EP0856908B1 - Antenna beamforming device for channel multiplex systems - Google Patents

Antenna beamforming device for channel multiplex systems Download PDF

Info

Publication number
EP0856908B1
EP0856908B1 EP98400184A EP98400184A EP0856908B1 EP 0856908 B1 EP0856908 B1 EP 0856908B1 EP 98400184 A EP98400184 A EP 98400184A EP 98400184 A EP98400184 A EP 98400184A EP 0856908 B1 EP0856908 B1 EP 0856908B1
Authority
EP
European Patent Office
Prior art keywords
unit according
network
collector
channel signals
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98400184A
Other languages
German (de)
French (fr)
Other versions
EP0856908A1 (en
Inventor
Daniel Renaud
Régis Lenormand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0856908A1 publication Critical patent/EP0856908A1/en
Application granted granted Critical
Publication of EP0856908B1 publication Critical patent/EP0856908B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/192Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with dual offset reflectors

Definitions

  • the present invention relates generally to a beam forming unit which carries a plurality frequency multiplexed channel signals.
  • the unit multiplex, or combine, spatially in the same beam this plurality of channel signals.
  • this training unit for beam belongs to a repeater output stage of a satellite.
  • the satellite is for example a satellite of broadcast television signals and produce a beam of emission covering an area on the ground.
  • this stage output includes a plurality of amplifiers each intended to amplify a respective channel signal as well than an output "multiplexer".
  • the various channel signals are each amplified by a respective amplifier in order to minimize the distortions resulting from the non-linearity of the amplifiers used.
  • the output "multiplexer”, or OMUX (Output MUltipleXer), provided at the output of amplifiers, is as described in the book “Satellite Communications Systems ", G. Maral and M. Bousquet, Edition WILEY, Second Edition, pages 411 and following.
  • This multiplexer includes filters and a common guide which is intended to combine the channels after their amplification and individual filtering.
  • Filters and guide common are in the form of cavities and the coupling between each filter and the common guide is made through a iris, or cleft.
  • One end of the common guide is short-circuited, the other delivers a combined signal conveying all multiplexed channel signals. This combined signal is issued by an antenna.
  • EP-A-0638956 There is described an antenna active "offset" comprising a network of sources and a radio lens having a first network of sources said collector. This collector receives and receives a beam concentrate reflected by a first reflector, from the beam emitted by said network of elementary sources.
  • a first objective of the invention is to provide a beam forming unit, or combination of channel signals to be transmitted in the same beam, whose power losses are reduced compared to the prior art.
  • Another goal of the invention is to provide a combination unit of channel signals to be transmitted in the same weight beam reduced compared to the aforementioned realization of the prior art.
  • a unit for combining N signals radio frequencies N being an integer, said numbers N channel signals being produced by N wave sources respective respective radiating waves, said radiating waves being focused on collector network means of the unit capable of multiplexing said waves, is characterized according to the invention in that said network means collector are capable of receiving the N channel signals in respective directions defined by lobes of radiation produced by said network means manifold.
  • the collector network means are coupled to transmission network means which transmit the N signals of channel that are combined.
  • a dish arranged in a mounting offset from the transmission network means can be used. This parable reflects, in the form of a beam, the N channel signals which are combined.
  • the unit further comprises focusing means for focusing the N respectively channel signals on the collector network means, respectively in said directions.
  • the focusing means are in the form of substantially reflective elements concaves each associated with a respective one of the signals of channel.
  • these elements reflectors are carried by a portion of arc parabolic.
  • these elements reflectors are carried by a surface portion of paraboloid.
  • a training unit for beam according to the invention is supplied by N sources respective separate 30, 31 and 32, in number N equal to 3 in Figure 1.
  • Each source 30, 31 and 32 is for example composed of a cone, typically small.
  • a horn comprises a guide portion access, or entry, and a radiating section opening gradually increasing.
  • Upstream of each respective N sources 30, 31 and 32 are provided in cascade one power amplifier 10, 11 and 12 and a filter strip 20, 21 and 22.
  • the N 3 channel signals S0, S1 and S2 to be sent in the same beam are centered on respective frequencies f0, f1 and f2.
  • the frequencies f0, f1 and f2 are located in the frequency band 11.5 GHz-12.5 GHz radio frequencies.
  • Each signal S0, S1 and S2 is applied to an input of a respective amplifier 10, 11 and 12 to be amplified at high power.
  • Each amplified signal resulting and transmitted through a guide waveform at an input of the corresponding band filter 20, 21 and 22.
  • Each filter is in the form of a cavity and filters the signal in the frequency band f0, f1 and f2 of the signal S0, S1 and S2 it receives.
  • Filters 20, 21 and 22 have outputs which are respectively coupled to entrances of the horns 30, 31 and 32 through slots.
  • the horns 30, 31 and 32 radiate respective waves R0, R1 and R2.
  • these waves R0, R1 and R2 are directed towards respective focusing means 40, 41 and 42 which are, in the illustrated embodiment, in the form reflective elements, or mirrors, substantially concave.
  • These reflective elements 40, 41 and 42 having a metallic surface, reflect waves R0, R1 and R2 to a collector network 50.
  • the concave shape reflective elements 40, 41 and 42 guarantees a focusing the energy of the different waves R0, R1 and R2 on the collector network 50.
  • the reflective elements 40, 41, 42, 43 and 44 are carried by an imaginary paraboloid surface. This is reflected in the fact that the centers of the different reflective elements 40, 41, 42 (and possibly 43 and 44) coincide with points of the same parabolic arc imaginary C (or an imaginary paraboloid surface) whose the focal length f coincides with the collector network 50.
  • Each wave R0, R1 and R2 is reflected, being focused, towards the collector network 50 according to a particular direction thanks to positioning and appropriate convergence of the reflecting element 40, 41 and 42 which reflects this wave R0, R1 and R2. It is to highlight that waves R0, R1 and R2 could be focused on the collector network 50 through a lens, without reflection.
  • d being the distance between two adjacent sources, ⁇ the radiation wavelength, ⁇ the angle between the normal to S0-SM source plan and direction considered, and m a zero integer, positive or negative.
  • the radiation pattern can include several maximums if the alignment consists of several sources S0-SM. It is the periodic nature of network of sources which brings up these network lobes in the radiation diagram.
  • the collector network 50 is in the form of a network of elements operating in reception.
  • this collector network 50 is consisting of (5 x 5) cones arranged in a matrix.
  • the collector network 50 is mesh rectangular or triangular.
  • the geometric structure "periodic" of the collector network 50 is such that the network has the characteristics of a network of sources, to say that it is capable, on transmission, of generating several maximums, preferably of substantially amplitudes identical, in respective respective directions. These directions correspond to the directions of radiation of waves R0, R1 and R2 after their reflection respectively on the reflective elements 40, 41 and 42.
  • the collector network operates in reception, but taking into account the "reciprocity" of operations of the collector network 50 in transmission and in reception, this results in the fact that on reception, the collector network 50 guarantees mixing, or multiplexing, without high loss between the different radiated waves, or channel signals R0, R1 and R2. It must therefore be remembered that the collector network 50 receives the channel signals R0, R1 and R2 along respective directions defined by lobes theoretical network transmission of these network means collector 50.
  • horns of the collector network 50 the various signals of channel R0, R1 and R2 are channeled without high loss.
  • the portion of access guide for each horn in the network collector 50 is coupled with an access guide portion of a cornet corresponding to a transmission network 51.
  • the channel signals handsets transmitted by the transmission network 51 are reflected by a portion of a dish 6.
  • the transmission network 51 is arranged in an "offset" arrangement relative to the parabola 6 according to an assembly known to those skilled in the art so that the beam of F channel signals reflected by the portion of parabola is not directed towards the constituent elements of unity.
  • N 3 sources 30, 31 and 32
  • the invention can be extended to a higher number of sources.
  • the different radiated waves directed towards the collector network 50 can be worn according to axes of the same plane, or the different radiated waves directed to the collector network 50 can be carried by axes belonging to a volume delimited by a cone. This last point results from the fact that for a network of sources of the non-monodimensional type as presented in Figure 2 but two-dimensional, the results obtained with regard to the lobes of network are reproduced in the two dimensions.
  • each source to horn such as 30, for a given focal task spreading W0 on the collector network 50, are going to be define the relationship between the distances d0 'and d0 (d0' being the source distance 30-reflecting element 40 and d0 the distance between the reflecting element 40 and the collector network 50), and the convergence of the associated radiating element, here 40.
  • the focal spot on the collector network 50 must have a substantially flat equiphase surface as shown in Figure 5. It is shown that the operation of the unit can be approximated completely appropriate by a wave model of the Gaussian optical type.
  • Each source, here 30, is in the form of a cornet which is defined by spreading the field W1 over the opening cornet and a length of cornet L.
  • the Gaussian wave at the opening of the horn is characterized by the couple (W1, L).
  • W (d0), R1 (d0) the couple (W (d0), R1 (d0))
  • the collecting network 50 comprises 5 rows of 5 horns.
  • the (5x5) cones are arranged in a matrix and the section of the flaring end of each horn is a side square of length equal to 26.2 mm.
  • the reflective elements 40, 41, 42, 43 and 44 are carried by an imaginary paraboloid surface whose focal length f coincides with the collector network 50.
  • the transmission network 51 comprises 5 ⁇ 5 horns, each supplied by a respective corresponding horn of the collector network 50.
  • the radiation diagram is modeled by a cos ⁇ ( ⁇ ) diagram.
  • the two matrices associated with the sources illuminating the mirrors 43 and 44 are identical due to the layout symmetrical of these two sources with respect to the network collector 50.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention concerne de manière générale une unité de formation d'un faisceau qui véhicule une pluralité de signaux de canal multiplexés en fréquence. L'unité multiplexe, ou combine, spatialement dans un même faisceau cette pluralité de signaux de canal.The present invention relates generally to a beam forming unit which carries a plurality frequency multiplexed channel signals. The unit multiplex, or combine, spatially in the same beam this plurality of channel signals.

Selon une réalisation, cette unité de formation de faisceau appartient à un étage de sortie d'un répéteur d'un satellite. Le satellite est par exemple un satellite de diffusion de signaux de télévision et produit un faisceau d'émission couvrant une zone au sol.According to one embodiment, this training unit for beam belongs to a repeater output stage of a satellite. The satellite is for example a satellite of broadcast television signals and produce a beam of emission covering an area on the ground.

Typiquement, selon la technique antérieure, cet étage de sortie comprend une pluralité d'amplificateurs chacun destiné à amplifier un signal de canal respectif, ainsi qu'un "multiplexeur" de sortie. Les divers signaux de canal sont amplifiés chacun par un amplificateur respectif afin de minimiser les distorsions résultant de la non-linéarité des amplificateurs utilisés. Le "multiplexeur" de sortie, ou OMUX (Output MUltipleXer), prévu en sortie des amplificateurs, est tel que décrit dans l'ouvrage "Satellite Communications Systems", G. Maral et M. Bousquet, Edition WILEY, Seconde Edition, pages 411 et suivantes. Ce multiplexeur comprend des filtres et un guide commun qui est destiné à combiner les canaux après leur amplification et filtrage individuels.Typically, according to the prior art, this stage output includes a plurality of amplifiers each intended to amplify a respective channel signal as well than an output "multiplexer". The various channel signals are each amplified by a respective amplifier in order to minimize the distortions resulting from the non-linearity of the amplifiers used. The output "multiplexer", or OMUX (Output MUltipleXer), provided at the output of amplifiers, is as described in the book "Satellite Communications Systems ", G. Maral and M. Bousquet, Edition WILEY, Second Edition, pages 411 and following. This multiplexer includes filters and a common guide which is intended to combine the channels after their amplification and individual filtering.

Pour réaliser un couplage à pertes réduites entre les filtres et le guide commun, on prévoit généralement de monter directement les filtres sur le guide commun sans utiliser de circulateurs qui ont l'inconvénient d'induire des pertes de puissance élevées. Les filtres et le guide commun sont sous la forme de cavités et le couplage entre chaque filtre et le guide commun est réalisé à travers un iris, ou fente. Une extrémité du guide commun est court-circuitée, l'autre délivre un signal combiné véhiculant tous les signaux de canal multiplexés. Ce signal combiné est émis par une antenne.To achieve reduced loss coupling between the filters and the common guide, we usually plan to mount the filters directly on the common guide without use circulators which have the disadvantage of inducing high power losses. Filters and guide common are in the form of cavities and the coupling between each filter and the common guide is made through a iris, or cleft. One end of the common guide is short-circuited, the other delivers a combined signal conveying all multiplexed channel signals. This combined signal is issued by an antenna.

Les pertes induites par une telle unité de formation de faisceau selon la technique antérieure dans la portion comprise entre les sorties des amplificateurs et l'antenne restent relativement élevées, typiquement voisines de 2dB pour des fréquences élevées, par exemple en bande Ka. En outre, un tel OMUX possède un poids relativement élevé.The losses induced by such a training unit prior art beam in the portion between the outputs of the amplifiers and the antenna remain relatively high, typically close to 2dB for high frequencies, for example in Ka band. In in addition, such an OMUX has a relatively high weight.

L'état de la technique le plus proche est représenté par le document. EP-A-0638956. Il y est décrit une antenne active "offset" comportant un réseau de sources et une lentille radioélectrique ayant un premier réseau de sources dit collecteur. Ce collecteur reçoit et capte un faisceau concentré réfléchi par un premier réflecteur, à partir du faisceau émis par ledit réseau de sources élémentaires.The closest state of the art is shown by the document. EP-A-0638956. There is described an antenna active "offset" comprising a network of sources and a radio lens having a first network of sources said collector. This collector receives and receives a beam concentrate reflected by a first reflector, from the beam emitted by said network of elementary sources.

Cependant, une telle antenne ne garantit pas de capter au niveau du collecteur les différentes ondes rayonnées de façon optimale.However, such an antenna does not guarantee to receive at the collector the different radiated waves of optimally.

Ainsi, un premier objectif de l'invention est de fournir une unité de formation de faisceau, ou unité de combinaison de signaux de canal à émettre dans un même faisceau, dont les pertes de puissance sont réduites comparativement à la technique antérieure. Un autre objectif de l'invention est de fournir une unité de combinaison de signaux de canal à émettre dans un même faisceau de poids réduit comparativement à la réalisation précitée de la technique antérieure.Thus, a first objective of the invention is to provide a beam forming unit, or combination of channel signals to be transmitted in the same beam, whose power losses are reduced compared to the prior art. Another goal of the invention is to provide a combination unit of channel signals to be transmitted in the same weight beam reduced compared to the aforementioned realization of the prior art.

A cette fin, une unité pour combiner N signaux radioélectriques de canal, N étant un nombre entier, lesdits N signaux de canal étant produits par N sources d'ondes rayonnantes respectives séparées, lesdites ondes rayonnantes étant focalisées sur des moyens de réseau collecteur de l'unité aptes à multiplexer lesdites ondes, est caractérisée selon l'invention en ce que lesdits moyens de réseau collecteur sont aptes à recevoir les N signaux de canal selon des directions respectives définies par des lobes de rayonnement produits par lesdits moyens de réseau collecteur.To this end, a unit for combining N signals radio frequencies, N being an integer, said numbers N channel signals being produced by N wave sources respective respective radiating waves, said radiating waves being focused on collector network means of the unit capable of multiplexing said waves, is characterized according to the invention in that said network means collector are capable of receiving the N channel signals in respective directions defined by lobes of radiation produced by said network means manifold.

Pour émettre les signaux ainsi combinés, il peut être prévu que les moyens de réseau collecteur sont couplés à des moyens de réseau d'émission qui émettent les N signaux de canal qui sont combinés.To transmit the signals thus combined, it can be provided that the collector network means are coupled to transmission network means which transmit the N signals of channel that are combined.

En outre, une parabole disposée selon un montage offset par rapport aux moyens de réseau d'émission peut être utilisée. Cette parabole réfléchit, sous la forme d'un faisceau, les N signaux de canal qui sont combinés.In addition, a dish arranged in a mounting offset from the transmission network means can be used. This parable reflects, in the form of a beam, the N channel signals which are combined.

Avantageusement, l'unité comprend, en outre, des moyens de focalisation pour focaliser respectivement les N signaux de canal sur les moyens de réseau collecteur, respectivement selon lesdites directions.Advantageously, the unit further comprises focusing means for focusing the N respectively channel signals on the collector network means, respectively in said directions.

Selon une réalisation, les moyens de focalisation sont sous la forme d'éléments réfléchissants sensiblement concaves chacun associé à l'un respectif des signaux de canal.According to one embodiment, the focusing means are in the form of substantially reflective elements concaves each associated with a respective one of the signals of channel.

Selon une première variante, ces éléments réfléchissants sont portés par une portion d'arc parabolique.According to a first variant, these elements reflectors are carried by a portion of arc parabolic.

Selon une seconde variante, ces éléments réfléchissants sont portés par une portion de surface de paraboloïde.According to a second variant, these elements reflectors are carried by a surface portion of paraboloid.

D'autres caractéristiques et avantages de la présente invention apparaítront plus clairement à la lecture de la description suivante, en référence aux dessins annexés correspondants, dans lesquels:

  • la figure 1 est un bloc-diagramme d'une unité selon l'invention de combinaison de signaux de canal à émettre dans un même faisceau;
  • la figure 2 est une représentation d'un réseau de sources pour expliquer l'invention;
  • la figure 3 est une vue de dessus d'éléments réfléchissants formant partie de l'unité selon une variante de l'invention;
  • les figures 4 et 5 montrent respectivement une partie de l'unité selon l'invention et un tube de champ pour expliquer le dimensionnement de l'unité selon l'invention; et
  • la figure 6 montre une pluralité de courbes isoniveaux telles qu'obtenues selon l'invention.
Other characteristics and advantages of the present invention will appear more clearly on reading the following description, with reference to the corresponding appended drawings, in which:
  • FIG. 1 is a block diagram of a unit according to the invention for combining channel signals to be transmitted in the same beam;
  • Figure 2 is a representation of a network of sources to explain the invention;
  • Figure 3 is a top view of reflective elements forming part of the unit according to a variant of the invention;
  • Figures 4 and 5 respectively show part of the unit according to the invention and a field tube to explain the dimensioning of the unit according to the invention; and
  • Figure 6 shows a plurality of isonevel curves as obtained according to the invention.

En référence à la figure 1, une unité de formation de faisceau selon l'invention est alimentée par N sources respectives séparées 30, 31 et 32, en nombre N égal à 3 dans la figure 1. Chaque source 30, 31 et 32 est par exemple composée d'un cornet, typiquement de petite taille. De manière connue, un cornet comprend une portion de guide d'accès, ou d'entrée, et une ouverture rayonnante à section progressivement croissante. En amont de chacune respective des N sources 30, 31 et 32, sont prévus en cascade un amplificateur de puissance 10, 11 et 12 et un filtre de bande 20, 21 et 22.Referring to Figure 1, a training unit for beam according to the invention is supplied by N sources respective separate 30, 31 and 32, in number N equal to 3 in Figure 1. Each source 30, 31 and 32 is for example composed of a cone, typically small. Of in known manner, a horn comprises a guide portion access, or entry, and a radiating section opening gradually increasing. Upstream of each respective N sources 30, 31 and 32 are provided in cascade one power amplifier 10, 11 and 12 and a filter strip 20, 21 and 22.

Les N=3 signaux de canal S0, S1 et S2 à émettre dans un même faisceau sont centrés sur des fréquences respectives f0, f1 et f2. Par exemple, les fréquences f0, f1 et f2 distinctes sont situées dans la bande des fréquences radioélectriques 11,5 GHz-12,5 GHz. Chaque signal S0, S1 et S2 est appliqué à une entrée d'un amplificateur respectif 10, 11 et 12 pour être amplifié à haute puissance. Chaque signal amplifié résultant et transmis à travers un guide d'onde à une entrée du filtre de bande correspondant 20, 21 et 22. Chaque filtre est sous la forme d'une cavité et filtre le signal dans la bande de fréquence f0, f1 et f2 du signal S0, S1 et S2 qu'il reçoit. Les filtres 20, 21 et 22 ont des sorties qui sont couplées respectivement à des entrées des cornets 30, 31 et 32 à travers des fentes. Les cornets 30, 31 et 32 rayonnent des ondes respectives R0, R1 et R2.The N = 3 channel signals S0, S1 and S2 to be sent in the same beam are centered on respective frequencies f0, f1 and f2. For example, the frequencies f0, f1 and f2 are located in the frequency band 11.5 GHz-12.5 GHz radio frequencies. Each signal S0, S1 and S2 is applied to an input of a respective amplifier 10, 11 and 12 to be amplified at high power. Each amplified signal resulting and transmitted through a guide waveform at an input of the corresponding band filter 20, 21 and 22. Each filter is in the form of a cavity and filters the signal in the frequency band f0, f1 and f2 of the signal S0, S1 and S2 it receives. Filters 20, 21 and 22 have outputs which are respectively coupled to entrances of the horns 30, 31 and 32 through slots. The horns 30, 31 and 32 radiate respective waves R0, R1 and R2.

Avantageusement, ces ondes R0, R1 et R2 sont dirigées vers des moyens de focalisation respectifs 40, 41 et 42 qui sont, dans la réalisation illustrée, sous la forme d'éléments réfléchissants, ou miroirs, sensiblement concaves. Ces éléments réfléchissants 40, 41 et 42, présentant une surface métallique, réfléchissent les ondes R0, R1 et R2 vers un réseau collecteur 50. La forme concave des éléments réfléchissants 40, 41 et 42 garantit une focalisation de l'énergie des différentes ondes R0, R1 et R2 sur le réseau collecteur 50.Advantageously, these waves R0, R1 and R2 are directed towards respective focusing means 40, 41 and 42 which are, in the illustrated embodiment, in the form reflective elements, or mirrors, substantially concave. These reflective elements 40, 41 and 42, having a metallic surface, reflect waves R0, R1 and R2 to a collector network 50. The concave shape reflective elements 40, 41 and 42 guarantees a focusing the energy of the different waves R0, R1 and R2 on the collector network 50.

Selon la variante illustrée dans la figure 1, les éléments réfléchissants 40, 41 et 42, en nombre égal à N=3, sont portés par exemple par un arc parabolique imaginaire C dont la focale f coïncide avec le réseau collecteur 50. Selon une autre variante schématisée dans la figure 3, les sources sont en nombre égal à N=5 et disposées en croix. Dans ce cas, les éléments réfléchissants 40, 41, 42, 43 et 44 sont portés par une surface de paraboloïde imaginaire. Cela se traduit par le fait que les centres des différents éléments réfléchissants 40, 41, 42 (et éventuellement 43 et 44) coïncident avec des points d'un même arc parabolique imaginaire C (ou une surface de paraboloïde imaginaire) dont la focale f coïncide avec le réseau collecteur 50.According to the variant illustrated in FIG. 1, the reflective elements 40, 41 and 42, in number equal to N = 3, are carried for example by an imaginary parabolic arc C whose focal length f coincides with the collector network 50. According to another variant shown diagrammatically in FIG. 3, the sources are in number equal to N = 5 and arranged in a cross. In this case, the reflective elements 40, 41, 42, 43 and 44 are carried by an imaginary paraboloid surface. This is reflected in the fact that the centers of the different reflective elements 40, 41, 42 (and possibly 43 and 44) coincide with points of the same parabolic arc imaginary C (or an imaginary paraboloid surface) whose the focal length f coincides with the collector network 50.

Chaque onde R0, R1 et R2 est réfléchie, en étant focalisée, vers le réseau collecteur 50 suivant une direction particulière grâce à un positionnement et une convergence appropriés de l'élément réfléchissant 40, 41 et 42 qui réfléchit cette onde R0, R1 et R2. Il est à noter que les ondes R0, R1 et R2 pourraient être focalisées sur le réseau collecteur 50 à travers une lentille, sans réflexion.Each wave R0, R1 and R2 is reflected, being focused, towards the collector network 50 according to a particular direction thanks to positioning and appropriate convergence of the reflecting element 40, 41 and 42 which reflects this wave R0, R1 and R2. It is to highlight that waves R0, R1 and R2 could be focused on the collector network 50 through a lens, without reflection.

Les directions particulières respectives selon lesquelles les ondes R0, R1 et R2 sont émises selon l'invention, après réflexion, vers le réseau collecteur 50 vont maintenant être explicitées en référence à la figure 2.The respective specific directions according to which waves R0, R1 and R2 are emitted according to the invention, after reflection, towards the collector network 50 will now be explained with reference to FIG. 2.

De manière connue, un réseau de sources monodimensionnel, du type montré dans la figure 2, comprenant (M+1) sources S0, S1, S2, ... et SM alimentées en phase, produit un diagramme de rayonnement dont les maximums sont définis par des angles  tels que : (2.π.d/λ) .sin() = 2.m.π, soit sin() = (m.λ)/d In known manner, a one-dimensional source network, of the type shown in FIG. 2, comprising (M + 1) sources S0, S1, S2, ... and SM supplied in phase, produces a radiation diagram whose maximums are defined by angles  such as: (2.π.d / λ) .sin () = 2.m.π, is sin () = (m.λ) / d

d étant la distance entre deux sources adjacentes, λ la longueur d'onde de rayonnement,  l'angle entre la normale au plan des sources S0-SM et la direction considérée, et m un entier nul, positif ou négatif.d being the distance between two adjacent sources, λ the radiation wavelength,  the angle between the normal to S0-SM source plan and direction considered, and m a zero integer, positive or negative.

La condition pour qu'aucun lobe de réseau, n'apparaisse est donnée par: d < λ. The condition for no network lobe to appear is given by: d <λ.

Inversement, si d > λ, il y a apparition de lobes de réseau, et le diagramme de rayonnement peut inclure plusieurs maximums si l'alignement est constitué de plusieurs sources S0-SM. C'est la nature périodique du réseau de sources qui fait apparaítre ces lobes de réseau dans le diagramme de rayonnement.Conversely, if d> λ, there are appearance of lobes of network, and the radiation pattern can include several maximums if the alignment consists of several sources S0-SM. It is the periodic nature of network of sources which brings up these network lobes in the radiation diagram.

En revenant à la figure 1, le réseau collecteur 50 est sous la forme d'un réseau d'éléments fonctionnant en réception. Par exemple, ce réseau collecteur 50 est constitué de (5 x 5) cornets disposés matriciellement. Typiquement, le réseau collecteur 50 est à maille rectangulaire ou triangulaire. La structure géométrique "périodique" du réseau collecteur 50 est telle que le réseau possède les caractéristiques d'un réseau de sources, c'est à dire qu'il est apte, en émission, à générer plusieurs maximums, de préférence d'amplitudes sensiblement identiques, dans des directions respectives distinctes. Ces directions correspondent aux directions de rayonnement des ondes R0, R1 et R2 après leur réflexion respectivement sur les éléments réfléchissants 40, 41 et 42.Returning to FIG. 1, the collector network 50 is in the form of a network of elements operating in reception. For example, this collector network 50 is consisting of (5 x 5) cones arranged in a matrix. Typically, the collector network 50 is mesh rectangular or triangular. The geometric structure "periodic" of the collector network 50 is such that the network has the characteristics of a network of sources, to say that it is capable, on transmission, of generating several maximums, preferably of substantially amplitudes identical, in respective respective directions. These directions correspond to the directions of radiation of waves R0, R1 and R2 after their reflection respectively on the reflective elements 40, 41 and 42.

Dans notre cas, le réseau collecteur fonctionne en réception, mais compte tenu de la "réciprocité" des fonctionnements du réseau collecteur 50 en émission et en réception, cela se traduit par le fait qu'en réception, le réseau collecteur 50 garantit un mélange, ou multiplexage, sans perte élevée entre les différentes ondes rayonnées, ou signaux de canal R0, R1 et R2. Il faut donc retenir que le réseau collecteur 50 reçoit les signaux de canal R0, R1 et R2 selon des directions respectives définies par des lobes de réseau théoriques en émission de ces moyens de réseau collecteur 50.In our case, the collector network operates in reception, but taking into account the "reciprocity" of operations of the collector network 50 in transmission and in reception, this results in the fact that on reception, the collector network 50 guarantees mixing, or multiplexing, without high loss between the different radiated waves, or channel signals R0, R1 and R2. It must therefore be remembered that the collector network 50 receives the channel signals R0, R1 and R2 along respective directions defined by lobes theoretical network transmission of these network means collector 50.

Dans les portions de guide d'entrée, ou d'accès, des cornets du réseau collecteur 50, les différents signaux de canal R0, R1 et R2 sont canalisés sans perte élevée. La portion de guide d'accés de chaque cornet du réseau collecteur 50 est couplée avec une portion de guide d'accès d'un cornet correspondant d'un réseau d'émission 51. Ce réseau d'émission 51 est par exemple constitué de (5 x 5) cornets disposés matriciellement. Il produit les N=3 signaux de canal R0, R1 et R2 combinés.In the entry guide or access portions, horns of the collector network 50, the various signals of channel R0, R1 and R2 are channeled without high loss. The portion of access guide for each horn in the network collector 50 is coupled with an access guide portion of a cornet corresponding to a transmission network 51. This transmission network 51 is for example made up of (5 × 5) cones arranged in a matrix. It produces the N = 3 signals R0, R1 and R2 channels combined.

Selon la réalisation illustrée, les signaux de canal combinés émis par le réseau d'émission 51 sont réfléchis par une portion de parabole 6. Le réseau d'émission 51 est disposé selon un montage "offset" relativement à la parabole 6 selon un montage connu de l'homme de l'art de sorte que le faisceau de signaux de canal F réfléchi par la portion de parabole ne soit pas dirigé vers les éléments constitutifs de l'unité.According to the illustrated embodiment, the channel signals handsets transmitted by the transmission network 51 are reflected by a portion of a dish 6. The transmission network 51 is arranged in an "offset" arrangement relative to the parabola 6 according to an assembly known to those skilled in the art so that the beam of F channel signals reflected by the portion of parabola is not directed towards the constituent elements of unity.

Bien que dans la partie de la description qui précède, l'on se soit limité à N=3 sources 30, 31 et 32, l'invention peut être étendue à un nombre de sources plus élevé. Pour cela, ou bien les différentes ondes rayonnées dirigées vers le réseau collecteur 50 peuvent être portées suivant des axes d'un même plan, ou bien les différentes ondes rayonnées dirigées vers le réseau collecteur 50 peuvent être portées par des axes appartenant à un volume délimité par un cône. Ce dernier point résulte du fait que pour un réseau de sources du type non pas monodimensionnel tel que présenté dans la figure 2 mais bi-dimensionnel, les résultats obtenus en ce qui concerne les lobes de réseau sont reproduits dans les deux dimensions.Although in the part of the above description, we limited ourselves to N = 3 sources 30, 31 and 32, the invention can be extended to a higher number of sources. For that, or the different radiated waves directed towards the collector network 50 can be worn according to axes of the same plane, or the different radiated waves directed to the collector network 50 can be carried by axes belonging to a volume delimited by a cone. This last point results from the fact that for a network of sources of the non-monodimensional type as presented in Figure 2 but two-dimensional, the results obtained with regard to the lobes of network are reproduced in the two dimensions.

Il est à noter qu'un fonctionnement efficace de l'unité selon l'invention est d'autant mieux garanti que les fréquences f0, f1 et f2 des signaux de canal R0, R1 et R2 sont proches et situées dans une bande de fréquences élevées.It should be noted that efficient operation of the unit according to the invention is all the more guaranteed as the frequencies f0, f1 and f2 of channel signals R0, R1 and R2 are close and located in a frequency band high.

En référence à la figure 4, vont maintenant être précisées les relations de dimensionnement de l'unité selon l'invention. Plus précisément, concernant chaque source à cornet, telle que 30, pour une tâche focale donnée d'étalement W0 sur le réseau collecteur 50, vont être définies la relation entre les distances d0' et d0 (d0' étant la distance source 30-élément réfléchissant 40 et d0 la distance élément réfléchissant 40-réseau collecteur 50), et la convergence de l'élément rayonnant associé, ici 40. La tache focale sur le réseau collecteur 50 doit posséder une surface équiphase sensiblement plane comme cela est montré dans la figure 5. L'on montre que le fonctionnement de l'unité peut être approximé de manière tout à fait appropriée par un modèle d'onde de type optique gaussien.Referring to Figure 4, will now be specified the dimensioning relationships of the unit according to the invention. Specifically, regarding each source to horn, such as 30, for a given focal task spreading W0 on the collector network 50, are going to be define the relationship between the distances d0 'and d0 (d0' being the source distance 30-reflecting element 40 and d0 the distance between the reflecting element 40 and the collector network 50), and the convergence of the associated radiating element, here 40. The focal spot on the collector network 50 must have a substantially flat equiphase surface as shown in Figure 5. It is shown that the operation of the unit can be approximated completely appropriate by a wave model of the Gaussian optical type.

Chaque source, ici 30, est sous la forme d'un cornet qui est défini par un étalement du champ W1 sur l'ouverture du cornet et une longueur de cornet L.Each source, here 30, is in the form of a cornet which is defined by spreading the field W1 over the opening cornet and a length of cornet L.

En référence à la figure 5, pour un tube de champ, le rayon de courbure R et l'étalement W de la distribution de champ varie tout au long du faisceau, et une zone de champ équiphase peut être définie en un point quelconque par le couple (W, R), avec les relations suivantes : R = d(1 + ρ2), avec ρ = (2.R/k.W2), et W2 = (1 + ρ2).W02, ou W0 désigne l'étalement minimum du champ.With reference to FIG. 5, for a field tube, the radius of curvature R and the spread W of the field distribution varies throughout the beam, and an equiphase field zone can be defined at any point by the couple (W, R), with the following relationships: R = d (1 + ρ 2 ), with ρ = (2.R / kW 2 ) and W 2 = (1 + ρ 2 ) .W0 2 , where W0 denotes the minimum spread of the field.

Pour un champ équiphase, donc de rayon de courbure infini, et d'étalement W0 sur le réseau collecteur 50, il peut alors être montré que l'étalement W(d0) sur l'élément réfléchissant est donné par : W(d0) = W0 .1+(2.d0 k.W02 )2 , et que le rayon de courbure R1(d0) de l'onde au voisinage de l'élément réfléchissant 40 en direction du réseau collecteur 50 est donné par R1(d0) = k.(W02/2.d0)2 .[1 + (2.d0/k.W02)2], en prenant comme référence d=0 sur le réseau collecteur 50, et d=d0 sur l'élément réfléchissant 40.For an equiphase field, therefore of infinite radius of curvature, and spreading W0 on the collector network 50, it can then be shown that the spreading W (d0) on the reflecting element is given by: W (d0) = W0. 1+ ( 2. d 0 kW 0 2 ) 2 , and that the radius of curvature R1 (d0) of the wave in the vicinity of the reflecting element 40 in the direction of the collector network 50 is given by R1 (d0) = k. (W0 2 /2.d0) 2 . [1 + (2.d0 / k.W0 2 ) 2 ] taking as reference d = 0 on the collector network 50, and d = d0 on the reflecting element 40.

L'onde gaussienne au niveau de l'ouverture du cornet est caractérisée par le couple (W1, L). En écrivant que cette onde, après propagation sur le trajet de longueur d0' source 30-élément rayonnant 40, doit avoir pour paramètre (W(d0), R1(d0)), d0' peut être exprimée en fonction de d0 : d0'(d0) = [k.W1.((d0) - ψ)]/[2.(1 + ψ2)] avec (d0) = (1+ψ2)( W(d0) W1 )2 -1, et ψ = k.W12/2.L The Gaussian wave at the opening of the horn is characterized by the couple (W1, L). By writing that this wave, after propagation over the path of length d0 'source 30-radiating element 40, must have as parameter (W (d0), R1 (d0)), d0' can be expressed as a function of d0: d0 '(d0) = [k.W1. ( (d0) - ψ)] / [2. (1 + ψ 2 )] with  (d0) = (1 + ψ 2 ) ( W ( d 0) W 1 ) 2 -1 , and ψ = k.W1 2 /2.L

Par ailleurs, la convergence C de l'élément réfléchissant 40 est donnée par : C = 1/R1(d0) + 1/R2(d0') Furthermore, the convergence C of the reflecting element 40 is given by: C = 1 / R1 (d0) + 1 / R2 (d0 ')

R2(d0) étant le rayon de courbure de l'onde au voisinage de l'élément réfléchissant 40 en provenance de la source 30, et étant définie par : R2(d0) = k.(W(d0))2/2.(d0). R2 (d0) being the radius of curvature of the wave in the vicinity of the reflecting element 40 coming from the source 30, and being defined by: R2 (d0) = k. (W (d0)) 2 /2.(d0).

Dans ce qui précède, le signe de chaque rayon de courbure doit respecter la règle selon laquelle ledit signe est positif si l'onde diverge et est négatif si l'onde converge.In the above, the sign of each radius of curvature must respect the rule that said sign is positive if the wave diverges and is negative if the wave converges.

Le fonctionnement de l'unité décrite ci-dessus a été simulée pour la réalisation selon laquelle le réseau collecteur 50 comprend 5 rangées de 5 cornets. Les (5x5) cornets sont disposés matriciellement et la section de l'extrémité d'évasement de chaque cornet est un carré de côté de longueur égale à 26, 2 mm. Les sources 30, 31, 32, etc... sont en nombre égal à N=5 et disposées en croix. Dans ce cas, comme montré dans la figure 3, les éléments réfléchissants 40, 41, 42, 43 et 44 sont portés par une surface de paraboloïde imaginaire dont la focale f coïncide avec le réseau collecteur 50. Le réseau d'émission 51 comprend 5x5 cornets, chacun alimenté par un cornet correspondant respectif du réseau collecteur 50. Pour chaque source, le diagramme de rayonnement est modélisé par un diagramme en cosτ().The operation of the unit described above has been simulated for the realization that the collecting network 50 comprises 5 rows of 5 horns. The (5x5) cones are arranged in a matrix and the section of the flaring end of each horn is a side square of length equal to 26.2 mm. The sources 30, 31, 32, etc. are in number equal to N = 5 and arranged in a cross. In this case, as shown in FIG. 3, the reflective elements 40, 41, 42, 43 and 44 are carried by an imaginary paraboloid surface whose focal length f coincides with the collector network 50. The transmission network 51 comprises 5 × 5 horns, each supplied by a respective corresponding horn of the collector network 50. For each source, the radiation diagram is modeled by a cos τ () diagram.

Ci-après sont données 4 "matrices" de couplage. Chacune d'elles définit, pour une source donnée, les coefficients de couplage de chacun des (5x5) cornets du réseau collecteur 50. Chaque coefficient est donné en amplitude (dB) et en phase (°) sous la forme d'un couple (X(dB); Y(°)). PREMIERE MATRICE ASSOCIEE A LA SOURCE ILLUMINANT LE MIROIR 42(FIG.3). (-28,6;59,5) (-18,9;55,07) (17,7;55) (-18,9;55) (-28,6;59,5) (-21,7;50) (-12,5;44,9) (-9,9;41) (-12,5;44,9) (-21,7;50,4) (-19,6;47,1) (-9,4;49,4) (-6,8;51,5) (-9,4;49,4) (-19,6;47,1) (-22,2;43,6) (-12,2;52) (-9,9;56) (-12,2;52) (-22,2;43,6) (-29,5;35,8) (-19,7;44,1) (-17,6;48,2) (-19,7;44,1) (-29,5;35,8) SECONDE MATRICE ASSOCIEE A LA SOURCE ILLUMINANT LE MIROIR 41 (FIG.3). (-25,2;140,9) (-21,2;141) (-20,8;132,8) (-21,2,141) (-25,2;140,9) (-21,3;131,3) (-12,7;119,7) (-10,2;120,4) (-12,7;119,7) (-21,3;131,3) (-18,5;120,6) (-8,9;126,9) (-6,8;132,1) (-8,9;126,9) (-18,5;120,6) (-21,2;109,5) (-12;123) (-10,1;128,9) (-12;123) (-21,2;109,5) (-31,2;75,2) (-21;97,1) (-19,1;103,9) (-21;97,1) (-31,2;75,2) TROISIEME MATRICE ASSOCIEE A LA SOURCE ILLUMINANT LE MIROIR 40 (FIG.3). (-23,6;100,8) (-19,2;134,9) (-17,7;127,9) (-19,2;134,9) (-23,6;147,8) (-20,8;144,4) (-13,4;137,8) (-11,5;138,2) (-13,4;137,8) (-20,8;144,4) (-18,7;137,1) (-10,4;145) (-8,6;149,3) (-10,4;145) (-18,7;137,1) (-19,1;123,6) (-10,9;142,1) (-9,32;148,8) (-10,9;142,1) (-19,1;123,6) (-22,4;93,7) (-14,6;120,7) (-13,1;129,3) (-14,6;120,7) (-22,4;93,7) TROISIEME MATRICE ASSOCIEE AUX DEUX SOURCES ILLUMINANT RESPECTIVEMENT LES MIROIRS 43 et 44 (FIG.3). (-27,5;100,8) (-22,6;106,9) (-18,6;122,3) (-31;166,3) (-23,7;177) (-17,5;115,6) (-14,4;129,8) (-7,3;120,8) (-13,8;101,4) (-24,3;101,7) (-16,1;140,6) (-15,2;155,1) (-5,6;134,1) (-11,1;115,8) (-15,4;102,8) (-19,2;134,1) (-18,1;143,4) (-8,4;130,6) (-13,5;120,7) (-16,7;112,8) (-27,9;115) (-28,4;120,6) (-17,9;104) (-22,8;94,2) (-24,5;84,3) Below are given 4 coupling "matrices". Each of them defines, for a given source, the coupling coefficients of each of the (5x5) horns of the collector network 50. Each coefficient is given in amplitude (dB) and in phase (°) in the form of a couple ( X (dB); Y (°)). FIRST MATRIX ASSOCIATED WITH THE SOURCE ILLUMINATING THE MIRROR 42 (FIG.3). (28.6; 59.5) (18.9; 55.07) (17.7; 55) (18.9; 55) (28.6; 59.5) (21.7; 50) (12.5; 44.9) (-9.9; 41) (12.5; 44.9) (21.7; 50.4) (19.6; 47.1) (-9.4; 49.4) (6.8; 51.5) (-9.4; 49.4) (19.6; 47.1) (22.2; 43.6) (-12.2; 52) (-9.9; 56) (-12.2; 52) (22.2; 43.6) (29.5; 35.8) (19.7; 44.1) (17.6; 48.2) (19.7; 44.1) (29.5; 35.8) SECOND MATRIX ASSOCIATED WITH THE MIRROR ILLUMINATING SOURCE 41 (FIG.3). (-25.2, 140.9) (-21.2; 141) (-20.8, 132.8) (-21,2,141) (-25.2, 140.9) (-21.3, 131.3) (-12.7, 119.7) (-10.2, 120.4) (-12.7, 119.7) (-21.3, 131.3) (-18.5, 120.6) (8.9; 126.9) (6.8; 132.1) (8.9; 126.9) (-18.5, 120.6) (-21.2, 109.5) (-12; 123) (-10.1, 128.9) (-12; 123) (-21.2, 109.5) (-31.2, 75.2) (-21, 97.1) (-19.1, 103.9) (-21, 97.1) (-31.2, 75.2) THIRD MATRIX ASSOCIATED WITH THE SOURCE ILLUMINATING THE MIRROR 40 (FIG.3). (-23.6, 100.8) (-19.2, 134.9) (-17.7, 127.9) (-19.2, 134.9) (-23.6, 147.8) (-20.8, 144.4) (-13.4, 137.8) (-11.5, 138.2) (-13.4, 137.8) (-20.8, 144.4) (-18.7, 137.1) (10.4; 145) (8.6; 149.3) (10.4; 145) (-18.7, 137.1) (-19.1, 123.6) (-10.9, 142.1) (-9.32, 148.8) (-10.9, 142.1) (-19.1, 123.6) (22.4; 93.7) (-14.6, 120.7) (-13.1, 129.3) (-14.6, 120.7) (22.4; 93.7) THIRD MATRIX ASSOCIATED WITH THE TWO SOURCES ILLUMINATING RESPECTIVELY MIRRORS 43 and 44 (FIG.3). (-27.5, 100.8) (-22.6, 106.9) (-18.6, 122.3) (-31; 166.3) (23.7; 177) (-17.5, 115.6) (-14.4, 129.8) (7.3; 120.8) (-13.8, 101.4) (-24.3, 101.7) (-16.1, 140.6) (-15.2, 155.1) (5.6; 134.1) (-11.1, 115.8) (-15.4, 102.8) (-19.2, 134.1) (-18.1, 143.4) (8.4; 130.6) (-13.5, 120.7) (-16.7, 112.8) (27.9; 115) (-28.4, 120.6) (17.9; 104) (22.8; 94.2) (24.5; 84.3)

Les deux matrices associées aux sources illuminant les miroirs 43 et 44 sont identiques en raison de la disposition symétrique de ces deux sources par rapport au réseau collecteur 50.The two matrices associated with the sources illuminating the mirrors 43 and 44 are identical due to the layout symmetrical of these two sources with respect to the network collector 50.

Ces matrices montrent la bonne constance de la phase pour chacun des cornets du réseau, ce qui garantit le bon fonctionnement de l'unité selon l'invention.
Dans la figure 6, sont montrés les lignes isoniveaux des champs correspondant aux 4 matrices qui montrent que des spots formés par l'unité de l'invention sont sensiblement concentriques.
These matrices show the good constancy of the phase for each of the horns of the network, which guarantees the proper functioning of the unit according to the invention.
In Figure 6, are shown the isoniveaux lines of the fields corresponding to the 4 matrices which show that spots formed by the unit of the invention are substantially concentric.

Claims (9)

  1. Unit for combining N radio channel signals (R0, R1, R2), where N is an integer, said N channel signals (R0, R1, R2) being produced by N respective separate sources of radiating waves (30, 31, 32), said radiating waves being focussed on collector array means of the unit adapted to multiplex said waves, characterized in that said collector array means (50) are adapted to receive said N channel signals (R0, R1, R2) in respective directions defined by radiation lobes produced by said collector array means (50).
  2. A unit according to claim 1 characterized in that said collector array means (50) are coupled to transmit array means (51) that transmit said combined N channel signals (R1, R2, R3).
  3. A unit according to claim 2 characterized in that said collector array means (50) and said transmit array means (51) are in the form of horns, each horn of the collector array (50) being coupled to a respective horn of the transmit array (51) via I/O waveguides.
  4. A unit according to either claim 2 or claim 3 characterized in that it includes parabola means (6) disposed in an offset arrangement relative to said transmit array means (51), said parabola means reflecting said combined N channel signals (R1, R2, R3) in the form of a beam (F).
  5. A unit according to any preceding claim characterized in that said unit includes focusing means (40, 41, 42) for focusing said N channel signals onto said respective collector array means (50) in said respective directions.
  6. A unit according to claim 5 characterized in that said focusing means (40, 41, 42) are in the form of substantially concave reflective members each receiving a respective channel signal.
  7. A unit according to claim 6 characterized in that said reflective members (40, 41, 42) are carried by a parabola arc portion (C).
  8. A unit according to claim 6 characterized in that said reflective members (40, 41, 42, 43, 44) are carried by a paraboloid surface portion.
  9. A satellite including a unit according to any preceding claim.
EP98400184A 1997-02-03 1998-01-29 Antenna beamforming device for channel multiplex systems Expired - Lifetime EP0856908B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9701153A FR2759204B1 (en) 1997-02-03 1997-02-03 MULTIPLEX CHANNEL BEAM TRAINING UNIT
FR9701153 1997-02-03

Publications (2)

Publication Number Publication Date
EP0856908A1 EP0856908A1 (en) 1998-08-05
EP0856908B1 true EP0856908B1 (en) 2004-09-22

Family

ID=9503232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400184A Expired - Lifetime EP0856908B1 (en) 1997-02-03 1998-01-29 Antenna beamforming device for channel multiplex systems

Country Status (6)

Country Link
US (1) US6023248A (en)
EP (1) EP0856908B1 (en)
JP (1) JPH10294703A (en)
CA (1) CA2226334A1 (en)
DE (1) DE69826341T2 (en)
FR (1) FR2759204B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314293B1 (en) 2000-01-27 2001-11-06 Verizon Laboratories Inc. Probabilistic use of wireless reserve channels for admission control
DE102008011350A1 (en) * 2008-02-27 2009-09-03 Loeffler Technology Gmbh Apparatus and method for real-time detection of electromagnetic THz radiation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631503A (en) * 1969-05-02 1971-12-28 Hughes Aircraft Co High-performance distributionally integrated subarray antenna
US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
US4355314A (en) * 1980-11-28 1982-10-19 Bell Telephone Laboratories, Incorporated Wide-field-of-view antenna arrangement
US4343005A (en) * 1980-12-29 1982-08-03 Ford Aerospace & Communications Corporation Microwave antenna system having enhanced band width and reduced cross-polarization
US4479129A (en) * 1981-09-10 1984-10-23 George Skahill Directive antenna system employing a paraboloidal main dish and ellipsoidal subdish
US4415901A (en) * 1981-09-21 1983-11-15 Bell Telephone Laboratories, Incorporated Low power beam switchable antenna arrangement
US4595929A (en) * 1982-04-13 1986-06-17 Communications Satellite Corporation Scheme for aberration correction in scanning or multiple beam confocal antenna system
US4482897A (en) * 1982-06-28 1984-11-13 At&T Bell Laboratories Multibeam segmented reflector antennas
FR2685551B1 (en) * 1991-12-23 1994-01-28 Alcatel Espace ACTIVE OFFSET ANTENNA WITH DOUBLE REFLECTORS.
JP2882183B2 (en) * 1992-04-24 1999-04-12 ケイディディ株式会社 Antenna device
FR2709877B1 (en) * 1993-08-04 1995-10-13 Alcatel Espace Active antenna with electronic scanning in azimuth and elevation, in particular for microwave microwave imagery.

Also Published As

Publication number Publication date
DE69826341T2 (en) 2005-03-17
FR2759204B1 (en) 1999-02-26
EP0856908A1 (en) 1998-08-05
JPH10294703A (en) 1998-11-04
FR2759204A1 (en) 1998-08-07
US6023248A (en) 2000-02-08
CA2226334A1 (en) 1998-08-03
DE69826341D1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP2807702B1 (en) Two dimensional multibeam former, antenna using such and satellite telecommunication system.
CA2002108C (en) Electronic scanning antenna
EP0507688B1 (en) Architecture of a space based payload
FR2628895A1 (en) ELECTRONIC SCAN ANTENNA
EP0147325B1 (en) Antenna with two orthogonal parabolic cylindrical reflectors and process for making it
EP3435480B1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
EP0170154B1 (en) Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites
FR2850793A1 (en) TRANSITION BETWEEN A MICRO-TAPE CIRCUIT AND A WAVEGUIDE AND OUTDOOR TRANSCEIVING UNIT INCORPORATING THE TRANSITION
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP0856908B1 (en) Antenna beamforming device for channel multiplex systems
FR2829297A1 (en) BEAM FORMING NETWORK, SPACE VEHICLE, ASSOCIATED SYSTEM AND BEAM FORMING METHOD
FR2814614A1 (en) DIVERGENT DOME LENS FOR MICROWAVE WAVES AND ANTENNA COMPRISING SUCH A LENS
FR2813995A1 (en) DIRECTIONAL COUPLER, ANTENNA DEVICE AND RADAR SYSTEM
CA2474126C (en) Receiving antenna for multibeam coverage
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
FR3070546A1 (en) RF ROTARY JOINT UTILIZING A COUPLEUR COUPLER ASSEMBLY OF BONE CORNETS
EP4354657A1 (en) Quasi-optical beamformer including two reflectors
EP3220181B1 (en) Hybrid optical system with reduced size for imaging array antenna
FR2802381A1 (en) RADIANT SOURCE FOR TRANSMISSION AND RECEPTION ANTENNA FOR MOUNTING ON BOARD A SATELLITE
FR2590081A1 (en) LINEAR POLARIZED GRID REFLECTING ANTENNA WITH IMPROVED TRANSVERSE POLARIZATION PERFORMANCE
EP0762534A1 (en) Method for enlarging the radiation diagram of an antenna array with elements distributed in a volume
FR3011394A1 (en) RADAR INTEGRATED WITH SHIP MATURE AND FOCUSING DEVICE USED IN SUCH RADAR
FR2861899A1 (en) ANTENNA-SOURCE CONSISTING OF A RADIANT OPENING COMPOTING AN INSERT
FR2652952A1 (en) ELECTRONIC SCAN ANTENNA IN TRANSMISSION.
FR2766625A1 (en) SENSE CIRCULAR POLARIZATION ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

17P Request for examination filed

Effective date: 19990205

AKX Designation fees paid

Free format text: DE GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

17Q First examination report despatched

Effective date: 20020809

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040922

REF Corresponds to:

Ref document number: 69826341

Country of ref document: DE

Date of ref document: 20041028

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050129

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

26N No opposition filed

Effective date: 20050623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050129