EP0158891B1 - Vorabscheider für eine ein Zweiphasengemisch führende Rohrleitung - Google Patents

Vorabscheider für eine ein Zweiphasengemisch führende Rohrleitung Download PDF

Info

Publication number
EP0158891B1
EP0158891B1 EP85103740A EP85103740A EP0158891B1 EP 0158891 B1 EP0158891 B1 EP 0158891B1 EP 85103740 A EP85103740 A EP 85103740A EP 85103740 A EP85103740 A EP 85103740A EP 0158891 B1 EP0158891 B1 EP 0158891B1
Authority
EP
European Patent Office
Prior art keywords
water
separator
steam
pipework
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85103740A
Other languages
English (en)
French (fr)
Other versions
EP0158891A1 (de
Inventor
Helmut Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0158891A1 publication Critical patent/EP0158891A1/de
Application granted granted Critical
Publication of EP0158891B1 publication Critical patent/EP0158891B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements

Definitions

  • the invention relates to a pre-separator according to the preamble of claim 1.
  • water separation using wire mesh mats and baffle plates is characterized in that their separation efficiency depends on the steam flow rate, the droplet size and the absolute amount of moisture treatment.
  • an inner tube which has a cross section that is constant over its entire length, delimits an annular channel with the actual steam tube, in which the transport steam is separated from the water.
  • baffle plates In the front part of the inner tube there are two mutually entangled, oppositely inclined baffle plates, each covering half the flow cross-section and causing the incoming wet steam to rotate, whereby the water is to be centrifuged against the inner wall in order to create an annular gap at the downstream end of the inner tube is limited by this inner tube and an aperture-shaped insert to be peeled off and passed into said ring channel, where water and transport steam separate and are discharged separately from there.
  • This device generates a considerable flow resistance at its upstream end, where the flow cross-section of the inner tube is abruptly reduced, and through the baffle plates. It is also doubtful whether the turbulence from the baffle plates can produce the desired strong and uniform centrifugal effect, which enables a high degree of separation.
  • the invention aims to remedy the disadvantages of the known solutions outlined above.
  • the invention is based on the task of proposing a pre-separator with which good water separation levels can be achieved and at the same time the transport vapor layer serving for the water to be separated out can be separated, with which irregular pipe wall water flows, such as slug flows, plug flows, wave flows etc., can be recorded.
  • the reduction in the moisture content induces a reduction in the erosion / corrosion potential in the connecting lines and a reduction in the heat consumption of the turbo group.
  • the good water separation in the pre-separator reduces the potential of the water surge and water streaks in the downstream water separator elements according to the use of the pre-separator according to the invention, which consists in that it is arranged downstream of the high-pressure part of the turbine and upstream of a further water separator of any design upstream of an intermediate superheater. This reduces water penetration and increases, when viewed across all installed separator elements, the overall efficiency of water separation.
  • the pre-separator 3 according to the invention being integrated into this circuit.
  • the steam emerging from the high-pressure turbine 1 initially flows through the pre-separator 3 located immediately downstream, then via the continuation of the pipeline 31 a further water separator - here, for example, a high-speed separator 4 - in order to then reach the reheater 5 via the line 8.
  • the water separation in addition to the aforementioned pre-separator 3, can consist of a series of downstream water separators of any type. This depends on the desired water trap, which must necessarily be large in order to improve the turbine efficiency and to reduce the blade erosion in the low-pressure turbine 2.
  • the introduction of the pre-separator 3, for example means that the expensive and pressure-loss-prone water separator superheater can be dispensed with.
  • the now optimally dry steam 9 acts on the low-pressure turbine 2.
  • the steam 9 is then considered to be optimally prepared when it expands in the low-pressure turbine 2 to "conventional" final wetting.
  • a water / transport steam / working steam phase separation takes place in the pre-separator 3.
  • the separated water 37 and the separated transport steam 36 are fed to a pressure sink 6.
  • the transport steam 36 separated in the pre-separator 3 can be fed individually to another pressure sink, for example a preheater.
  • the water 7 still separated in the high-speed separator 4 flows off together with water 36.
  • the high-speed separator 4 does not need to be trimmed to the required water separation efficiencies of greater than 95% by applying internal measures. Rather, high separator types and efficiencies can be achieved by connecting a plurality of simple high-speed separators 4 in series with the addition of an upstream pre-separator 3. With this circuit, a residual moisture of low pressure turbine of 1-2% is achieved. Due to the present reduction in pressure losses and residual moisture, 7.5 MWe more electrical energy is generated in a 1000 MWe plant.
  • connection of the water separators to one another does not necessarily have to be parallel.
  • FIG. 2 shows an embodiment of the pre-separator 3 according to the invention.
  • the steam-carrying pipe 31 has a concentric inner pipe, which preferably has the shape of a Laval nozzle 33a.
  • An annular gap opening 32 is present between the pipe 31 and the inlet opening of the inner pipe 33. Further downstream of the annular gap opening 32, the pipeline 31 bulges out into an intermediate space 35 in which a second concentric intermediate pipe 34 is arranged, which on the pipeline side reproduces the fully guided contour of the pipeline 31. This creates a chamber 35b that remains constant in the flow direction between the pipeline 31 and the intermediate pipe 34.
  • the chamber 35b is expanded in the flow direction, for example at a rate of 5%.
  • the inner tube 34 has a bottom closure downstream of the opening 36 and upstream of the other opening 37, with the result that the other chamber 35a is formed, from which the opening 36 designed as a line emerges.
  • the chamber 35b Downstream of the bottom end of the inner tube 34 and upstream of the vapor-tight connection between the pipeline 1 and the inner tube 33, the chamber 35b also has an opening 37 in the form of a line.
  • the pipeline 31 which according to FIG. 1 is the underflow line carrying steam between the high-pressure turbine 1 and the pre-separator 3, the water flows in large part in the vicinity of the pipe wall.
  • This already existing phase separation in the flow is separated in the annular gap opening 32, the dimensions of which are selected such that the flow through the annular gap 32 remains isokinetic.
  • the inner tube 33 is in the form of a Laval nozzle 33a, the speed of the annular gap 32 is reduced downstream Separated water / transport steam mixture This has the consequence that, for example, a wave flow calms down into a stratified flow, so that an internal phase separation of this mixture can easily be carried out in the space 35 through the gap-forming inlet opening of the inner tube 34. While the transport steam is drawn off through the opening 36, the water flows out through the opening 37.
  • FIG. 3 shows a further pre-separator 3.
  • the pipeline 31 is not bulged here.
  • the intermediate space 35 is therefore naturally smaller and downstream of the annular gap opening 32, the internal phase separation between water and transport steam does not occur due to peeling by attaching a further gap-forming inner tube.
  • the inner tube 38 provided here is open at the bottom and it divides the intermediate space 35 only into two chambers 35a, 35b communicating with one another.
  • the inner tube 38 is connected in a vapor-tight manner upstream of the opening 36 to the pipeline 1.
  • this pre-separator has three chambers 35a, 35b, 35c.
  • the inner tube 39 forms the continuation of the pipeline 31 from the beginning of the bulge. This extends up to the outlet of the laval nozzle-shaped section of the inner tube 33 and there it is provided with openings 41 arranged in the circumferential direction. These openings 41 are in turn encased in a further inner tube 40, which fills the function of a baffle.
  • the separated water / transport steam mixture now flows out of the openings 31 via the chamber 35a, it bounces off against the inner wall of the inner tube 40, with the effect that the phase separation is now largely mechanical. While the water can flow out through the opening 37, the transport steam flows out through the opening 36.
  • the pre-separators should preferably be installed vertically.

Description

  • Die Erfindung betrifft einen Vorabscheider gemäss Oberbegriff des Anspruchs 1.
  • Bei Sattdampf-Turbinenanlagen wird der nass aus dem Hochdruckteil der Turbine austretende Dampf vor seinem Wiedereintritt in die Niederdruckturbine getrocknet und anschliessend leicht überhitzt. Dies geschieht in Wasserabscheider-Überhitzern mittels Drahtgeflechtmatten oder Prallplattenwänden, wie dies in Brown Boveri Mitteilungen, Januar 1976, Band 63, S. 66 ff. beschrieben ist.
  • Der Nachteil dieser Schaltung ist, dass die Unterströmleitung zwischen Hochdruckturbine und den Wasserscheider-Elementen der Dampfströmung einem relativ hohen Wassergehalt ausgesetzt ist.
  • Dies erhöht zwangsläufig das Erosions-/ Korrosionspotential und die Druckverluste.
  • Auch können sich Wasserschwalle und lokale hohe Feuchtekonzentrationen bilden, die dann vom Abscheider nun nicht mehr mit deutlichem Abscheidegrad ausgeschieden werden können.
  • Des weiteren ist die Wasserabscheidung mittels Drahtgeflechtmatten und Prallplattenwänden dadurch charakterisiert, dass ihr Abscheidewirkungsgrad von der Dampfströmungsgeschwindigkeit, der Tropfengrösse und der absoluten Höhe der Nässebehandlung abhängt.
  • Es ist bekannt, durch Vor- oder Nachschalten von Strömungswiderständen, gemäss EP-A-0 005 225, oder durch besondere Gestaltung der Strömungswege, gemäss CH-A-483 864, die Abscheiderelemente möglichst gleichmässig mit Dampf zu beaufschlagen.
  • Zwar kann durch diese Massnahme die Nässebeaufschlagung teilweise vergleichmässigt werden, indessen bleiben Wasserschwälle und Wassersträhnen bestehen, und die absolute Grösse der mittleren Nässe kann deshalb nicht verändert werden. In diesem Zusammenhang ist es bekannt, dass bei ca. 10 % Nässe der Druckverlust in den Verbindungsleitungen zwischen Hochdruckturbine und Wasserabscheider ca. 3 mal grösser als bei trockenem Dampf ist.
  • Aus EP-A-0 096 916 ist es des weiteren bekannt, in einem Hochgeschwindigkeits-Wasserabscheider, stromaufwärts der Umlenkschaufeln, einen Wasser-Vorabscheider vorzusehen, der im wesentlichen aus einem in der Wandung des Rohrkniestückes durchgehenden Spalt besteht, der von einer in den Strömungskanal hineinragenden Deckplatte überlappt ist. Zwar wird damit eine Abscheidung des in der Nähe des Rohrwandes strömenden Wassers erzielt, indessen kann die Abschälung der Wandnässkonzentration nur minimal sein, will man bestimmungsgemäss nur Schichtströmungswasser erfassen.
  • Bei einem aus der FR-A-961 953 bekannten Wasserabscheider begrenzt ein Innenrohr, das einen über seine ganze Länge gleichbleibenden Querschnitt aufweist, mit dem eigentlichen Dampfrohr einen Ringkanal, in dem der Transportdampf vom Wasser getrennt wird. Im vorderen Teil des Innenrohres befinden sich zwei zueinander verschränkte, entgegengesetzt geneigte Prallplatten, die jeweils den halben Durchflussquerschnitt überdecken und den einströmenden Nassdampf in Drehung versetzen, wodurch das Wasser an die Innenwandung zentrifugiert werden soll, um am stromabwärtigen Ende des Innenrohres über einen Ringspalt, der von diesem Innenrohr und einem blendenförmigen Einsatz begrenzt ist, abgeschält und in den besagten Ringkanal geleitet zu werden, wo sich Wasser und Transportdampf separieren und von dort getrennt abgeleitet werden. Diese Einrichtung erzeugt an ihrem stromaufwärtigen Ende, wo der Durchflussquerschnitt des Innenrohres abrupt verkleinert wird, sowie durch die Prallplatten einen erheblichen Strömungswiderstand. Es ist auch zweifelhaft, ob die Verwirbelung durch die Prallplatten die gewünschte starke und gleichmässige Zentrifugalwirkung erzeugen kann, die einen hohen Abscheidegrad ermöglicht.
  • Gegenüber den Nachteilen der vorstehend skizzierten, bekannten Lösungen will hier die Erfindung Abhilfe schaffen.
  • Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die aufgabe zugrunde, einen Vorabscheider vorzuschlagen, mit dem gute Wasserabscheidungsgrade erreicht werden und gleichzeitig auch die für das abzuscheidende Wasser dienende Transportdampfschicht separiert werden kann, womit unregelmässige Rohrwandwasserströmungen, wie Schwallströmungen, Pfropfenströmungen, Wellenströmungen etc., erfasst werden können. Darüber hinaus ist es Aufgabe der Erfindung, den Vorabscheider so zu gestalten, dass er nachträglich mit wenig Aufwand auch in bestehende Turbinenanlagen eingebaut werden kann.
  • Damit wird erreicht, dass die dampfseitigen Druckverluste zwischen Hochdruckturbine und Überhitzer durch frühzeitige Reduzierung der Nässe minimiert werden.
  • Die Reduktion des Nässegehaltes induziert eine Verminderung des Erosions-/ Korrosionspotentials in den Verbindungsleitungen undeine Verringerung des Wärmeverbrauchs der Turbogruppe. Durch die gute Wasserabscheidung im Vorabscheider verringert sich das Potential der Wasserschwälle und Wassersträhnen in den nachgeordneten Wasserabscheiderelementen gemäss Verwendung des erfindungsgemässen Vorabscheiders, die darin besteht, dass dieser stromabwärts des Hochdruckteiles der Turbine und stromaufwärts eines weiteren, einem Zwischenüberhitzer vorgeschalteten Wasserabscheiders beliebiger Bauweise angeordnet ist. Dies vermindert den Wasserdurchschlag und erhöht, über alle eingebauten Abscheiderelemente betrachtet, den Gesamtwirkungsgrad der Wasserabscheidung.
  • Es ergiht sich, dass die erfindungsgemässe Lösung nicht nur für neu zu konzipierende, sondern auch für bestehende Anlagen Vorteile bringt, wenn sich bei den letzteren nach Inbetriebnahme erweist, dass dort die Wasserabscheidung ungenügend ist.
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt.
  • Es zeigt:
    • Fig. 1 eine Sattdampf-Turbinenschaltung mit eingebauten Wasserabscheidern,
    • Fig. 2 einen Vorabscheider mit zwei Kammern,
    • Fig. 3 einen Vorabscheider mit zwei Kammern, und
    • Fig. 4 einen weiteren Vorabscheider mit drei Kammern.
  • Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Die Strömungsrichtung der Medien ist mit Pfeilen angedeutet. In den Figuren sind gleiche Elemente mit gleichen Bezugszeichen versehen.
  • Fig. 1 zeigt eine Sattdampf-Turbinenanlage mit Wasserabscheidung, wobei der erfindungsmässe Vorabscheider 3 in diese Schaltung integriert ist. Der aus der Hochdruckturbine 1 austretende Dampf durchströmt vorerst den unmittelbar stromabwärts plazierten Vorabscheider 3, danach über die Forsetzung der Rohrleitung 31 einen weiteren Wasserabscheider - hier beispielsweise einen Hochgeschwindigkeitsabscheider 4 - um anschliessend über die Leitung 8 in den Zwischenüberhitzer 5 zu gelangen. Selbstverständlich kann die Wasserabscheidung, nebst dem erwähnten vorabscheider 3, aus einer Reihe von nachgeschalteten Wasserabscheidern beliebiger Bauart bestehen. Dies hängt vom anggestrebten Wasser-Abscheidegran ab, der zur Verbesserung des Turbinenwirkungsgrades und zur Verringerung der Schauffelerosion in der Niederdruckturbine 2 notwendigerweise gross sein muss. Danebst ist zu bemerken, dass durch die Einführung des Vorabscheiders 3 zum Beispiel auf den Einsatz des teuren und druckverlustträchtigen Wasserabscheider- Überhitzers verzichtet werden kann.
  • Nach Durchströmung des zwischenüberhitzers 5 beaufschlagt der nun optimal trockene Dampf 9 die Niederdruckturbine 2. Dabei gilt der Dampf 9 dann als optimal aufbereitet, wenn er in der Niederdruckturbine 2 auf durchaus "konventionelle" Endnässen expandiert. Im Vorabscheider 3 findet eine Wasser/Transportdampf/Arbeitsdampf-Phasentrennung statt. In diesem Fall werden das abgeschiedene Wasser 37 und der separierte Transportdampf 36 einer Drucksenke 6 zugeführt. Selbstverständlich kann der kann der im Vorabscheider 3 separierte Transportdampf 36 einzeln einer anderen Drucksenke, zum Beispiel einem Vorwärmer, zugeführt werden. Das im Hochgeschwindigkeitsabscheider 4 noch abgeschiedene Wasser 7 fliesst zusammen mit Wasser 36 ab.
  • Anhand der beschriebenen Schaltung braucht der Hochgeschwindigkeitsabscheider 4, durch Anbringung interner Massnahmen, nicht auf die erforderlichen Wasserabscheidungswirkungsgrade von grösser 95 % getrimmt zu werden. Hohe Abscheiderarten und -wirkungsgrade können vielmehr durch Hintereinanderschaltung mehrerer Hochgeschwindigkeitsabscheider 4 einfacher Bauweise unter Hinzufügung eines vorgeschalteten Vorabscheiders 3 erreicht werden. Mit dieser Schaltung wird auch eine Restfeuchte von Niederdruck-Turbine von 1-2 % erreicht. Durch die vorliegende Verringerung der Druckverluste und Restfeuchte wird bei einer 1000 MWe-Anlage 7,5 MWe mehr elektrische Energie erzeugt.
  • Die Schaltung der Wasserabscheider zueinander muss nicht notwendigerweise, eine parallele sein.
  • In Fig. 2 ist eine Ausführungsform des erfindungsgemässen Vorabscheiders 3 dargestellt.
  • Die dampfführende Rohrleitung 31 weist ein konzentrisches Innenrohr auf, das vorzugsweise die Form einer Lavaldüse 33a hat. Zwischen Rohrleitung 31 und Eintrittsöffnung des Innenrohres 33 ist eine Ringspaltöffnung 32 vorhanden. Weiter stromabwärts der Ringspaltöffnung 32 buchtet sich die Rohrleitung 31 zu einem Zwischenraum 35 aus, in dem ein zweit es konzentrisches Zwischenrohr 34 angeordnet ist, das rohrleitungsseitig die voll führte Kontour der Rohrleitung 31 nachvollzieht. Somit entsteht zwischen Rohrleitung 31 und Zwischenrohr 34 eine in Strömungsrichtung gleichbleibende Kammer 35b.
  • Dort wo die Strömungsverhältnisse es erheischen, wird die Kammer 35b in Strömungsrichtung beispielsweise mit einer Rate von 5 % ausgeweitet. Das Innenrohr 34 weist stromabwärts der Öffnung 36 und stromaufwärts der anderen Öffnung 37 einen Bodenabschluss auf, womit die andere Kammer 35a entsteht, aus der die als Leitung ausgebildete Öffnung 36 abgeht. Stromabwärts des Bodenabschlusses des Innenrohres 34 und stromaufwärts des dampfdichten Zusammenschlusses zwischen Rohrleitung 1 und Innenrohr 33 weist die Kammer 35b ebenfalls eine als Leitung ausgebildete Öffnung 37 auf.
  • In der Rohrleitung 31, welche gemäss Fig. 1 die zwischen Hochdruckturbine 1 und Vorabscheider 3 dampfführende Unterströmleitung ist, strömt das Wasser zum grossen Teil in der Nähe der Rohrwand an. Diese bereits vorhandene Phasentrennung in der Strömung wird in der Ringspaltöffnung 32 separiert, wobei deren Dimensionierung so gewählt wird, dass die Strömung durch den Ringspalt 32 isokinetisch bleibt.
  • Dadurch, dass das Innenrohr 33 die Form einer Lavaldüse 33a hat, vermindert sich stromabwärts der Ringspaltöffnung 32 die Geschwindigkeit des separierten Wasser/Transportdampf-Gemisches Dies hat zur Folge, dass beispiels weise eine Wellenströmung sich zu einer Schichtströmung beruhigt, so dass im Zwischenraum 35 durch die spaltbildende Eintrittsöffnung des Innenrohres 34 leicht eine interne Phasentrennung dieses Gemisches vorgenommen werden kann. Während dar Transportdampf durch die Öffnung 36 abgesogen wird, fliesst das Wasser durch die Öffnung 37 ab.
  • Fig. 3 zeigt einen weiteren Vorabscheider 3. Gegenüber dem Vorabscheider aus Fig. 2 ist hier die Rohrleitung 31 nicht ausgebuchtet. Der Zwischenraum 35 ist deshalb naturgemäss kleiner und stromabwärts dar Ringspaltöffnuung 32 geschieht die interne Phasentrennung zwischen Wasser und Transportdampf nicht aufgrund einer Abschälung durch Anbringung eines weiteren spaltbildenden Innenrohres. Das hier vorgesehene Innenrohr 38 ist bodenseitig offen und es teilt den Zwischenraum 35 lediglich in zwei unter sich kommunizierende Kammern 35a, 35b auf. Dampfdicht ist das Innenrohr 38 stromaufwärts der Öffnung 36 mit der Rohrleitung 1 verbunden. Das stromabwärts der Ringspaltöffnung 32 sich entspannende Wasser/Transportdampf Gemisch strömt durch die Kammer 35a hindurch, wobei nach deren Durchlauf die Phasentrennung des Gemisches soweit erstellt ist, dass der Transportdampf nun in Gegenstromrichtung durch die Kammer 35b zur Öffnung 36 hin abströmen kann. Dass Wasser hingegen fliesst durch die Öffnung 37 ab.
  • Wie in Fig. 4 dargestellt ist, weist dieser Vorabscheider drei Kammern 35a, 35b, 35c auf. Das Innenrohr 39 bildet ab Ausbuchtungsanfang die Fortsetzung der Rohrleitung 31. Dieses zieht sich bis gegen den Auslauf der lavaldüsenförmigen Abschnittes des Innenrohres 33 hin und dort ist es mit in Umfangsrichtung angeordneten Öffnungen 41 versehen. Diese Öffnungen 41 sind ihrerseits mit einem weiteren Innenrohr 40 ummantelt, das die Funktion einer Prallwander füllt.
  • Wenn nun das separierte Wasser/Transportdampf-Gemisch über die Kammer 35a aus den Öffnungen 31 hinaus strömt, prallt es gegen die Innenwand des Innenrohres 40 ab, mit dem Effekt, dass die Phasentrennung nunmehr weitgehend mechanisch abläuft. Während das Wasser über die Öffnung 37 abfliessen kann, strömt der Transportdampf über die Öffnung 36 ab.
  • Der nachträgliche Einbau des erfindudngsgemässen Vorabscheiders an bestehenden Anlagen lässt sich einfach bewerkstelligen, indem ein Stück Rohrleitung 31 heraus getrennt wird und an dessen Stelle die gewünschte Vorabscheidervariante eingesetzt wird.
  • Die Vorabscheider sind vorzugsweise vertikal einzubauen.

Claims (3)

1. Vorabscheider für eine ein Zweiphasengemisch führende Rohrleitung, insbesondere zur Abscheidung von Wasser aus dem Arbeitsdampf, welcher von einen Turbinenteil über eine Rohrleitung zu einem anderen Turbinenteil, zu einem Verbraucher oder zu einer Wärmesenke geführt wird, wobei die Rohrleitung (31) mindestens ein querschnittverengendes Innenrohr (33) aufweist, dadurch gekennzeichnet, dass zwischen der zuströmungsseitigen Stirnseite des Innenrohres (33) und der Rohrleitung (31) eine isokinetisch dimensionierte Ringspaltöffnung (32) vorhanden ist, dass stromabwärts der Ringspaltöffnung (32) zwischen dem Innenrohr (33) und der Rohrleitung (31) mindestens ein weiteres Innenrohr (34, 38, 39, 40) den Zwischenraum (35) in mindestens zwei Kammern (35a, 35b, 35c) aufteilt, dass aus mindestens zwei der Kammern (35a, 35b) je eine Öffnung (36, 37) für die Ableitung von Transportdampf bzw. Wasser vorhanden ist, und dass stromabwärts der letzten Öffnung (37) für die Ableitung von Wasser die Rohrleitung (31) gegenüber den genannten Kammern dampfdicht abgeschlossen ist.
2.Vorabscheider nach Anspruch 1, dadurch gekennzeichnet, dass das querschnittverengende Innenrohr (33) die Form einer Lavaldüse (33a) hat.
3. Verwendung des Vorabscheiders (3) nach Anspruch 1 bei einer Sattdampf-Turbinenanlage, wobei der Vorabscheider (3) stromabwärts der Hochdruckturbine (1) und stromaufwärts mindestens eines weiteren, einem Zwischenüberhitzer (5) vorgeschalteten Wasserabscheiders (4) beliebiger Bauweise angeordnet ist.
EP85103740A 1984-04-16 1985-03-28 Vorabscheider für eine ein Zweiphasengemisch führende Rohrleitung Expired EP0158891B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH189984 1984-04-16
CH1899/84 1984-04-16

Publications (2)

Publication Number Publication Date
EP0158891A1 EP0158891A1 (de) 1985-10-23
EP0158891B1 true EP0158891B1 (de) 1988-04-27

Family

ID=4221194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85103740A Expired EP0158891B1 (de) 1984-04-16 1985-03-28 Vorabscheider für eine ein Zweiphasengemisch führende Rohrleitung

Country Status (12)

Country Link
US (1) US4624111A (de)
EP (1) EP0158891B1 (de)
JP (1) JPH0633851B2 (de)
AU (1) AU565373B2 (de)
BR (1) BR8501749A (de)
CA (1) CA1248422A (de)
DE (1) DE3562425D1 (de)
ES (1) ES8700074A1 (de)
FI (1) FI79189C (de)
IN (1) IN163946B (de)
PL (1) PL148777B1 (de)
ZA (1) ZA852745B (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811566A (en) * 1987-08-21 1989-03-14 Westinghouse Electric Corp. Method and apparatus for removing moisture from turbine exhaust lines
US4803841A (en) * 1987-09-30 1989-02-14 Westinghouse Electric Corp. Moisture separator for steam turbine exhaust
ES2143302T3 (es) * 1996-03-15 2000-05-01 Siemens Ag Sistema de separacion de agua.
DE60305707T2 (de) * 2003-10-23 2007-05-31 Nem B.V. Verdampfervorrichtung
US20070014708A1 (en) * 2005-07-15 2007-01-18 Barnett John O Method and apparatus for collecting and redirecting liquid separated from a gaseous stream
WO2008034681A1 (de) * 2006-09-19 2008-03-27 Alstom Technology Ltd Wasserabscheider für dampfturbinenanlage
DE102011006066B4 (de) * 2011-03-24 2016-06-30 Siemens Aktiengesellschaft Wasserseparator und Verfahren zum Abtrennen von Wasser aus einer Nassdampfströmung
SE544371C2 (en) * 2021-06-15 2022-04-26 Valmet Oy Steam separator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR961953A (de) * 1950-05-26
GB393552A (en) * 1932-02-25 1933-06-08 British Thomson Houston Co Ltd Improvements in and relating to elastic fluid turbines
US3603062A (en) * 1968-11-21 1971-09-07 Gen Electric Gas-liquid separator
DE1912805B2 (de) * 1969-03-08 1971-12-02 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Einrichtung zur wasserabscheidung in ueberstroemrohren von dampfturbinen
US3884660A (en) * 1973-12-07 1975-05-20 Perry Equipment Corp Gas-liquid separator
FR2357818A1 (fr) * 1976-07-05 1978-02-03 Electricite De France Perfectionnements aux dispositifs secheurs et surchauffeurs de vapeur
US4355515A (en) * 1980-09-03 1982-10-26 Westinghouse Electric Corp. Moisture removal structure for crossover conduits
JPS6141516Y2 (de) * 1980-12-05 1986-11-26
DE3360835D1 (en) * 1982-06-14 1985-10-24 Bbc Brown Boveri & Cie High-velocity moisture separator
US4527396A (en) * 1983-09-23 1985-07-09 Westinghouse Electric Corp. Moisture separating device

Also Published As

Publication number Publication date
CA1248422A (en) 1989-01-10
BR8501749A (pt) 1985-12-10
US4624111A (en) 1986-11-25
ZA852745B (en) 1985-12-24
EP0158891A1 (de) 1985-10-23
JPS60241599A (ja) 1985-11-30
JPH0633851B2 (ja) 1994-05-02
PL148777B1 (en) 1989-11-30
FI851469L (fi) 1985-10-17
ES542203A0 (es) 1986-09-16
IN163946B (de) 1988-12-10
ES8700074A1 (es) 1986-09-16
FI79189C (fi) 1989-11-10
PL252905A1 (en) 1985-12-17
AU4100485A (en) 1985-10-24
FI851469A0 (fi) 1985-04-12
AU565373B2 (en) 1987-09-10
DE3562425D1 (en) 1988-06-01
FI79189B (fi) 1989-07-31

Similar Documents

Publication Publication Date Title
DE1932322C3 (de) Dampf-Wasser-Trenner
DE1958063C3 (de) Abscheider
DE3019839A1 (de) Vorrichtung zur fremdstoffabtrennung in einem fluessigkeitsstrom
EP0158891B1 (de) Vorabscheider für eine ein Zweiphasengemisch führende Rohrleitung
DE1719485A1 (de) Geraet zum Abscheiden eines fluessigen und/oder dampffoermigen Mediums aus einem Traegergas und dessen Verwendung in Flugzeugen
DE1426836B2 (de) Axial-Dampfturbine
EP1105675B1 (de) Abscheider für eine wasser-dampf-trenneinrichtung
DE2353111C3 (de) Einrichtung zum Abscheiden von Wasser aus Dampf-Wasser-Gemischen
DE2050950C3 (de) Überschallaxialverdichter
DE3107607A1 (de) Filter mit feststehendem siebeinsatz insbesondere fuer industriewasser
DE1576853C2 (de) Vorrichtung zum Abscheiden von Wasser aus Nassdampf und zum anschliessenden UEberhitzen des Dampfes
EP0886743B1 (de) Wasserabscheidesystem
DE2538825A1 (de) Verfahren zur steuerung des durchflusses eines mediums durch ein ventil und ventil zur durchfuehrung des verfahrens
DE1912805A1 (de) Einrichtung zur Wasserabscheidung
AT115531B (de) Einrichtung zum Entfernen von Wasserteilchen aus Dampfturbinen.
DE703165C (de) Roehrendampferzeuger mit Zwangumlauf
DE3216588C1 (de) Einrichtung zur Entwaesserung der UEberhitzerheizflaechen eines Dampferzeugers
DE19800017C2 (de) Verfahren zum Betreiben eines Zwangdurchlaufdampferzeugers
DE548376C (de) Einrichtung zur Entwaesserung von Dampfturbinen im Nassdampfgebiet
EP3048366A1 (de) Abhitzedampferzeuger
DE2229218A1 (de) Zentrifugalabscheider
DE288605C (de)
DE2259081A1 (de) Vorrichtung zum abscheiden von fluessigkeit aus einem fluessigkeitsgasgemisch, insbesondere von wasser aus wasserdampf
DE1426836C (de) Axial Dampfturbine
AT81797B (de) Oberflächenkondensator. Oberflächenkondensator.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860410

17Q First examination report despatched

Effective date: 19861112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3562425

Country of ref document: DE

Date of ref document: 19880601

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85103740.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970224

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020222

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020225

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020305

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020309

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020315

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020322

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BBC BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20021213

BECH Be: change of holder

Free format text: 20020130 *ALSTOM

BECN Be: change of holder's name

Effective date: 20020130

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: *ALSTOM

Effective date: 20030331

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST