EP0150233B1 - Method of determining the break-through of a uv tube and device for carrying out the method - Google Patents

Method of determining the break-through of a uv tube and device for carrying out the method Download PDF

Info

Publication number
EP0150233B1
EP0150233B1 EP19840100825 EP84100825A EP0150233B1 EP 0150233 B1 EP0150233 B1 EP 0150233B1 EP 19840100825 EP19840100825 EP 19840100825 EP 84100825 A EP84100825 A EP 84100825A EP 0150233 B1 EP0150233 B1 EP 0150233B1
Authority
EP
European Patent Office
Prior art keywords
tube
pulses
time
ignition
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840100825
Other languages
German (de)
French (fr)
Other versions
EP0150233A1 (en
Inventor
H.M. Loy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Licht GmbH
Original Assignee
GTE Licht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Licht GmbH filed Critical GTE Licht GmbH
Priority to DE8484100825T priority Critical patent/DE3474606D1/en
Priority to EP19840100825 priority patent/EP0150233B1/en
Publication of EP0150233A1 publication Critical patent/EP0150233A1/en
Application granted granted Critical
Publication of EP0150233B1 publication Critical patent/EP0150233B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions

Definitions

  • the invention relates to a method for determining the ignition of a UV tube for flame monitoring, the anode voltage of which has the form of periodic pulses, and a device for carrying out the method.
  • a method for determining the ignition of a UV tube for flame monitoring the anode voltage of which has the form of periodic pulses
  • a device for carrying out the method is known from DE-A-2 548 568.
  • ignition occurs, i.e. When using pure alternating voltage or one-way or two-way rectified alternating voltage, half-waves are ignited even if the tube is not exposed to UV radiation.
  • the effect of ignition can occur immediately after the tube has been manufactured, but also only in operation after a more or less long period of operation.
  • the disadvantage of the igniting effect is that the existence of a flame, e.g. B. a gas burner, is falsely faked.
  • the error can be recognized by the fact that the absence of output signals from the UV tube when the flame is switched off, e.g. B. is checked when the burner is not in operation.
  • the object of the invention is to provide a method and a device for determining the igniting of a UV tube for flame monitoring, by means of which the effect of the igniting when the flame is burning is recognized purely electrically without mechanics susceptible to malfunction.
  • the UV tube In the first operating mode, the UV tube is not operated in saturation, i.e. the UV radiation from the flame is not large enough to ignite each half-wave, i.e. the impulses scatter stochastically. Ignition takes place in every half-wave.
  • a stochastic pulse train must therefore be distinguished from a gapless pulse train.
  • the second mode of operation takes place in the state of saturation, ie with high UV intensity.
  • the ignition time of the UV tube is the time span from when the ignition voltage is reached until the discharge build-up is practically complete.
  • the ignition time is made up of the ignition spread time and the build-up time.
  • the ignition stray time is the time that passes after the ignition voltage is reached until a UV quant arrives from the radiation source, which is able to emit an electron from the cathode and trigger the discharge.
  • the ignition spread time therefore fluctuates statistically.
  • the subsequent build-up time is on the order of 10- 7 s.
  • the ignition time of a blower consists only of the build-up time, i.e. The statistical ignition spread time is eliminated, since the ignition is not triggered by UV quanta.
  • the anode voltage U a of the UV tube is a regular sequence of pulses and the corresponding output signal of the anode current 1 8 during the UV-irradiation by flame. No signal may appear without UV. Signal without UV means ignition.
  • a shift register 1 with stages A, B, C and D are supplied with the output signals of the UV tube at input 2, while clock pulses are applied to input 3, which are synchronous with the anode voltage.
  • the sequence of impulses from the UV tube is thus inserted serially into the register in a clock-controlled manner.
  • the function of the register is to transform the temporal sequence of the pulses of the UV tube into a simultaneous information of the signal states over a sequence of n bits.
  • a sequence of impulses must be available simultaneously for a longer period of time for evaluation. The recognition sharpness for the statistical distribution increases with the number of impulses. Only four bits are shown in Fig. 2, but a reasonable value is eight bits.
  • the stages of the shift register can be formed from bistable multivibrators or flip-flops.
  • the outputs of the stages of the shift register are connected to an AND gate 4.
  • a signal only appears at output 5 of the AND logic element if the tube has ignited in the n successive clock periods. This can be used as an alarm message.
  • the AND operation is not fulfilled, ie the output signal 5 is zero.
  • an anode current I a of the UV tube excited by the flame flows in the form of a statistical pulse sequence.
  • the anode current caused by the ignition is l a .
  • the UV tube 11 is fed by a rectangular generator 12.
  • the output signals of the UV tube 11 and the clock signals delayed by the delay element 13 are input into the register 14 with the stages A, B, C and D.
  • the outputs of the stages of the shift register 14 are connected to an AND gate 15.
  • the clock pulses U t effective at the register are delayed by the delay time t v compared to the anode voltage U a of the UV tube.
  • the leading edge of the clock pulses inserts the tube signals into the register.
  • a signal is inserted at every cycle. If the AND operation is fulfilled after n cycles, an alarm signal is output at the output of the AND operation element.
  • the ignition time t z fluctuates statistically.
  • the implementation can also be carried out analogously using a microprocessor.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Feststellen des Durchzündens einer UV-Röhre zur Flammenüberwachung, deren Anodenspannung die Form periodischer Impulse aufweist, und eine Vorrichtung zur Durchführung des Verfahrens. Ein solches Verfahren nebst einer Vorrichtung ist aus DE-A-2 548 568 bekannt.The invention relates to a method for determining the ignition of a UV tube for flame monitoring, the anode voltage of which has the form of periodic pulses, and a device for carrying out the method. Such a method together with a device is known from DE-A-2 548 568.

Beim Betrieb von UV-Röhren in Geräten zur Flammenüberwachung tritt ein sogenanntes Durchzünden auf, d.h. bei Verwendung reiner Wechselspannung oder einweg- oder zweiweggleichgerichteter Wechselspannung findet ein Zünden von Halbwellen statt, auch wenn die Röhre einer UV-Bestrahlung nicht ausgesetzt ist.When operating UV tubes in devices for flame monitoring, so-called ignition occurs, i.e. When using pure alternating voltage or one-way or two-way rectified alternating voltage, half-waves are ignited even if the tube is not exposed to UV radiation.

Für das Durchzünden gibt es zwei Ursachen. Die eine besteht darin, daß die Erholungszeit größer als die Aus-Zeit (Zeit der Spannungsunterbrechung) ist. Die andere besteht darin, daß die Betriebsanodenspannung größer als die Zündspannung ohne UV-Bestrahlung ist. Der Effekt des Durchzündens kann bereits unmittelbar nach der Herstellung der Röhre, aber auch erst im Betrieb nach mehr oder weniger langer Betriebsdauer auftreten. Der Nachteil des Effekts des Durchzündens besteht darin, daß die Existenz einer Flamme, z. B. eines Gasbrenners, fälschlicherweise vorgetäuscht wird.There are two causes for ignition. One is that the recovery time is greater than the off time (voltage interruption time). The other is that the operating anode voltage is greater than the ignition voltage without UV radiation. The effect of ignition can occur immediately after the tube has been manufactured, but also only in operation after a more or less long period of operation. The disadvantage of the igniting effect is that the existence of a flame, e.g. B. a gas burner, is falsely faked.

Bei abgeschalteter Flamme kann man den Fehler zwar dadurch erkennen, daß das Nichtvorhandensein von Ausgangssignalen der UV-Röhre bei abgeschalteter Flamme, z. B. bei Betriebspause des Brenners, geprüft wird.When the flame is switched off, the error can be recognized by the fact that the absence of output signals from the UV tube when the flame is switched off, e.g. B. is checked when the burner is not in operation.

Es ist auch bekannt, eine Prüfung dadurch vorzunehmen, daß die UV-Quelle durch eine periodisch mechanisch bewegte Blende abgedeckt wird. Ein Durchzünden macht sich durch Zünden von Halbwellen auch im abgedeckten Zustand bemerkbar.It is also known to carry out a test in that the UV source is covered by a periodically mechanically moving diaphragm. A detonation is noticeable by the detonation of half-waves even in the covered state.

Die Aufgabe der Erfindung besteht darin, ein Verfahren und eine Vorrichtung zum Feststellen des Durchzündens einer UV-Röhre zur Flammenüberwachung zu schaffen, durch die ohne störungsanfällige Mechanik rein elektrisch der Effekt des Durchzündens bei brennender Flamme erkannt wird.The object of the invention is to provide a method and a device for determining the igniting of a UV tube for flame monitoring, by means of which the effect of the igniting when the flame is burning is recognized purely electrically without mechanics susceptible to malfunction.

Gelöst wird diese Aufgabe durch die Merkmale der Ansprüche 1 und 2.This object is achieved by the features of claims 1 and 2.

In der Praxis sind zwei Betriebsarten einer UV-Röhre möglich.In practice, two operating modes of a UV tube are possible.

In der ersten Betriebsart wird die UV-Röhre nicht in Sättigung betrieben, d.h. die UV-Strahlung der Flamme ist nicht genügend groß, um jede Halbwelle zu zünden, d.h. die Impulse streuen stochastisch. Das Durchzünden findet jedoch in jeder Halbwelle statt. Es muß hierbei also eine stochastische Impulsfolge von einer lückenlosen Impulsfolge unterschieden werden.In the first operating mode, the UV tube is not operated in saturation, i.e. the UV radiation from the flame is not large enough to ignite each half-wave, i.e. the impulses scatter stochastically. Ignition takes place in every half-wave. A stochastic pulse train must therefore be distinguished from a gapless pulse train.

Die zweite Betriebsart findet im Sättigungszustand statt, d.h. bei hoher UV-Intensität. Hierbei ist die Zündzeit der UV-Röhre die Zeitspanne vom Erreichen der Zündspannung bis zum praktisch vollzogenen Entladungsaufbau. Die Zündzeit setzt sich zusammen aus der Zündstreuzeit und der Aufbauzeit. Die Zündstreuzeit ist die Zeit, die nach Erreichen der Zündspannung vergeht, bis ein UV-Quant von der Strahlungsquelle eintrifft, das in der Lage ist, ein Elektron aus der Kathode zu emittieren und die Entladung auszulösen. Die Zündstreuzeit schwankt daher statistisch. Die anschließende Aufbauzeit liegt in der Größenordnung von 10-7s.The second mode of operation takes place in the state of saturation, ie with high UV intensity. Here, the ignition time of the UV tube is the time span from when the ignition voltage is reached until the discharge build-up is practically complete. The ignition time is made up of the ignition spread time and the build-up time. The ignition stray time is the time that passes after the ignition voltage is reached until a UV quant arrives from the radiation source, which is able to emit an electron from the cathode and trigger the discharge. The ignition spread time therefore fluctuates statistically. The subsequent build-up time is on the order of 10- 7 s.

Im Gegensatz dazu besteht die Zündzeit eines Durchzünders nur aus der Aufbauzeit, d.h. die statistische Zündstreuzeit entfällt, da die Zündung nicht durch UV-Quanten ausgelöst wird.In contrast to this, the ignition time of a blower consists only of the build-up time, i.e. The statistical ignition spread time is eliminated, since the ignition is not triggered by UV quanta.

Die Erfindung wird beispielhaft anhand der Zeichnung beschrieben, in der sind

  • Fig. 1 eine Darstellung der Impulse zur Erläuterung des Durchzündens in der ersten Betriebsart,
  • Fig. 2 ein Schaltbild einer ersten Ausführungsform der erfindungsgemäßen Anordnung,
  • Fig. 3 eine Darstellung zur Erläuterung des Durchzündens in der zweiten Betriebsart und eine schematische Darstellung des Registerinhalts,
  • Fig. 4 ein Schaltbild einer zweiten Ausführungsform der Erfindung und
  • Fig. 5 eine Darstellung von Impulsfolgen zur Erläuterung der Ausführungsform der Fig. 4.
The invention is described by way of example with reference to the drawing, in which:
  • 1 is a representation of the pulses to explain the ignition in the first mode,
  • 2 shows a circuit diagram of a first embodiment of the arrangement according to the invention,
  • 3 shows a representation to explain the ignition in the second operating mode and a schematic representation of the register content,
  • Fig. 4 is a circuit diagram of a second embodiment of the invention and
  • FIG. 5 shows pulse sequences to explain the embodiment of FIG. 4.

Gemäß Fig. 1 ist die Anodenspannung Ua der UV-Röhre eine regelmäßige Folge von Impulsen und ist das zugehörige Ausgangssignal der Anodenstrom 18 während der UV-Bestrahlung durch Flamme. Ohne UV darf kein Signal erscheinen. Signal ohne UV bedeutet Durchzünden.Referring to FIG. 1, the anode voltage U a of the UV tube is a regular sequence of pulses and the corresponding output signal of the anode current 1 8 during the UV-irradiation by flame. No signal may appear without UV. Signal without UV means ignition.

Gemäß Fig. 2 werden einem Schieberegister 1 mit den Stufen A, B, C und D an dem Eingang 2 die Ausgangssignale der UV-Röhre zugeführt, während an den Eingang 3 Taktimpulse angelegt werden, welche synchron zur Anodenspannung sind. Die Folge der Impulse von der UV-Röhre wird somit fortlaufend taktgesteuert seriell in das Register eingeschoben. Die Funktion des Registers besteht in einer Transformation der zeitlichen Aufeinanderfolge der Impulse der UV-Röhre in eine gleichzeitige Information der Signalzustände über eine Folge von n Bits. Zur Auswertung muß eine Folge von Impulsen über einen längeren Zeitraum gleichzeitig zur Verfügung stehen. Die Erkennungsschärfe für die statistische Verteilung nimmt mit der Zahl der Impulse zu. In Fig. 2 sind nur vier Bits gezeigt, ein vernünftig realisierbarer Wert ist jedoch acht Bits. Die Stufen des Schieberegisters können aus bistabilen Multivibratoren oder Flip-Flops gebildet werden.2, a shift register 1 with stages A, B, C and D are supplied with the output signals of the UV tube at input 2, while clock pulses are applied to input 3, which are synchronous with the anode voltage. The sequence of impulses from the UV tube is thus inserted serially into the register in a clock-controlled manner. The function of the register is to transform the temporal sequence of the pulses of the UV tube into a simultaneous information of the signal states over a sequence of n bits. A sequence of impulses must be available simultaneously for a longer period of time for evaluation. The recognition sharpness for the statistical distribution increases with the number of impulses. Only four bits are shown in Fig. 2, but a reasonable value is eight bits. The stages of the shift register can be formed from bistable multivibrators or flip-flops.

Die Ausgänge der Stufen des Schieberegisters sind mit einem UND-Verknüpfungsglied 4 verbunden. Am Ausgang 5 des UND-Verknüpfungsglieds erscheint nur dann ein Signal, wenn in den n aufeinanderfolgenden Taktperioden die Röhre gezündet hat. Dies kann als Alarmmeldung verwendet werden. Im Falle der statistischen Verteilung der Signalimpulse wird die UND-Verknüpfung nicht erfüllt, d.h. das Ausgangssignal 5 ist Null.The outputs of the stages of the shift register are connected to an AND gate 4. A signal only appears at output 5 of the AND logic element if the tube has ignited in the n successive clock periods. This can can be used as an alarm message. In the case of the statistical distribution of the signal pulses, the AND operation is not fulfilled, ie the output signal 5 is zero.

Gemäß Fig. 3 fließt bei der Anodenspannung Ua ein durch die Flamme angeregter Anodenstrom Ia der UV-Röhre in Form einer statistischen Impulsfolge. Der durch das Durchzünden verursachte Anodenstrom ist la. Daraus folgt eine Belegung X der Registerzellen für die Flammenüberwachung und X' für das Durchzünden und somit ein Ausgangssignal Ub bzw. Ub' mit Meldung des Durchzündens am Punkt D Z.According to FIG. 3, at the anode voltage U a, an anode current I a of the UV tube excited by the flame flows in the form of a statistical pulse sequence. The anode current caused by the ignition is l a . This results in an assignment X of the register cells for the flame monitoring and X 'for the ignition and thus an output signal U b or Ub' with notification of the ignition at the point D Z.

Gemäß Fig. 4 wird die UV-Röhre 11 von einem Rechteckgenerator 12 gespeist. Die Ausgangssignale der UV-Röhre 11 und die von dem Verzögerungsglied 13 verzögerten Taktsignale werden in das Register 14 mit den Stufen A, B, C und D eingegeben. Die Ausgänge der Stufen des Schieberegisters 14 sind mit einem UND-Verknüpfungsglied 15 verbunden.4, the UV tube 11 is fed by a rectangular generator 12. The output signals of the UV tube 11 and the clock signals delayed by the delay element 13 are input into the register 14 with the stages A, B, C and D. The outputs of the stages of the shift register 14 are connected to an AND gate 15.

Gemäß Fig. 5 sind die am Register wirksamen Taktimpulse Ut um die Verzögerungszeit tv gegenüber der Anodenspannung Ua der UV-Röhre verzögert. Die Vorderflanke der Taktimpulse schiebt die Signale der Röhre in das Register ein. Im Falle des Durchzündens (Impulsfolge X) wird bei jedem Takt Signal eingeschoben. Wenn nach n Takten die UND-Verknüpfung erfüllt ist, wird am Ausgang des UND-Verknüpfungsglieds ein Alarmsignal abgegeben. Bei normal arbeitender UV-Röhre (Impulsfolge X) schwankt dagegen die Zündzeit tz statistisch.5, the clock pulses U t effective at the register are delayed by the delay time t v compared to the anode voltage U a of the UV tube. The leading edge of the clock pulses inserts the tube signals into the register. In the event of a blowout (pulse sequence X), a signal is inserted at every cycle. If the AND operation is fulfilled after n cycles, an alarm signal is output at the output of the AND operation element. In contrast, with a normally operating UV tube (pulse sequence X), the ignition time t z fluctuates statistically.

Wählt man tv << tz, dann ist die Wahrscheinlichkeit dafür, daß n mal hintereinander Signal eingeschoben wird (tz > tv), sehr gering und damit ist die Auslösung eines Alarmsignals sehr unwahrscheinlich.If one chooses t v << t z , then the probability that n signal will be inserted n times in succession (t z > t v ) is very low and the triggering of an alarm signal is therefore very unlikely.

An Stelle der beschriebenen LogikSchaltungen (Register, Gatter) kann die Realisierung auch sinngemäß mittels eines Mikroprozessors erfolgen.Instead of the logic circuits described (registers, gates), the implementation can also be carried out analogously using a microprocessor.

Claims (2)

1. Method for ascertaining the arcing-through of a UV-tube (11) for flame control, whereof the anode voltage has the form of periodic pulses, characterised in that for the purpose of distinguishing arcing-through from normal firing, for a certain number (n) of successive pulses, it is checked whether the UV-tube (11) fires within a period of time (tv) calculated from reference times, in which case the ascending flanks of the pulses are chosen as the reference times and the fixed period of time (tv) is chosen to be less than the firing time (tz) to be expected.
2. Apparatus for carrying out the method according to claim 1 with a shift register (1, 14) with n stages (A, B, C, D ...), to which the pulses of the UV-tube (11) are supplied as timing pulses on the one hand and the output signal pulses of the UV-tube (11) are supplied on the other hand and with a subsequently connected AND-gate (4, 15), characterised in that a time-lag member (13) is provided for delaying the timing poises with respect to the signal pulses.
EP19840100825 1984-01-26 1984-01-26 Method of determining the break-through of a uv tube and device for carrying out the method Expired EP0150233B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8484100825T DE3474606D1 (en) 1984-01-26 1984-01-26 Method of determining the break-through of a uv tube and device for carrying out the method
EP19840100825 EP0150233B1 (en) 1984-01-26 1984-01-26 Method of determining the break-through of a uv tube and device for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19840100825 EP0150233B1 (en) 1984-01-26 1984-01-26 Method of determining the break-through of a uv tube and device for carrying out the method

Publications (2)

Publication Number Publication Date
EP0150233A1 EP0150233A1 (en) 1985-08-07
EP0150233B1 true EP0150233B1 (en) 1988-10-12

Family

ID=8191720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840100825 Expired EP0150233B1 (en) 1984-01-26 1984-01-26 Method of determining the break-through of a uv tube and device for carrying out the method

Country Status (2)

Country Link
EP (1) EP0150233B1 (en)
DE (1) DE3474606D1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199656B (en) * 1987-01-07 1990-10-17 Graviner Ltd Detection of electromagnetic radiation
GB2417771B (en) 2004-09-07 2010-02-17 Kidde Ip Holdings Ltd Improvements in and relating to uv gas discharge tubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543260A (en) * 1968-07-24 1970-11-24 Honeywell Inc Self checking interuder and fire detector units and system
GB1515116A (en) * 1974-11-05 1978-06-21 Graviner Ltd Methods and apparatus for optimising the response of transducers
US4455487A (en) * 1981-10-30 1984-06-19 Armtec Industries, Inc. Fire detection system with IR and UV ratio detector

Also Published As

Publication number Publication date
EP0150233A1 (en) 1985-08-07
DE3474606D1 (en) 1988-11-17

Similar Documents

Publication Publication Date Title
DE1038108B (en) Electrical signal transmission system for pulse code modulated signals
EP0184254B1 (en) Television signal field discrimination circuit
DE2023741B2 (en)
CH616015A5 (en)
DE2556864A1 (en) INDEPENDENT MONITORING DEVICE
DE19546805C2 (en) Pulse width modulation circuit
DE19525761C2 (en) Synchronization detection circuit
EP0150233B1 (en) Method of determining the break-through of a uv tube and device for carrying out the method
DE2608741A1 (en) ARRANGEMENT AND PROCEDURE FOR INDICATING A TRANSITION FROM ONE LEVEL TO ANOTHER LEVEL IN A 2-LEVEL LOGIC SIGNAL
DE2548568A1 (en) METHOD AND DEVICE FOR OPTIMIZING THE BEHAVIOR OF A SENSOR
EP0254125B1 (en) Danger signalling system
DE4135158C2 (en) Method for detecting and correcting impulse disturbances in a learnable universal remote control device
DE2749559A1 (en) REMOTE CONTROL DEVICE
DE3305606C2 (en) Circuit arrangement for light barriers, in particular for an optoelectronic sheet control device in printing machines
DE19932692A1 (en) Method for sampling biphase encoded digital signals
DE2816192C2 (en) Fire alarm control panel
DE1287190B (en) Procedure for securing code telegrams against falsification of the start step in telecontrol systems
DE2729108C3 (en) Circuit arrangement for recognizing clock signals and for converting them into digital continuous signals
DE2150638A1 (en) Receiver for data transmission systems
DE2738836C2 (en) Monitoring of digital signals
DE2247598C2 (en) AC current monitoring device
DE2605565B2 (en) CIRCUIT ARRANGEMENT FOR A KEY ENTRY
AT398859B (en) CIRCUIT FOR MONITORING AND OPERATING A NOTIFICATION ORGAN
DE3028582C2 (en) Information transmission device in which an interrogation signal is reflected in a frequency-selective manner
DE10229202B4 (en) Trigger generator circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840221

AK Designated contracting states

Designated state(s): CH DE FR GB LI NL

17Q First examination report despatched

Effective date: 19861212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GTE LICHT GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3474606

Country of ref document: DE

Date of ref document: 19881117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890113

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890119

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890131

Year of fee payment: 9

Ref country code: GB

Payment date: 19890131

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890322

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900131

Ref country code: CH

Effective date: 19900131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901002

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST