EP0152399A1 - Prefabricated lining panel with heat insulation - Google Patents
Prefabricated lining panel with heat insulation Download PDFInfo
- Publication number
- EP0152399A1 EP0152399A1 EP85890032A EP85890032A EP0152399A1 EP 0152399 A1 EP0152399 A1 EP 0152399A1 EP 85890032 A EP85890032 A EP 85890032A EP 85890032 A EP85890032 A EP 85890032A EP 0152399 A1 EP0152399 A1 EP 0152399A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- insulation
- insulation layer
- facade
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 79
- 238000009423 ventilation Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000011491 glass wool Substances 0.000 claims abstract description 6
- 230000007423 decrease Effects 0.000 claims abstract 3
- 239000011490 mineral wool Substances 0.000 claims description 4
- 239000012774 insulation material Substances 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000003365 glass fiber Substances 0.000 description 6
- 230000001627 detrimental effect Effects 0.000 description 4
- 239000004840 adhesive resin Substances 0.000 description 3
- 229920006223 adhesive resin Polymers 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/762—Exterior insulation of exterior walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/07—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
- E04F13/08—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
- E04F13/0862—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements composed of a number of elements which are identical or not, e.g. carried by a common web, support plate or grid
Definitions
- the subject of the present invention is a prefabricated lining panel in accordance with the preamble of claim 1.
- a prefabricated lining panel in accordance with the preamble of claim 1.
- such a panel comprises a board-shaped facade layer to whose outer face the face material of the facade is fitted and to whose inner face the layer of insulating material is connected.
- grooves are formed into the layer of insulating material of such a lining panel so as to ventilate any moisture carried into the insulation.
- soft or rigid insulation materials have been used in the insulation layer provided between the facade layer and the old wall or carrying wall.
- soft insulation materials might be mentioned the mineral-based ones, such as glass wool.
- the most commonly used materials among rigid insulation materials are expanded polystyrenes.
- the insulation layer has consisted of a rigid heat insulation
- the insulation has first been fixed tightly by means of various fastenings onto the old facade or to the carrying structure of the wall.
- the facade layer which has usually been board-shaped, has been attached by means of suitable fastenings so that a ventilation space or ventilation grooves remain between the facade board and the heat insulation, through which space or grooves any moisture that has had access into the insulation is removed, whereby the wall structure remains dry.
- the heat insulation may be ready fixed to the facade board, in which case the installation takes place by pressing the entire insulated facade panel into tight contact with the carrying walls structure, or the heat insulation may be attached separately to the carrying frame, whereupon the lining board is pressed tightly against the insulation layer.
- the ventilation of the insulation space in the wall structure has been arranged by installing a ventilation pipe at the joints between the panels.
- This solution meets a certain level of minimum requirement, but it is, however, not capable of guaranteeing that the insulation layer remains sufficiently dry, not even nearly under all circumstances.
- the insulation layer is not ventilated adequately, but the moisture content is considerable, the heat insulation capacity of the wall structure is also, consequently, essentially lower than if the insulation layer could be made to remain dry.
- the moisture also involves other detrimental factors, such as frost damage and corrosion of the fastenings.
- the object of the present invention is to eliminate the drawbacks related to the above solutions and to provide a heat-insulated lining panel of an entirely novel type.
- the invention is based on the idea that the rigidity of the insulation layer connected to the inside face of the facade layer at each point of the insulation layer is a function of the distance of this point from one . face of the insulation layer.
- the rigidity of the layer at a certain point is called the specific rigidity of the insulation layer.
- the insulation is preferably rigid at the facade layer and soft in the portion to be placed against the old wall or carrying wall.
- the change in the specific rigidity of the insulation layer is preferably continuous and smooth. Thus, it is changed smoothly from soft to rigid when moving from the frame side to the facade side.
- the panel in accordance with the invention is characterized by what is stated in the characterizing part of claim 1.
- the insulation layer of variable specific rigidity preferably consists of several layers of different rigidities, placed one upon the other and joining together.
- Such an insulation is manufactured particularly favourably of one material, e.g. mineral wool, most appropriately glass wool.
- the insulation in accordance with the invention made of glass wool, usually comprises 2 to 4 fibreglass layers produced by means of centrifugal apparatuses and placed one upon the other.
- the differences in the rigidity of the layers are produced by using glass fibres of different strengths and different quantities of binder agents. This is why the layers also differ from each other in respect of density.
- Ventilation grooves are formed into the layer of insulation material for the ventilation of any moisture carried into the insulation.
- the said grooves are placed preferably in the rigid part of the insulation, and particularly advantageously in the joint between the facade board and the insulation layer.
- any tolerances present in the building frame do not cause detrimental air leakage points between the insulation and the frame, because the heat insulation is resilient at the face adjoining the frame.
- the facade lining can be installed directly even if there were relatively large unevennesses on the frame of the building. Since the heat insulation is rigid at the side facing the facade lining board, the face of the insulation may be provided with grooves, or a ventilation gap may be allowed to remain between the insulation and the facade lining board without substantial deterioration of the heat insulation capacity of the insulation layer. By means of the ventilation grooves, the insulation remains dry under all circumstances, no matter how tight the facade lining board is.
- the lining panel in accordance with the invention can be manufactured by combining the insulation layer and the facade lining board with one another right at the prefabrication plant. Being a finished product, it is, at the same time, ideal for easing the installation and construction schedule.
- Such a structure, which is attached to the frame structure by the intermediate of a resilient medium, does not cause forced strains on the frame structure as a result of thermal deformations, nor are, consequently, detrimental distortions produced as a result of changes in the temperature or moisture of the facade.
- Figure 1 is a perspective view of a panel in accordance with the invention
- Figure 2 is a sectional view of the panel.
- the lining panel consists of a facade board 1 of concrete, onto whose outer face the face material 2 of the facade, in this case a thin layer of bricks, has been fixed.
- the insulation layer 3 is attached to the inside face of the facade board 1.
- ventilation grooves 5 have been formed, running in the transverse direction of the panel.
- the insulation layer 3 can be-fixed to the facade board either by glueing, mechanically, or in connection with the manufacture of the facade board by means of the adhesion of the binder agent of the facade board's 1 own.
- the other side of the insulation layer 3 is fixed to the building to be lined in the way shown in Fig. 2.
- the panel can be fixed either to the old wall or, in the case of a new building, to the carrying wall 4.
- the panel is fixed by using a conventional technique, e.g. by means of fastenings.
- the specific rigidity of the insulation used in the panel varies when passing through the layer, preferably so that the rigidity of the insulation is higher at the side facing the facade board 1 than at the side facing the carrying wall 4.
- the mineral-wool heat insulation of variable specific rigidity is manufactured by means of conventional manufacturing processes.
- centrifuging apparatuses for glass fibre on the line usually 3 or 4 pcs.
- the rate of progress of the line can be made adequate even if the quantity of glass fibre (density) or the thickness of the insulation are relatively large.
- the mineral-wool heat insulation in accordance with the present invention is produced so that, for example, the first centrifuging apparatus makes the fibres stronger and, moreover, a larger quantity of adhesive resin is used for joining the fibres together, whereby the insulation becomes rigid.
- the second centrifuging apparatus sprays the next layer onto the first layer with a slightly thinner glass fibre strength and and with a slightly lower resin content, whereby the said layer becomes more resilient than the first layer.
- the third centrifuging apparatus sprays even thinner glass fibre strength and a smaller layer of adhesive resin, and the layer formed is more resilient than the preceding layer.
- the fourth centrifuging apparatus sprays still thinner and more resilient layer.
- the ultimate heat insulation whose specific rigidity varies when passing through the layer, can be produced as layers by centrifuging, so that it has different rigidities and different densities. More precise control is achieved by controlling the air flow and the quantity of the adhesive resin.
- the insulation can be produced by using conventional manufacturing processes and by varying the adjustment values of the manufacturing equipment, and therefore no additional cost is incurred at the manufacturing stage.
- the insulation layer 3 of varying specific rigidity can also be produced in a way differing from the above.
- the insulation can be produced by joining an ordinary rigid insulation layer and an ordinary soft insulation together.
- one half of the insulation, facing the building frame, is resilient and soft, and the portion of the insulation facing the facade is rigid.
- the ratio of the thicknesses of the resilient and the rigid heat insulation layer may, of course, show variation in accordance with the requirements of use at each particular time.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI840498A FI840498A0 (fi) | 1984-02-07 | 1984-02-07 | Vaermeisolerat reveteringselement |
FI840498 | 1984-02-07 | ||
FI841525 | 1984-04-16 | ||
FI841525A FI69336C (fi) | 1984-02-07 | 1984-04-16 | Vaermeisolerad reveteringselement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0152399A1 true EP0152399A1 (en) | 1985-08-21 |
Family
ID=26157558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85890032A Ceased EP0152399A1 (en) | 1984-02-07 | 1985-02-07 | Prefabricated lining panel with heat insulation |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0152399A1 (da) |
DK (1) | DK53385A (da) |
FI (1) | FI69336C (da) |
NO (1) | NO850370L (da) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001069005A1 (en) * | 2000-03-17 | 2001-09-20 | Thermaliner Insulation Systems Ltd. | Panel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1405762A (fr) * | 1963-08-27 | 1965-07-09 | Structure de mur pour bâtiments | |
US3521418A (en) * | 1967-09-25 | 1970-07-21 | Ceramic Tile Walls Inc | Pre-finished decorative rigid panel |
DE3115026A1 (de) * | 1981-04-14 | 1982-10-28 | Kajetan 6246 Glashütten Michalik | Isolierelement |
-
1984
- 1984-04-16 FI FI841525A patent/FI69336C/fi not_active IP Right Cessation
-
1985
- 1985-01-31 NO NO850370A patent/NO850370L/no unknown
- 1985-02-06 DK DK53385A patent/DK53385A/da not_active Application Discontinuation
- 1985-02-07 EP EP85890032A patent/EP0152399A1/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1405762A (fr) * | 1963-08-27 | 1965-07-09 | Structure de mur pour bâtiments | |
US3521418A (en) * | 1967-09-25 | 1970-07-21 | Ceramic Tile Walls Inc | Pre-finished decorative rigid panel |
DE3115026A1 (de) * | 1981-04-14 | 1982-10-28 | Kajetan 6246 Glashütten Michalik | Isolierelement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001069005A1 (en) * | 2000-03-17 | 2001-09-20 | Thermaliner Insulation Systems Ltd. | Panel |
Also Published As
Publication number | Publication date |
---|---|
FI69336C (fi) | 1986-01-10 |
FI841525A (fi) | 1985-08-08 |
FI841525A0 (fi) | 1984-04-16 |
DK53385A (da) | 1985-08-08 |
NO850370L (no) | 1985-08-08 |
DK53385D0 (da) | 1985-02-06 |
FI69336B (fi) | 1985-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6125608A (en) | Composite insulated framing members and envelope extension system for buildings | |
US8192818B2 (en) | Sandwich element | |
US3290845A (en) | Prefabricated insulated panel system | |
US5758464A (en) | Insulation system for metal furred walls | |
EP0715037A1 (en) | Thermally insulating, soundproofing, and shock-absorbing modular panel, and method for manufacturing the panel | |
EP0450731A1 (en) | Panel-type insulation element for roofs or outside walls | |
CA1040380A (en) | Roof-sheeting element with integral lath structure | |
WO2005108707A2 (en) | A translucent roof panel | |
EP0152399A1 (en) | Prefabricated lining panel with heat insulation | |
US20040020148A1 (en) | Panel | |
US3839836A (en) | Glass fiber reinforced gypsum building components | |
RU2270300C2 (ru) | Многослойный строительный элемент | |
KR100436690B1 (ko) | 복합패널 | |
CA2248147C (en) | Composite structural member | |
EP0097194A1 (en) | Panel construction | |
JP3230775B2 (ja) | 複合板 | |
US6479097B1 (en) | Sound lining for ducts | |
AU656935B2 (en) | Building member | |
JPH10131326A (ja) | 壁構造 | |
SU1157190A1 (ru) | Слоиста панель ограждени | |
JP3324618B2 (ja) | 耐火パネル | |
JPS6347242Y2 (da) | ||
SU661083A1 (ru) | Панель ограждени | |
JPH10331280A (ja) | 桁上断熱構造及び建物断熱構造 | |
RO120280B1 (ro) | Panou unitar de spumă poliuretanică termoizolant, hidroizolant şi fonoabsorbant, pentru învelitori de acoperiş şi procedeu de realizare a unei învelitori de acoperiş utilizând acest panou |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19851111 |
|
17Q | First examination report despatched |
Effective date: 19861007 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19870515 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MIKKOLA, ESKO |