGNAL
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
EP0015804A2 (en) Polarizing device and microwave antenna comprising same
FR2945674A1 (en) Beam misaligning device for beam scanning antenna in airplane, has prisms positioned in angular manner along radiation axis and producing inflexion of beam of antenna with variable amplitude relative to angular positioning between prisms
FR2803692A1 (en) Combined antenna/wire less transmission unit non radiating hybrid line transition having parallel conductor slabs with internal channels and internal dielectric strip tapering wider line size connected.
EP1152483B1 (en) Dual-band microwave radiating element
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
FR2490025A1 (en) Monomode or multimode radar horn - contains radiating elements deposited on thin dielectric substrate located perpendicular to direction of polarisation
FR3131105A1 (en) Improved micro-strip type elementary antenna and array antenna
EP0856908B1 (en) Antenna beamforming device for channel multiplex systems
EP0897201A1 (en) Cylindrical reflector with sliding radiating elements
FR3011394A1 (en) RADAR INTEGRATED WITH SHIP MATURE AND FOCUSING DEVICE USED IN SUCH RADAR
FR3135572A1 (en) LOW PROFILE ANTENNA WITH TWO-DIMENSIONAL ELECTRONIC SCANNING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19860418

17Q First examination report despatched

Effective date: 19880315

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900912

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3579618

Country of ref document: DE

Date of ref document: 19901018

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920220

Year of fee payment: 8

Ref country code: DE

Payment date: 19920220

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930318

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201