EP0150068A2 - Procédé et dispositif de contrôle de différents paramètres de fonctionnement pour pompes et compresseurs - Google Patents

Procédé et dispositif de contrôle de différents paramètres de fonctionnement pour pompes et compresseurs Download PDF

Info

Publication number
EP0150068A2
EP0150068A2 EP85100565A EP85100565A EP0150068A2 EP 0150068 A2 EP0150068 A2 EP 0150068A2 EP 85100565 A EP85100565 A EP 85100565A EP 85100565 A EP85100565 A EP 85100565A EP 0150068 A2 EP0150068 A2 EP 0150068A2
Authority
EP
European Patent Office
Prior art keywords
speed
control
flow rate
pump
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85100565A
Other languages
German (de)
English (en)
Other versions
EP0150068A3 (fr
Inventor
Bruno Auchter
Klaus Jürgen Voss
Peter Dr. Sokolowsky
Klaus Schneider
Roger Duchmann
Michael Peterseim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinhuette Vorm Ludwig Beck & Co GmbH
Original Assignee
Rheinhuette Vorm Ludwig Beck & Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinhuette Vorm Ludwig Beck & Co GmbH filed Critical Rheinhuette Vorm Ludwig Beck & Co GmbH
Publication of EP0150068A2 publication Critical patent/EP0150068A2/fr
Publication of EP0150068A3 publication Critical patent/EP0150068A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Definitions

  • the invention relates to a method and a device for controlling various operating parameters, in particular the delivery head H, the delivery flow Q, the power requirement P and the speed n, in pumps and compressors, preferably centrifugal pumps and fans.
  • Centrifugal pumps have the task of delivering a certain liquid flow per unit of time to a higher pressure level.
  • the electrical energy supplied to the pump motor is converted into mechanical energy and transferred to the pumped liquid. Due to the centrifugal force of a rotating impeller, there is a promotion and increase in pressure.
  • the characteristic operating parameters of a pump are the delivery flow Q, the delivery head H, the power requirement P and the speed n.
  • the delivery flow Q represents the amount of liquid delivered in the time unit.
  • the unit of the delivery flow is m / h.
  • the delivery head H characterizes the increase in the energy content as it passes through the pump. It is given in meters and is independent of the density.
  • the power requirement P corresponds to the power consumed by the pump on the coupling in KW.
  • the behavior of the centrifugal pumps in operation can be determined from their characteristics.
  • the relationship between flow rate and delivery head at constant speed is shown in the Q-H curve.
  • the Q-P characteristic is also important for assessing the operating state.
  • the operating point of a built-in centrifugal pump in a system can be determined by measuring the flow rate.
  • the flow rate is measured directly with a measuring device installed in the line. It can also be determined by the level decrease in the suction tank or by the increase in the pressure tank per unit of time.
  • the operating point of a centrifugal pump can also be determined by pressure measurement. The difference in pressure between the outlet and inlet cross sections of the pump is measured. The delivery head is then obtained by forming the quotient between the pressure difference and the density of the delivery medium and a correction calculation.
  • the Possibility to determine the operating point of a centrifugal pump by electrical measurement the motor power output being calculated from a current and voltage measurement, taking into account the power factors of the motor.
  • centrifugal pumps should, if possible, be operated in the area of the determined operating point depending on the desired operating mode.
  • the pumps are set to a constant flow or head, the flow or head being determined by sensors in the medium.
  • the flow or head being determined by sensors in the medium.
  • sensors in the medium.
  • the object of the present invention is to avoid the disadvantages according to the known state of the art and to present a method and a device with which, in particular, pumps and fans, depending on the construction and use, can be set in a simple manner with regard to their various operating parameters, or changed individual operating parameters can be.
  • the regulation is also intended to enable the use of microprocessors and frequency converters.
  • the object is achieved in that the control according to the characteristics of Operating parameters are carried out in accordance with the desired operating mode, the measurement of individual operating parameters for calculating the manipulated variable taking place outside the conveyed medium.
  • the speed n and the power requirement P are used as electrical measured variables for calculating the manipulated variable.
  • the values mentioned can be measured in a particularly simple manner.
  • Another advantageous embodiment of the invention provides that the delivery flow Q and the delivery head H are used as electrical measured variables for describing the characteristic curves.
  • Another embodiment of the method according to the invention provides that two three-dimensional maps are set up, namely the head H as a function of the flow rate Q and the speed n, and the power requirement P as a function of the flow rate Q and the speed n.
  • the invention can be developed in that two three-dimensional maps are set up, namely the head H as a function of the power requirement P and the speed h, and the flow rate Q as a function of the power requirement P and the speed n.
  • the characteristic diagrams of the power requirement P and the delivery head H are recorded by means of a measuring point grid.
  • the characteristic diagrams are set up once and are permanently programmed in a pump-specific manner in a computer.
  • control is used to maintain a maximum flow rate.
  • control is used to maintain a constant flow.
  • control is used to keep a filling level constant.
  • control is used to achieve maximum efficiency when specifying a permissible range.
  • the method is used with great advantage to keep the delivery head constant.
  • a device for carrying out the method for controlling various operating parameters, in particular the delivery head, the flow rate, the power requirement and the speed, for pumps and compressors, preferably centrifugal pumps and fans has a computer, a numeric keypad, function keys and a display unit, expediently as Function keys an enter key, a query key, a delete key, a flow key, a delivery key, a speed key and a power key are provided, the numeric keyboard being designed as a keypad and the display consisting of several segments.
  • Program cards are advantageously used as plug-in modules in the computer, and the keyboard is designed as a membrane keyboard.
  • Such a design of the control device is particularly suitable for use under harsh operating conditions. Parts of the computer that are susceptible to repair can be replaced or changed easily and inexpensively.
  • the control device shown in FIG. 1 has a microcomputer 1 which carries out control functions and can be operated. Communication with the computer takes place via an operating and display unit 2, which consists in detail of a numeric keypad, a display, function keys and indicator lights.
  • the operating and display unit 2 is connected to the computer 1 via a peripheral interface adapter 3.
  • the computing and control process can be started, changed or stopped via the operating unit 2.
  • the pump 4 which is driven by a motor 5, is operating, the power P and the speed n are measured continuously, and these values are present either as voltage signals or as current signals and can be influenced by the actuator 6.
  • the measuring signals reach an analog-digital converter 10.
  • the measuring point switch 9 is controlled by the microcomputer 1 via the peripheral interface adapter 11 and a control line 12 so that it switches through the desired measuring line.
  • the analog measurement signal 13 is converted into a digital variable 14 and reaches the microcomputer 1 via the peripheral interface adapter 11 in order to be processed there.
  • the computer 1 carries out the computing and control process (according to FIGS. 2 and 3).
  • the digital result value 15 reaches a digital-to-analog converter 17 via a peripheral interface adapter 16.
  • the D / A converter 17 converts the digital variable 18 into an analog signal 19, for example a voltage signal between 0-10 volts.
  • the output signal 19 is now given to the actuator 6.
  • This actuator 6 is a drive converter and adjusts the speed of the pump motor.
  • the drive converter 6 also outputs the current measured values for n and P as voltage signals 7, 8.
  • the control process can also be carried out via current signals. With the measurement of these values, the computing and control process begins anew.
  • FIG. 2 describes the flow chart of the control process, which begins with a setpoint specification 31, with either the speed n, the pump power P, the flow rate Q or the delivery head H being specified.
  • actual values for the speed and the pump power are now measured in a first step 32.
  • stage 33 the actual values for the flow rate Q or the delivery head H are calculated from the actual values for the speed n and the pump power P via area functions.
  • the control difference is formed in a 4th step 34.
  • Step 35 the manipulated variable is calculated using a PI control algorithm.
  • the manipulated variable is formed and passed on to the actuator, the pump power P, the flow rate Q, and the delivery head H again being converted into speed n via surface functions.
  • the yes-no query 37 either results in new actual values of n and P being measured at stage 32, or leads to the question about the end being repeated after the sampling time.
  • Figure 3 shows a model of the arithmetic relationships between the individual operating parameters.
  • the maps 40, 41 have strong, non-linear curvatures and are spatially one above the other because they have the same dependencies n and Q. For constant measured values Q and n, only a single function value P and only a single function value H can be determined. Since the assignment is unambiguous, the function values P and H lie exactly one above the other. From this it follows that the two missing ones can be calculated from two measured ones of the 4 operating parameters used. According to the invention, the rotational speed and the power consumption are available as measured values.
  • the two area equations are determined from the measured values and are stored in an explicit form in an electronic memory element (EPROM).
  • EPROM electronic memory element
  • Regulation can be carried out with all the variables used, but only n is set. If control is carried out according to n, control can be carried out directly with n. No conversions in the areas are necessary.
  • control is carried out according to Q or H, the function value is first determined from the measured values n and P and transferred to the controller.
  • the resulting manipulated variable is calculated back into a speed n using the measured variable P using the area equation.
  • the regulation takes place in the area on a firmly defined characteristic. Different power-speed points can be set on this characteristic. If a disturbance variable occurs, the controller moves on the characteristic curve for the variable to be kept constant and sets a new speed-performance point.
  • centrifugal pump pumps a medium other than water
  • a conversion factor must be taken into account in the calculations. Since the centrifugal pump is driven by an asynchronous motor, the measured values for the speed are prone to errors due to the slip that occurs. In operation, this applies to the rotor speed.
  • a drive converter supplies a measurement signal for the set motor speed of a connected asynchronous motor, which is proportional to the synchronous speed to be set. This synchronous speed is processed by the control and a new synchronous speed is output as a manipulated variable.
  • the actual rotor speed is of no importance in this method, since it occurs due to the slip occurring from a single synchronous speed. At each operating point, there is always the slip that is inherent to it, which reduces the rotor speed. The slip error is therefore eliminated.
  • Used wheels can advantageously be used with the invention to record calibration measurements so as to determine their characteristic data, which then form the basis for an automatically working correction program to be stored in the computer, which then takes the actual operating parameters into account consideration of a standardized wear behavior is approximated.
  • Figures 4 to 12 show some application examples for the control according to the invention.
  • f 1 means the mains frequency of 50 Hertz, for example, and f 2 the frequency given to the motor by the computer, which comes from the frequency converter.
  • the NPSH value used denotes the net amount of energy that must be available for the pump to run properly.
  • the other symbols used correspond to the sizes used in the description.
  • Figure 4 shows the control of a centrifugal pump to achieve a constant temperature.
  • a setpoint / actual value comparison takes place in the computer between the specified setpoint for the temperature and the respectively existing temperature.
  • the operating point of the pump is set as the intersection of the delivery characteristic "Pump 1" for the speed n with the plant characteristic "Plant”.
  • T soll - T An increase in temperature to the setpoint is achieved by increasing the speed from n to n with an increase in the flow rate from Q to Q 2 .
  • Figure 5 shows the control of a centrifugal pump to achieve a constant head.
  • the pump runs at operating point 1. This point is set as the intersection of the delivery characteristic "Pump 1" for the speed n with the system characteristic "System 1".
  • the performance characteristic "Motor 1" for the speed n the power P 1 can be determined in point 1.
  • the operating point of the pump moves to point 2 at the same speed. This point is the intersection of the unchanged speed characteristic "Pump 1" for speed n with the changed system characteristic "Plant 2" .
  • Operating point 2 is set on the "Motor 1" performance characteristic.
  • the computer determines the delivery head H and the deviation from the delivery head H from the measured values P 2 and n.
  • the speed is increased to ö he should H n from the measured values for the rotation speed and P is obtained for the power to be the operating point 3, the conveyor h.
  • Figure 6 shows the control of a centrifugal pump to achieve a maximum flow rate taking into account the NPSH value.
  • the operating point 1 When operating the pump at the speed n, the operating point 1 is set as the intersection of the delivery characteristic "pump 1" for the speed n with the system characteristic "plant 1".
  • the speed specification n results from the maximum flow rate Q 1 max from the intersection of the determined NPSH characteristic curve of the system "NPSH system 1" with the NPSH characteristic curve of the pump "NPSH at n 1 ". If the system characteristic changes from “System 1" to "System 2", operating point 2 occurs at constant speed n. However, since the system characteristic also changes the NPSH characteristic of the system, the characteristic "NPSH System 2" is now valid.
  • the pump thus runs at operating point 2 with a delivery rate Q. However, this means at a maximum allowable
  • Flow rate Q 2 max that the pump runs in cavitation.
  • the computer now gives a new manipulated variable for the speed to the frequency converter; the pump is operated at speed n 2 .
  • the operating point 3 thus comes as the intersection of the delivery characteristic "pump 2" at the speed n 2 with the plant characteristic "plant 2" through the speed n, which is calculated from the delivery flow Q3 max .
  • the pump is operated with the maximum flow rate for this system characteristic.
  • Figure 7 shows the control of a centrifugal pump to achieve a constant flow.
  • the operating point results from the intersection of the delivery characteristic with the plant characteristic "Plant 1".
  • the flow rate here is setpoint Q 1/3 . If the system characteristic changes from “System 1" to “System 2”, the operating point 2 and thus a flow rate Q 2 are set while the speed n 1 remains the same. In order to achieve the total flow rate Q 1/3 again, the speed is increased to the value n 2 , which creates the new operating point 3 as the intersection of the delivery characteristic "pump 2" with the plant characteristic "plant 2".
  • FIG 8 shows the control of a centrifugal pump to achieve a constant flow when a filter is clogged.
  • the centrifugal pump delivers e in fluid via a filter system to an atomization system.
  • Filter 1 is in operation when the system is started up.
  • the centrifugal pump runs at speed n, at operating point 1, the intersection of the delivery characteristic "pump 1 "with the system characteristic" System 1 ".
  • the system characteristic changes from" System 1 "to” System 2 ".
  • the operating point shifts from 1 to 2.
  • the flow rate Q 2/4 does not correspond to the setpoint Q soll
  • the control unit therefore causes the speed to be increased, which results in the new delivery characteristic "pump 2" for the speed n 2 , the intersection of which with the system characteristic "plant 2" characterizes the new operating point 3.
  • the required setpoint Q is thus to reset.
  • the speed is again increased to n 3, "in which delivery characteristic pump 3 "is the operating point 5.
  • filter 1 is closed and opened n of filter 2.
  • Point 6 thus becomes the operating point as the intersection of the system characteristic "System 1" with the delivery characteristic "Pump 3" for the speed n.
  • the control deviation Q 6 -Q sol l leads to a speed reduction to speed n and thus to operating point 1.
  • Figure 9 shows the control of a circulation pump (screw pump) to achieve a constant flow rate at fixed operating limits.
  • the operating point 1 forms the intersection of the delivery characteristic "pump 1" for the speed n with the plant characteristic "plant 1".
  • a change in the system characteristic from “System 1" to “System 2” leads to a Control deviation Q 2 -Q soll
  • the operating point shifts from 3 to 4, making the control deviation zero.
  • Figure 10 shows the control of a centrifugal pump to achieve a constant level.
  • a setpoint / actual value comparison takes place in the computer between the specified setpoint for the fill level and the respective present level.
  • the operating point is set as the intersection of the delivery characteristic "Pump 1" for the speed n and the plant characteristic "Plant 1".
  • Q 3 0.
  • the centrifugal pump only applies the geodetic pressure, which prevents the medium from flowing back.
  • Figure 11 shows the control of a centrifugal pump to achieve maximum efficiency when specifying a permissible range.
  • the characteristic curve ⁇ max represents the connection of the maximum efficiencies at different speeds.
  • the operating point 1 forms the intersection of the delivery characteristic "pump 1" for the speed n with the plant characteristic "plant 1". Ver If the system characteristic changes to "System 2", there is a deviation from the characteristic ⁇ max at operating point 2. By increasing the pump speed to n 2 , this deviation is compensated for at operating point 3. If the system characteristic curve is changed to "System 3", there is again a deviation from the characteristic curve 7 max. However, this deviation can only be partially compensated for by increasing the speed to n 3 and setting the operating point 5, since the permissible range when the Delivery head H would be left max.
  • Figure 12 shows the control of a centrifugal pump to achieve a constant output.
  • the power P set is specified here. This requirement is realized at operating point 1, the intersection of the delivery characteristic "pump 1" for the speed n with the plant characteristic "plant 1". If the output drops due to a change in the system characteristic to "System 2" and thus to operating point 2, the computer reacts by increasing the speed to n 2 and the new operating point 3 is reached, which compensates for the control deviation Psoll P2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
EP85100565A 1984-01-23 1985-01-21 Procédé et dispositif de contrôle de différents paramètres de fonctionnement pour pompes et compresseurs Withdrawn EP0150068A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3402120 1984-01-23
DE19843402120 DE3402120A1 (de) 1984-01-23 1984-01-23 Verfahren und vorrichtung zur regelung verschiedener betriebsparameter bei pumpen und verdichtern

Publications (2)

Publication Number Publication Date
EP0150068A2 true EP0150068A2 (fr) 1985-07-31
EP0150068A3 EP0150068A3 (fr) 1986-07-16

Family

ID=6225617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85100565A Withdrawn EP0150068A3 (fr) 1984-01-23 1985-01-21 Procédé et dispositif de contrôle de différents paramètres de fonctionnement pour pompes et compresseurs

Country Status (2)

Country Link
EP (1) EP0150068A3 (fr)
DE (1) DE3402120A1 (fr)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508049A1 (de) * 1985-03-07 1986-09-11 Ewald 3000 Hannover Hennel Schaltungsanordnung zum einstellen der foerderleistung einer umwaelzpumpe
EP0226858A1 (fr) * 1985-11-30 1987-07-01 WILO GmbH Méthode de régulation de la hauteur d'eau d'une pompe
EP0470935A1 (fr) * 1990-08-09 1992-02-12 Claudio Meisser Méthode pour mesurer la quantité de chaleur et installation de chauffage utilisant cette méthode
EP0726396A1 (fr) * 1995-02-09 1996-08-14 Grundfos A/S Méthode pour délimiter la plage de fonctionnement des pompes de circulation pour systèmes de chauffage central à entraînement électrique
DE19847949A1 (de) * 1998-10-09 2000-04-13 Mannesmann Ag Verfahren und Einrichtung zur Ansteuerung einer Hydraulikpumpe
EP1072795A1 (fr) * 1998-04-03 2001-01-31 Ebara Corporation Systeme de diagnostic destine a un mecanisme a fluide
WO2008138520A1 (fr) 2007-05-12 2008-11-20 Ksb Aktiengesellschaft Dispositif et procédé de surveillance de dysfonctionnements
EP1911977A3 (fr) * 2006-10-13 2011-01-19 A.O. Smith Corporation Contrôleur pour moteur et procédé de contrôle du moteur
US8133034B2 (en) 2004-04-09 2012-03-13 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
WO2012113497A1 (fr) * 2011-02-23 2012-08-30 Wilo Se Fonctionnement à rendement optimisé d'une pompe électromotorisée par rétroaction
US8353678B2 (en) 2004-04-09 2013-01-15 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
RU2477419C1 (ru) * 2011-10-26 2013-03-10 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный государственный технический университет (МАДИ) Устройство управления транспортированием нефтегазоводяной смеси в продуктопроводе
WO2013143702A1 (fr) * 2012-03-30 2013-10-03 Wilo Se Procédé pour commander un groupe pompe
EP2910788A1 (fr) * 2014-02-25 2015-08-26 Askoll Holding S.r.l. a socio unico Procédé de commande d'une station de pompage dans un système de circulation de fluide, système de circulation apparentés et station de pompage pour réaliser ledit procédé
RU2578297C1 (ru) * 2014-09-05 2016-03-27 Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") Способ и устройство настройки системы автоматического регулирования давления (сард) в магистральном трубопроводе для перекачивания нефтепродуктов
US9328727B2 (en) 2003-12-08 2016-05-03 Pentair Water Pool And Spa, Inc. Pump controller system and method
DE102014016791A1 (de) 2014-11-14 2016-05-19 Paw Gmbh & Co. Kg Verfahren zur hydraulischen Regelung mehrerer Heizkreisläufe am Verteilerbalken
EP3048305A1 (fr) * 2015-01-20 2016-07-27 Magnussen EMSR-Technik GmbH Réduction de la consommation d'énergie d'une pompe à eau à vitesse variable en tenant compte de la charge instantannée du système
US9404500B2 (en) 2004-08-26 2016-08-02 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
DE102015006779A1 (de) 2015-06-01 2016-12-01 Paw Gmbh & Co. Kg Verfahren zum Betreiben einer Heizungsanlage und Regler mit Differenzdrucksensor
US9551344B2 (en) 2004-08-26 2017-01-24 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US9568005B2 (en) 2010-12-08 2017-02-14 Pentair Water Pool And Spa, Inc. Discharge vacuum relief valve for safety vacuum release system
US9726184B2 (en) 2008-10-06 2017-08-08 Pentair Water Pool And Spa, Inc. Safety vacuum release system
US9777733B2 (en) 2004-08-26 2017-10-03 Pentair Water Pool And Spa, Inc. Flow control
EP2156007A4 (fr) * 2007-04-27 2017-12-06 Unico, Inc. Détermination et commande du niveau de liquide d'un puits de forage, du débit de sortie et de la vitesse opérationnelle d'une pompe voulue, en utilisant un système de commande pour une pompe centrifuge disposée à l'intérieur du puits de forage
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
US9932984B2 (en) 2004-08-26 2018-04-03 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
RU2680532C1 (ru) * 2018-04-17 2019-02-22 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания температурного режима технологических процессов с применением турбодетандерных агрегатов на установке низкотемпературной сепарации газа в условиях крайнего севера
US10240604B2 (en) 2004-08-26 2019-03-26 Pentair Water Pool And Spa, Inc. Pumping system with housing and user interface
RU2685460C1 (ru) * 2018-04-17 2019-04-18 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания температурного режима технологических процессов установки низкотемпературной сепарации газа с применением аппаратов воздушного охлаждения в условиях крайнего севера
RU2692164C1 (ru) * 2018-10-08 2019-06-21 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением аппарата воздушного охлаждения, на установках низкотемпературной сепарации газа в районах крайнего севера
RU2697208C1 (ru) * 2018-10-08 2019-08-13 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением турбодетандерного агрегата, на установках низкотемпературной сепарации газа в районах крайнего севера
US10465676B2 (en) 2011-11-01 2019-11-05 Pentair Water Pool And Spa, Inc. Flow locking system and method
US10731655B2 (en) 2004-08-26 2020-08-04 Pentair Water Pool And Spa, Inc. Priming protection
US10871001B2 (en) 2004-08-26 2020-12-22 Pentair Water Pool And Spa, Inc. Filter loading
US10900490B2 (en) 2012-09-12 2021-01-26 Grundfos Holding A/S Method for controlling a circulation pump in an installation comprising at least two circulation circuits
US10947981B2 (en) 2004-08-26 2021-03-16 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
CN112580183A (zh) * 2019-09-30 2021-03-30 北京大学 一种在线学习水泵模型实时流量精确控制方法
CN114526246A (zh) * 2020-11-23 2022-05-24 中国石油化工股份有限公司 离心泵高效运行自动调节装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824057A1 (de) * 1988-07-15 1990-01-25 Loewe Pumpenfabrik Gmbh Verfahren zur regelung des betriebes von pumpen
DE3937152A1 (de) * 1989-11-08 1991-05-16 Gutehoffnungshuette Man Verfahren zum optimierten betreiben zweier oder mehrerer kompressoren im parallel- oder reihenbetrieb
AT394909B (de) * 1990-06-01 1992-07-27 Vaillant Gmbh Einrichtung zur kontinuierlichen ueberwachung eines variablen luftstromes
DE4018468A1 (de) * 1990-06-08 1991-12-12 Ultrakust Electronic Gmbh Verfahren und vorrichtung zur entnahme einer repraesentativen milchprobe
DE4037229A1 (de) * 1990-11-23 1992-05-27 Philips Patentverwaltung Geblaeseaggregat zum erzeugen von gasstroemen
AT399954B (de) * 1993-07-02 1995-08-25 Nagl Manfred Verfahren zur regelung von durchflussmengen
DE19506790C2 (de) * 1994-02-28 2000-11-16 Kuehnle Kopp Kausch Ag Verfahren zum wirkungsgradoptimierten Betreiben eines Radialverdichters
DE19549659B4 (de) * 1994-02-28 2004-12-23 AKTIENGESELLSCHAFT KüHNLE, KOPP & KAUSCH Verfahren zum Betreiben eines Radialverdichters
DE19720827B4 (de) * 1997-05-17 2010-07-22 Atlas Copco Energas Gmbh Verfahren zum Steuern eines Radialverdichters mit Vorleitapparat und Nachleitapparat
DE19726547A1 (de) 1997-06-23 1999-01-28 Babcock Bsh Gmbh Verfahren zur Bestimmung des Betriebspunktes eines Ventilators und Ventilator
DE19804330A1 (de) * 1998-02-04 1999-08-12 K Busch Gmbh Druck & Vakuum Dr Verfahren zum Regeln eines Verdichters
DE10113249A1 (de) * 2001-03-19 2002-10-02 Siemens Ag Druckerzeuger für strömende Medien
US8281425B2 (en) 2004-11-01 2012-10-09 Cohen Joseph D Load sensor safety vacuum release system
US7690897B2 (en) 2006-10-13 2010-04-06 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
EP2039939B2 (fr) 2007-09-20 2020-11-18 Grundfos Management A/S Procédé de surveillance d'un dispositif de transformation d'énergie
DE102007054313B4 (de) * 2007-11-05 2016-08-04 Xylem Ip Holdings Llc Umwälzpumpe, Heizsystem und Verfahren zur Bestimmung der Durchströmungsmenge einer Flüssigkeit durch eine Leitung
WO2010039580A1 (fr) 2008-10-01 2010-04-08 A.O. Smith Corporation Dispositif de commande pour un moteur et procédé de commande du moteur
DE102013109134A1 (de) 2013-08-23 2015-02-26 Xylem Ip Holdings Llc Verfahren zur Bestimmung einer Durchströmungsmenge an einem Flüssigkeitsfördersystem, Verfahren zur Bestimmung einer Energiemenge einer Förderflüssigkeit, Flüssigkeitsfördersystem und Pumpe
DE102014222390A1 (de) * 2014-11-03 2016-05-04 Continental Automotive Gmbh Verfahren zum Erstellen eines Kennlinienfelds einer Fluidpumpe, Verwendung eines limitierten Ventils, Verwendung eines Stufenventils und Steuergerät für ein Fluidfördersystem
DE102014018020A1 (de) * 2014-12-08 2016-06-09 Wilo Se Verfahren zum Betreiben einer Kreiselpumpe
DE102016203549B4 (de) 2016-03-03 2021-08-12 Audi Ag Verfahren zum Ermitteln eines Verhaltens eines in einem Fahrzeug verbauten Ventils, sowie ein Fahrzeug
DE102019216815A1 (de) * 2019-10-31 2021-05-06 Robert Bosch Gmbh Fluidpumpenvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946049A1 (de) * 1979-11-15 1981-05-27 Hoechst Ag, 6000 Frankfurt Verfahren zum regeln des durchflusses von kreiselpumpen
US4370098A (en) * 1980-10-20 1983-01-25 Esco Manufacturing Company Method and apparatus for monitoring and controlling on line dynamic operating conditions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946049A1 (de) * 1979-11-15 1981-05-27 Hoechst Ag, 6000 Frankfurt Verfahren zum regeln des durchflusses von kreiselpumpen
US4370098A (en) * 1980-10-20 1983-01-25 Esco Manufacturing Company Method and apparatus for monitoring and controlling on line dynamic operating conditions

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508049A1 (de) * 1985-03-07 1986-09-11 Ewald 3000 Hannover Hennel Schaltungsanordnung zum einstellen der foerderleistung einer umwaelzpumpe
EP0226858A1 (fr) * 1985-11-30 1987-07-01 WILO GmbH Méthode de régulation de la hauteur d'eau d'une pompe
DE3542370C2 (de) * 1985-11-30 2003-06-05 Wilo Gmbh Verfahren zum Regeln der Förderhöhe einer Pumpe
EP0470935A1 (fr) * 1990-08-09 1992-02-12 Claudio Meisser Méthode pour mesurer la quantité de chaleur et installation de chauffage utilisant cette méthode
EP0726396A1 (fr) * 1995-02-09 1996-08-14 Grundfos A/S Méthode pour délimiter la plage de fonctionnement des pompes de circulation pour systèmes de chauffage central à entraînement électrique
EP1072795A4 (fr) * 1998-04-03 2006-10-18 Ebara Corp Systeme de diagnostic destine a un mecanisme a fluide
EP1072795A1 (fr) * 1998-04-03 2001-01-31 Ebara Corporation Systeme de diagnostic destine a un mecanisme a fluide
DE19847949A1 (de) * 1998-10-09 2000-04-13 Mannesmann Ag Verfahren und Einrichtung zur Ansteuerung einer Hydraulikpumpe
US10642287B2 (en) 2003-12-08 2020-05-05 Pentair Water Pool And Spa, Inc. Pump controller system and method
US10241524B2 (en) 2003-12-08 2019-03-26 Pentair Water Pool And Spa, Inc. Pump controller system and method
US10289129B2 (en) 2003-12-08 2019-05-14 Pentair Water Pool And Spa, Inc. Pump controller system and method
US10409299B2 (en) 2003-12-08 2019-09-10 Pentair Water Pool And Spa, Inc. Pump controller system and method
US9399992B2 (en) 2003-12-08 2016-07-26 Pentair Water Pool And Spa, Inc. Pump controller system and method
US10416690B2 (en) 2003-12-08 2019-09-17 Pentair Water Pool And Spa, Inc. Pump controller system and method
US9328727B2 (en) 2003-12-08 2016-05-03 Pentair Water Pool And Spa, Inc. Pump controller system and method
US8133034B2 (en) 2004-04-09 2012-03-13 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US8353678B2 (en) 2004-04-09 2013-01-15 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US11391281B2 (en) 2004-08-26 2022-07-19 Pentair Water Pool And Spa, Inc. Priming protection
US9404500B2 (en) 2004-08-26 2016-08-02 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US10502203B2 (en) 2004-08-26 2019-12-10 Pentair Water Pool And Spa, Inc. Speed control
US10480516B2 (en) 2004-08-26 2019-11-19 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-deadhead function
US10731655B2 (en) 2004-08-26 2020-08-04 Pentair Water Pool And Spa, Inc. Priming protection
US10415569B2 (en) 2004-08-26 2019-09-17 Pentair Water Pool And Spa, Inc. Flow control
US10871163B2 (en) 2004-08-26 2020-12-22 Pentair Water Pool And Spa, Inc. Pumping system and method having an independent controller
US10871001B2 (en) 2004-08-26 2020-12-22 Pentair Water Pool And Spa, Inc. Filter loading
US10947981B2 (en) 2004-08-26 2021-03-16 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US10527042B2 (en) 2004-08-26 2020-01-07 Pentair Water Pool And Spa, Inc. Speed control
US11073155B2 (en) 2004-08-26 2021-07-27 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US10240606B2 (en) 2004-08-26 2019-03-26 Pentair Water Pool And Spa, Inc. Pumping system with two way communication
US9551344B2 (en) 2004-08-26 2017-01-24 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US9777733B2 (en) 2004-08-26 2017-10-03 Pentair Water Pool And Spa, Inc. Flow control
US10240604B2 (en) 2004-08-26 2019-03-26 Pentair Water Pool And Spa, Inc. Pumping system with housing and user interface
US9605680B2 (en) 2004-08-26 2017-03-28 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US9932984B2 (en) 2004-08-26 2018-04-03 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
EP1911977A3 (fr) * 2006-10-13 2011-01-19 A.O. Smith Corporation Contrôleur pour moteur et procédé de contrôle du moteur
EP2156007A4 (fr) * 2007-04-27 2017-12-06 Unico, Inc. Détermination et commande du niveau de liquide d'un puits de forage, du débit de sortie et de la vitesse opérationnelle d'une pompe voulue, en utilisant un système de commande pour une pompe centrifuge disposée à l'intérieur du puits de forage
WO2008138520A1 (fr) 2007-05-12 2008-11-20 Ksb Aktiengesellschaft Dispositif et procédé de surveillance de dysfonctionnements
CN101680457B (zh) * 2007-05-12 2012-07-04 Ksb股份公司 用于故障监控的装置和方法
US10724263B2 (en) 2008-10-06 2020-07-28 Pentair Water Pool And Spa, Inc. Safety vacuum release system
US9726184B2 (en) 2008-10-06 2017-08-08 Pentair Water Pool And Spa, Inc. Safety vacuum release system
US11493034B2 (en) 2009-06-09 2022-11-08 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US10590926B2 (en) 2009-06-09 2020-03-17 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US9568005B2 (en) 2010-12-08 2017-02-14 Pentair Water Pool And Spa, Inc. Discharge vacuum relief valve for safety vacuum release system
CN103384768A (zh) * 2011-02-23 2013-11-06 威乐欧洲股份公司 通过正反馈对以电动机方式传动的泵的功率优化的驱动
WO2012113497A1 (fr) * 2011-02-23 2012-08-30 Wilo Se Fonctionnement à rendement optimisé d'une pompe électromotorisée par rétroaction
RU2477419C1 (ru) * 2011-10-26 2013-03-10 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный государственный технический университет (МАДИ) Устройство управления транспортированием нефтегазоводяной смеси в продуктопроводе
US10883489B2 (en) 2011-11-01 2021-01-05 Pentair Water Pool And Spa, Inc. Flow locking system and method
US10465676B2 (en) 2011-11-01 2019-11-05 Pentair Water Pool And Spa, Inc. Flow locking system and method
WO2013143702A1 (fr) * 2012-03-30 2013-10-03 Wilo Se Procédé pour commander un groupe pompe
US10900490B2 (en) 2012-09-12 2021-01-26 Grundfos Holding A/S Method for controlling a circulation pump in an installation comprising at least two circulation circuits
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
KR20150100552A (ko) * 2014-02-25 2015-09-02 아스콜 홀딩 에스.알.엘. 유체 순환 시스템 내의 펌프장을 제어하는 방법과 상기 제어 방법을 사용한 순환 시스템 및 펌프장
US20150240801A1 (en) * 2014-02-25 2015-08-27 Askoll Holding S.r.I. a socio unico Enhanced method for controlling a pumping station within a fluid circulation system, related circulation system and pumping station for realizing said method
EP2910788A1 (fr) * 2014-02-25 2015-08-26 Askoll Holding S.r.l. a socio unico Procédé de commande d'une station de pompage dans un système de circulation de fluide, système de circulation apparentés et station de pompage pour réaliser ledit procédé
US9970433B2 (en) 2014-02-25 2018-05-15 Taco Italia S.R.L. Enhanced method for controlling a pumping station within a fluid circulation system, related circulation system and pumping station for realizing said method
RU2578297C1 (ru) * 2014-09-05 2016-03-27 Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") Способ и устройство настройки системы автоматического регулирования давления (сард) в магистральном трубопроводе для перекачивания нефтепродуктов
DE102014016791B4 (de) 2014-11-14 2022-05-12 Paw Gmbh & Co. Kg Verfahren zur hydraulischen Regelung mehrerer Heizkreisläufe am Verteilerbalken
EP3026352A1 (fr) 2014-11-14 2016-06-01 PAW GmbH & Co. KG Procede de regulation hydraulique de plusieurs circuits de chauffe sur nourrices de distribution
DE102014016791A1 (de) 2014-11-14 2016-05-19 Paw Gmbh & Co. Kg Verfahren zur hydraulischen Regelung mehrerer Heizkreisläufe am Verteilerbalken
EP3048305A1 (fr) * 2015-01-20 2016-07-27 Magnussen EMSR-Technik GmbH Réduction de la consommation d'énergie d'une pompe à eau à vitesse variable en tenant compte de la charge instantannée du système
DE102015006779A1 (de) 2015-06-01 2016-12-01 Paw Gmbh & Co. Kg Verfahren zum Betreiben einer Heizungsanlage und Regler mit Differenzdrucksensor
EP3101352A1 (fr) 2015-06-01 2016-12-07 PAW GmbH & Co. KG Procede de fonctionnement d'une installation de chauffage et dispositif de regulation comprenant un capteur de difference de pression
RU2685460C1 (ru) * 2018-04-17 2019-04-18 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания температурного режима технологических процессов установки низкотемпературной сепарации газа с применением аппаратов воздушного охлаждения в условиях крайнего севера
RU2680532C1 (ru) * 2018-04-17 2019-02-22 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания температурного режима технологических процессов с применением турбодетандерных агрегатов на установке низкотемпературной сепарации газа в условиях крайнего севера
RU2697208C1 (ru) * 2018-10-08 2019-08-13 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением турбодетандерного агрегата, на установках низкотемпературной сепарации газа в районах крайнего севера
RU2692164C1 (ru) * 2018-10-08 2019-06-21 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением аппарата воздушного охлаждения, на установках низкотемпературной сепарации газа в районах крайнего севера
CN112580183A (zh) * 2019-09-30 2021-03-30 北京大学 一种在线学习水泵模型实时流量精确控制方法
CN112580183B (zh) * 2019-09-30 2024-02-23 北京大学 一种在线学习水泵模型实时流量精确控制方法
CN114526246A (zh) * 2020-11-23 2022-05-24 中国石油化工股份有限公司 离心泵高效运行自动调节装置

Also Published As

Publication number Publication date
DE3402120A1 (de) 1985-07-25
EP0150068A3 (fr) 1986-07-16

Similar Documents

Publication Publication Date Title
EP0150068A2 (fr) Procédé et dispositif de contrôle de différents paramètres de fonctionnement pour pompes et compresseurs
DE3542370C2 (de) Verfahren zum Regeln der Förderhöhe einer Pumpe
EP1286240B1 (fr) Méthode de détermination d'une caractéristique de pompe
WO2010139416A1 (fr) Procédé pour déterminer des valeurs caractéristiques, en particulier des paramètres d'un ensemble pompe centrifuge entraîné par moteur électrique qui est intégré dans un dispositif
EP2696175B1 (fr) Procédé de détection du débit d'une pompe à centrifuge
DE2946049A1 (de) Verfahren zum regeln des durchflusses von kreiselpumpen
EP2944821B1 (fr) Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe
WO2010020376A1 (fr) Dispositif de fourniture d'une pression à un consommateur hydraulique et procédé de fourniture d'une pression
DE3920185A1 (de) Kreiselpumpe oder luefter
DE19742799A1 (de) Automatische Anpassung des Stellbereiches eines Druckregelkreises in Mehrpumpenanlagen
DE2715712A1 (de) Regelung einer hydrodynamischen rotationspumpeneinheit
WO2005064167A1 (fr) Mesure de quantites
EP0470935B1 (fr) Méthode pour mesurer la quantité de chaleur et installation de chauffage utilisant cette méthode
EP3048305B1 (fr) Réduction de la consommation d'énergie d'une pompe à eau à vitesse variable en tenant compte de la charge instantannée du système
DE19618462A1 (de) Verfahren und Vorrichtung zum Bestimmen eines extrinsischen Leistungsparameters einer energieumwandelnden Vorrichtung
DE102015011487A1 (de) Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe, die Wasser aus einem Brunnen in ein Leitungsnetz fördert, sowie Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz
DE3515089C2 (fr)
WO1989005402A1 (fr) Turbine munie d'un dispositif de commande et utilisation de la turbine
EP1082645A1 (fr) Procede d'etalonnage de la regulation de la frequence de rotation d'un moteur electrique pour l'entrainement d'une pompe
EP4198317B1 (fr) Procédé de détermination de la hauteur de débit et/ou de refoulement
DE4325231A1 (de) Mit einer als Pumpe und Turbine zu betreibenden Kreiselradmaschine ausgestattetes Aggregat
DD256172A1 (de) Elektrisch und elektronisch geregeltes kreisel- und verdraengermaschinenaggregat
DE102004005396B4 (de) Druckminderungsvorrichtung
EP3882433A1 (fr) Station de pompage pourvue de débitmètre intégré
DE3318166A1 (de) Vorrichtung zur anzeige eines verdrehwinkels von lauf- und/oder leitschaufeln an stroemungsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850207

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19870512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870925

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOKOLOWSKY, PETER, DR.

Inventor name: DUCHMANN, ROGER

Inventor name: AUCHTER, BRUNO

Inventor name: VOSS, KLAUS JUERGEN

Inventor name: PETERSEIM, MICHAEL

Inventor name: SCHNEIDER, KLAUS