EP0145811A1 - Verfahren und Vorrichtung zum Stranggiessen - Google Patents

Verfahren und Vorrichtung zum Stranggiessen Download PDF

Info

Publication number
EP0145811A1
EP0145811A1 EP83112849A EP83112849A EP0145811A1 EP 0145811 A1 EP0145811 A1 EP 0145811A1 EP 83112849 A EP83112849 A EP 83112849A EP 83112849 A EP83112849 A EP 83112849A EP 0145811 A1 EP0145811 A1 EP 0145811A1
Authority
EP
European Patent Office
Prior art keywords
moulding cavity
zone
side dams
cooling fluid
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83112849A
Other languages
English (en)
French (fr)
Other versions
EP0145811B1 (de
Inventor
Yvon L. Vanelderen
Christian L. G. Raskin
René E. J. Mortier
John M. A. Dompas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazelett Strip Casting Corp
Original Assignee
Hazelett Strip Casting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazelett Strip Casting Corp filed Critical Hazelett Strip Casting Corp
Priority to DE1983112849 priority Critical patent/DE145811T1/de
Priority to EP19830112849 priority patent/EP0145811B1/de
Priority to DE8383112849T priority patent/DE3380661D1/de
Publication of EP0145811A1 publication Critical patent/EP0145811A1/de
Application granted granted Critical
Publication of EP0145811B1 publication Critical patent/EP0145811B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0691Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the side dams

Definitions

  • the moulding cavity is formed by means of moving walls, the lower wall being formed by the upper run of a lower endless flexible belt, the upper wall being formed by the lower run of an upper endless flexible bet, and the side walls being formed by a pair of spaced endless side dams, that move with the belts along the opposite sides of the moulding cavity from the inlet (or entrance) to the outlet (or exit) thereof and that are guided by guide means during their movement along the moulding cavity.
  • the lower wall and the upper wall are cooled by contact with a cooling liquid on their respective reverse surfaces. That is, the cooling liquid is applied to the lower surface of the upper run of the lower belt, and the cooling liquid is also applied to the upper surface of the lower run of the upper belt.
  • Molten metal is fed in at the entrance of the moulding cavity, and a cast product is delivered at the outlet of the moulding cavity.
  • the side dams pass during their movement along the moulding cavity successively through a first zone, in which they face molten metal and through a second zone located downstream from the first zone in which they face solidified metal.
  • the aim of the present invention is to provide a process and apparatus that avoid the drawbacks of the above-known process and apparatus.
  • a cooling fluid is circulated in at least a part of the fixed guides and this cooling fluid is sprayed through the fixed guides directly onto the moving side dams in at least a part of the aforesaid second zone in which the moving side dams face solidified metal.
  • the present invention relates to apparatus for continuous casting comprising a moulding cavity formed by means of moving walls, the lower wall being formed by the upper run of a lower endless belt, the upper wall being formed by the lower run of an upper endless belt, and the side walls being formed by a pair of endless side dams, that are adapted to move with the belts along the opposite sides of the moulding cavity from the inlet to the outlet thereof, fixed guides to guide the side dams during their movement along the moulding cavity, means for spraying a cooling liquid on the reverse surfaces of the lower wall and upper wall, and a first zone, in which the side dams face liquid metal when the apparatus is running, and a second zone, in which the side dams face solidified metal when the apparatus is running, characterized in that the fixed guides are adapted to be cooled over at least a part of their length by circulation of a cooling fluid and they comprise means for spraying cooling fluid directly onto the moving side dams in at least a part of the aforesaid second zone.
  • the cooling fluid is advantageously sprayed directly toward the respective side dam for providing a very effective cooling action on the side dam as it is moving along the moulding cavity in the second zone facing the recently solidified metal, and the cooling fluid is aimed in a downstream direction for propelling the cooling fluid downstream away from the first zone in which the moving side dams face molten metal.
  • the apparatus shown in Figs. 1 to 3 comprises an upper moving endless belt 1 and a lower moving endless belt 2.
  • the upper belt 1 passes around rolls 3 and 4, and the lower belt 2 passes around rolls 5. and 6.
  • Rolls 3 and 5 are driven in the direction indicated by arrows 10 and 11 and consequently drive belts 1 and 2 in the direction of arrows 9 and rolls 4 and 6 in the direction of arrows 7 and 8.
  • Two moving endless side dams 12 and 13 are located partly between the lower run of the upper belt 1 and the upper run of the lower belt 2.
  • the side dams 12 and 13 delimit with upper belt 1 and with the lower belt 2 a moulding cavity 14 between an inlet or entrance 15 and an outlet or exit 16. The movement of belts 1 and 2 causes the side dams 12 and 13 to move.
  • the side dams 12 and 13 move thus with belts 1 and 2 in the direction of arrows 9 from inlet 15 to outlet 16 of the moulding cavity 14.
  • the side dams 12 and 13 are formed by a metal strap 17 and by a large number of metal blocks 18 strung on this strap.
  • the side dams 12 and 13 are guided by fixed guides 19 and 20 in order to avoid their sidewards movement toward the outside which would make the profile of the cast product irregular.
  • the construction of fixed guides 19 and 20 will be described and more detailed further on.
  • the casting apparatus is supplied with molten metal by conventional metal feeding apparatus (not shown) feeding the moulding cavity 14 with molten metal.
  • This feeding apparatus is located at inlet 15 of the moulding zone between side dams 12 and 13.
  • the metal is cooled in the moulding cavity 14 on the one hand by spraying a cooling liquid on the reverse surfaces of belts 1 and 2, respectively, as schematically illustrated at 21 and 22, as detailed in the aforesaid U.S. Patent No. 3,036,348, and on the other hand by spraying a cooling liquid on side dams 12 and 13, as will be described further on.
  • the cast product issues in the shape of a strip or bar, that is either entirely solidified or is composed of a solidified metal sheath or skin enclosing a liquid metal core.
  • This strip or bar is determined by the distance between belts 1 and 2,and the width by the distance between the side dams 12 and 13.
  • Second zone a first zone
  • zone A a second zone
  • zone B a second zone
  • the length of the first zone A depends on a number of factors such as the nature and temperature of the cast metal, the section that is cast, the inclination of the moulding cavity, the nature of the walls of the moulding cavity, the intensity of the applied cooling, the casting speed, etc.
  • This length of zone A can be computed for each case in particular. Normally the length of zone A is in the range from approximately 3/10ths to approximately 1/2 of the overall length of the moulding cavity 14.
  • the casting operation is carried out under such conditions that this length of zone A amounts to about three to four tenths of the length of the moulding cavity, which means that the second zone B normally extends over at least the second half of the moulding cavity 14, and preferably extends over approximately 6/10ths to approximately 7/10ths of the total length of the moulding cavity.
  • the Rolls 5 and 6 as well as/cooling system 22 of the lower belt 2 are mounted on a lower frame 23, and rolls 3 and 4 and the cooling system 21 of the upper belt 1, on the upper frame 24.
  • the lower frame 23 and the upper frame 24 are spaced by a certain number of spacers 25, passing through two tightening or adjusting elements 26 und 27 and serving for keeping these elements in position.
  • spacers 25, tightening elements 26 and 27, and regulating rods 28 are not shown in Fig. 1.
  • FIG. 1 Figures 4 to 6 give a detailed view of the construction of the guide 19.
  • This guide 19 is essentially composed of the following elements: a U-section 29; a flat section 30 welded at 31 to the legs of the U-section 29; a rectangular section 32 fixed by screws 33 (Fig.
  • the openings 43 are each directed at an acute angle C towards the downstream moving direction 9 of the side dams 12 and 13, preferably at an angle C of approximately 20° to approximately 50°.
  • a cooling fluid preferably such as water
  • a cooling fluid is introduced through the supply opening 42 in cavity 40, from where it sprays out through the openings or orifices 43 in the direction of side dam 12, thereby being directly applied onto the moving side dam 12 along at least a portion of the second zone B of the moulding cavity 14.
  • the fixed guide 19 as shown in Fig. 6 thus comprises a first upstream part, that is not adapted to spray cooling fluid on side dam 12 and that extends over at least zone A, and a second downstream part, that is adapted to spray cooling fluid on side dam 12 and that extends over at least a part of zone B.
  • first upstream part that is not adapted to spray cooling fluid on side dam 12 and that extends over at least zone A
  • second downstream part that is adapted to spray cooling fluid on side dam 12 and that extends over at least a part of zone B.
  • both parts are shown as having almost the same length.
  • the other guide 20 is constructed like the guide 19, except it is a mirror image of the guide 19.
  • the U-section 34 of the guide 19 defines a channel, as seen in Fig. 3, adjacent to the outside surface of the side dam 12.
  • the corresponding U-section of the other guide 20 defines a channel adjacent to the outside surface of the other side dam 13.
  • the spray openings 43 are aimed toward the outside surfaces of the respective side dams 12,13 along these channels. These channels are open at their downstream ends, as seen in Fig. 6, for allowing the cooling fluid which has been applied to the side dams to escape near the outlet or exit 16 (Fig.1).
  • the downstream angle C of the multiple spray openings 43 propels the cooling fluid in a downstream direction toward the open end of this channel as shown by the arrow 45 in Fig. 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
EP19830112849 1983-12-20 1983-12-20 Verfahren und Vorrichtung zum Stranggiessen Expired EP0145811B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1983112849 DE145811T1 (de) 1983-12-20 1983-12-20 Verfahren und vorrichtung zum stranggiessen.
EP19830112849 EP0145811B1 (de) 1983-12-20 1983-12-20 Verfahren und Vorrichtung zum Stranggiessen
DE8383112849T DE3380661D1 (en) 1983-12-20 1983-12-20 Process and apparatus for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19830112849 EP0145811B1 (de) 1983-12-20 1983-12-20 Verfahren und Vorrichtung zum Stranggiessen

Publications (2)

Publication Number Publication Date
EP0145811A1 true EP0145811A1 (de) 1985-06-26
EP0145811B1 EP0145811B1 (de) 1989-10-04

Family

ID=8190895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830112849 Expired EP0145811B1 (de) 1983-12-20 1983-12-20 Verfahren und Vorrichtung zum Stranggiessen

Country Status (2)

Country Link
EP (1) EP0145811B1 (de)
DE (2) DE3380661D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2366531A (en) * 2000-09-11 2002-03-13 Daido Metal Co Continuous casting of aluminiun bearing alloy including cooli ng
DE102011078654A1 (de) 2011-07-05 2013-01-10 Sms Siemag Ag Vorrichtung zur Seitenabdichtung einer Gießanlage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511493C2 (de) * 1995-03-29 1998-05-14 Achim Wolfgang Dipl Ing Kubon Verfahren und Vorrichtung zum Gießen von endabmessungsnahen Bändern aus Metallen, Legierungen und anderen Materialien

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036348A (en) * 1958-03-17 1962-05-29 Hazelett Strip Casting Corp Metal casting methods and apparatus
LU80647A1 (fr) * 1978-12-13 1979-11-07 Metallurgie Hoboken Machine de coulee continue de metaux liquides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036348A (en) * 1958-03-17 1962-05-29 Hazelett Strip Casting Corp Metal casting methods and apparatus
LU80647A1 (fr) * 1978-12-13 1979-11-07 Metallurgie Hoboken Machine de coulee continue de metaux liquides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2366531A (en) * 2000-09-11 2002-03-13 Daido Metal Co Continuous casting of aluminiun bearing alloy including cooli ng
US6471796B1 (en) 2000-09-11 2002-10-29 Daido Metal Company Ltd. Method and apparatus for continuous casting of aluminum bearing alloy
GB2366531B (en) * 2000-09-11 2004-08-11 Daido Metal Co Method and apparatus for continuous casting of aluminum bearing alloy
DE102011078654A1 (de) 2011-07-05 2013-01-10 Sms Siemag Ag Vorrichtung zur Seitenabdichtung einer Gießanlage

Also Published As

Publication number Publication date
DE145811T1 (de) 1986-05-22
EP0145811B1 (de) 1989-10-04
DE3380661D1 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
US2904860A (en) Metal casting method and apparatus
CA1196258A (en) Method and apparatus for cooling steel sheet
US3933193A (en) Apparatus for continuous casting of metal strip between moving belts
DE4133329A1 (de) Verfahren und vorrichtung zum abkuehlen und granulieren von schmelzfluessig aus duesen austretenden straengen
US5725046A (en) Vertical bar caster
MXPA97002151A (en) Apparatus and method for the vertical molding of a bar of me
US4012216A (en) Apparatus for the production or treatment of flat glass
EP0145811B1 (de) Verfahren und Vorrichtung zum Stranggiessen
US3990257A (en) Method for cooling workpieces in a liquid bath
JPH0571337B2 (de)
US3753459A (en) Method and apparatus for cooling and guiding strands in continuous casting machines
US4621675A (en) Process and apparatus for continuous casting
US10758970B2 (en) Caterpillar casting machine and method for producing a cast material from liquid metal
US4955429A (en) Apparatus for and process of direct casting of metal strip
CA1208876A (en) Process and apparatus for continuous casting
KR20090098384A (ko) 연속 주조용 벤더 세그먼트
JPS6411089B2 (de)
US3228072A (en) Feeding means for strip casting
AU684333B2 (en) Conveyor belt for use in a continuous strip-casting plant for the production of metal strip
EP0596202A1 (de) Einstellbare Fliess-Kontrolleinrichtung zum Stranggiessen von Metallbändern
JP2000084611A (ja) 熱間ストリップの冷却制御方法及びその装置
EP0210847A2 (de) Verfahren und Vorrichtung zur Abkühlung von Stahlbändern
JPS587367B2 (ja) 線材の圧延装置
Vanelderen et al. Process and Apparatus for Continuous Casting
SU1586852A1 (ru) Способ настройки системы вторичного охлаждени непрерывнолитых широких сл бов при смене отливаемого на криволинейных машинах сортамента

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19851106

ITCL It: translation for ep claims filed

Representative=s name: RICCARDI SERGIO & CO.

R17P Request for examination filed (corrected)

Effective date: 19851206

DET De: translation of patent claims
EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19861107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3380661

Country of ref document: DE

Date of ref document: 19891109

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921209

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930115

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930127

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931231

BERE Be: lapsed

Owner name: HAZELETT STRIP-CASTING CORP.

Effective date: 19931231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST