EP0143681B1 - Method and device for controlling the correct functioning of a cable car transport installation - Google Patents

Method and device for controlling the correct functioning of a cable car transport installation Download PDF

Info

Publication number
EP0143681B1
EP0143681B1 EP84401921A EP84401921A EP0143681B1 EP 0143681 B1 EP0143681 B1 EP 0143681B1 EP 84401921 A EP84401921 A EP 84401921A EP 84401921 A EP84401921 A EP 84401921A EP 0143681 B1 EP0143681 B1 EP 0143681B1
Authority
EP
European Patent Office
Prior art keywords
line
cable
car
signal
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401921A
Other languages
German (de)
French (fr)
Other versions
EP0143681A1 (en
Inventor
Denis Creissels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poma SA
Original Assignee
Pomagalski SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pomagalski SA filed Critical Pomagalski SA
Priority to AT84401921T priority Critical patent/ATE28155T1/en
Publication of EP0143681A1 publication Critical patent/EP0143681A1/en
Application granted granted Critical
Publication of EP0143681B1 publication Critical patent/EP0143681B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/06Safety devices or measures against cable fracture

Definitions

  • the invention relates to a method and a device for controlling the operating state of an overhead cable transport installation driven by an electric motor and capable of transporting vehicles of variable load along a line of displacement extending between two stations, in which installation the instantaneous cable drive power is measured and translated by a signal.
  • the tractor or carrier-tractor cable is driven by a power station and the movement is transmitted by the cable over a path of several hundred meters or even over kilometers, including surveillance over the entire route is practically impossible.
  • User safety nevertheless requires instant detection of any incident at any point in the installation, and detectors are known for cable derailment or untimely movement of the cable tension counterweight.
  • the derailment detectors must be placed in line with each cable guide pulley and be connected by an electrical safety line extending along the installation, while the operation of the detector associated with the counterweight is unreliable.
  • the object of the present invention is to remedy these drawbacks by carrying out permanent monitoring of the operation of the installation. It starts from the observation that the driving power of the cable at a given time is a function of the speed of the cable, the slope of the cable at the location of the vehicle (s) along the line, the load carried by the or vehicles and the condition of the facility. By determining the first three parameters, it is therefore possible to check the operating status of the installation.
  • the method according to the invention is characterized in that the line data is recorded in a memory unit for the evaluation of the normal driving power of the cable as a function of the value of the load transported, of the position of the vehicles in line and the speed of the cable, which is supplied to a central processing unit with data to know the speed of cable drive, the value of the load of the vehicles in line and the position of the vehicles in line each instant, said central unit interrogating the memory unit to generate from said data a signal representative of said normal power and that said normal power and instantaneous power signals are continuously compared in a comparison block to develop a representative output signal the difference between said powers, said output signal triggering an alarm and / or a device for stopping the installation when a predetermined threshold is crossed completed. It is even possible not to integrate the payload of the inserted vehicles, by using as a reference base, the powers consumed in a relatively short period after the speeding up of the vehicles (fixed or disengageable).
  • the control device receives the starting information at each clutch of a cabin in one or the other of the stations, at the same time as the information of the load. transported.
  • the control device is advantageously in this case a computer, which tracks each cabin during its online movement and knowing at all times the different positions of the cabins, their loads, the speed of the gondola and the profile of the line, can calculate or determine the normal drive power of the cable.
  • a simple comparator for example a differential amplifier and a threshold circuit, allows signaling of a notable difference between instantaneous and normal powers. Abnormal advancement resistance can thus be detected before the incident or accident and allows preventive intervention.
  • a cable car comprises a motor 10 for driving the winch of the towing cable 12 of a bucket 14 circulating between the two stations A and B.
  • a scale 16 weighs the passengers embarking in the bucket 14 and provides a signal P of the total weight of the bucket 14 to a central processing unit 18 of a control device designated by the general reference 20.
  • a tachometer generator 22 coupled to the motor 10 provides this central unit 18 with a signal V of speed of the cable 12.
  • the motor 10 drives by a transmission 24 a magnetic tape recorder 26 with read heads 28, 30.
  • the strip 26 moves in synchronism with the bucket 14 and the read heads 28, 30 read the recorded information corresponding to the location of the bucket online.
  • One of the recording tracks of tape 26 can represent the profile of the line, in this case the abscissas and ordinates of the ends of the staff, while the other track can represent correction factors, in particular at the start. and braking the bucket, as well as an increase in friction when passing a pylon.
  • the central unit 18 permanently has the stored information read by the heads 28, 30 and the speed and load information and this data is transmitted to a calculation unit 32 which determines the normal drive power of the cable 12.
  • the signal of calculated normal power is supplied to a comparator 34 which receives an instantaneous power signal emitted by a measuring device 36 of the electric power W supplied to the motor 10.
  • the comparator 34 indicates the difference between these two powers and triggers an alarm or stops the installation if this difference exceeds a predetermined threshold.
  • the control device can be simplified if the load transported is substantially constant and if the installation operates at one or two predetermined speeds. It is then possible to store directly on the tape 26 the normal drive power for each of the speeds and to read the information corresponding to the selected speed, the control device being limited to the comparator 34. It is clear that the speed signal can be calculated by the central unit, which may include a clock, on the basis of a signal for movement of the strip 26 and that the cabin load can be determined in a different manner.
  • FIG. 2 shows an example of variation of the power as a function of the location of the bucket 14 on the line.
  • the power difference can be permanent or at a given location which makes it possible to locate the anomaly.
  • a scale (not shown) at station B supplies the load signal P and the control device 20 receives slope change information.
  • the cabins 38 are disengaged from the carrier-tractor cable 40 in the stations and run on transfer rails 42. At the outlet, the cabins 38 are engaged on the cable 40, which is permanently driven by a driving pulley 44 coupled to a motor. electric 46.
  • the clutch of a cabin 38 is signaled by a through contact 48, which sends a start signal to a central unit 50 of a control computer 52.
  • a scale 54 weighs the people embarking in the cabin and the corresponding signal P is transmitted to the central unit 50.
  • This unit 50 also receives a displacement signal emitted by a pulse wheel 56 coupled to the driving pulley 44.
  • the computer 52 includes a memory 58 in which are recorded the characteristics of the line, in particular the online profile and a calculation unit 60, the time base being provided by a clock.
  • the computer 52 emits a normal power signal transmitted to a comparator 62, which compares this signal with an instantaneous power signal W supplied by a Wattmeter 64 for measuring the electric power W supplying the motor 46.
  • the invention is of course applicable to any type of air carrier, the computer being able at the same time to perform other functions, for example counting and optimizing the speed or number of cabins in line.
  • the direct weighing system can be replaced by a measurement of the powers consumed for a short period after the gearbox has been put into gear or the clutch and a calculation by the corresponding load computer, which simplifies installation and application to existing installations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
  • Control Of Conveyors (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Pipeline Systems (AREA)
  • Electric Cable Installation (AREA)

Abstract

1. A method for controlling the correct functioning of an aerial cable transport installation (12, 40) driven by an electric motor (10, 46) and which may transport cars (14, 38) with variable loads (P) along the transport line extending between two stations, in which installation the instantaneous cable driving power (W) is measured and represented by a signal, characterized in that the data of the line are registered in a memory unit (26, 58) for the calculation of the normal cable driving power in accordance with the transported load, the car positions (14, 38) along the line and the cable speed (V), in that at each moment the data relating to the cable speed, the load value of the cars on the line and the car positions on the line are provided to a central processing unit (18, 50) which reads in the memory unit (26, 58) the data for elaborating therefrom a signal representing said normal power and that said normal power signal and instantaneous power signal are permanently compared in a comparator unit (34, 62) to elaborate an output signal which represents the difference between said powers, said output signal providing an alarm and/or an installation stopping when it passes a predetermined threshold.

Description

L'invention est relative à un procédé et à un dispositif de contrôle de l'etat de fonctionnement d'une installation de transport à câble aérien entraîné par un moteur électrique et susceptible de transporter des véhicules de charge variable le long d'une ligne de déplacement s'étendant entre deux stations, dans laquelle installation la puissance instantanée d'entraînement du câble est mesurée et traduite par un signal.The invention relates to a method and a device for controlling the operating state of an overhead cable transport installation driven by an electric motor and capable of transporting vehicles of variable load along a line of displacement extending between two stations, in which installation the instantaneous cable drive power is measured and translated by a signal.

Dans les installations du genre indiqué, notamment les téléphériques, télésièges et télécabines, le câble tracteur ou porteur-tracteur est entraîné par une station motrice et le mouvement est transmis par le câble sur une trajectoire de plusieurs centaines de mètres ou même sur des kilomètres dont la surveillance sur l'ensemble du parcours est pratiquement impossible. La sécurité des utilisateurs impose néanmoins une détection instantanée de tout incident en un point quelconque de l'installation et l'on connaît des détecteurs de déraillement du câble ou de déplacement intempestif du contrepoids de tension du câble. Les détecteurs de déraillement doivent être disposés au droit de chaque poulie de guidage du câble et être reliés par une ligne électrique de sécurité s'étendant le long de l'installation, tandis que le fonctionnement du détecteur associé au contre-poids est peu fiable.In installations of the type indicated, in particular cable cars, chairlifts and cable cars, the tractor or carrier-tractor cable is driven by a power station and the movement is transmitted by the cable over a path of several hundred meters or even over kilometers, including surveillance over the entire route is practically impossible. User safety nevertheless requires instant detection of any incident at any point in the installation, and detectors are known for cable derailment or untimely movement of the cable tension counterweight. The derailment detectors must be placed in line with each cable guide pulley and be connected by an electrical safety line extending along the installation, while the operation of the detector associated with the counterweight is unreliable.

Il a déjà été proposé (voir par exemple le procédé décrit dans FR-A-2 122 809 et correspondant au préambule de la revendication 1) de détecter des variations intempestives, notamment de la puissance consommée du moteur d'entrai- nement, mais la sensibilité de ces dispositifs est forcément limitée si on veut éviter des déclenchements en fonctionnement normal et ils sont incapables de détecter une variation lente due par exemple à une usure ou à un grippage.It has already been proposed (see for example the method described in FR-A-2 122 809 and corresponding to the preamble of claim 1) to detect untimely variations, in particular of the power consumed by the drive motor, but the Sensitivity of these devices is necessarily limited if we want to avoid tripping in normal operation and they are unable to detect a slow variation due for example to wear or seizure.

La présente invention a pour but de remédier à ces inconvénients en réalisant un contrôle permanent du fonctionnement de l'installation. Elle part de la constatation que la puissance d'entraînement du câble à un instant donné est fonction de la vitesse du câble, de la pente du câble à l'emplacement du ou des véhicules le long de la ligne, de la charge transportée par le ou les véhicules et de l'état de l'installation. En déterminant les trois premiers paramètres il est donc possible de contrôler l'état de fonctionnement de l'installation.The object of the present invention is to remedy these drawbacks by carrying out permanent monitoring of the operation of the installation. It starts from the observation that the driving power of the cable at a given time is a function of the speed of the cable, the slope of the cable at the location of the vehicle (s) along the line, the load carried by the or vehicles and the condition of the facility. By determining the first three parameters, it is therefore possible to check the operating status of the installation.

Le procédé selon l'invention est caractérisé en ce qu'on enregistre dans une unité mémoire les données de la ligne pour l'évaluation de la puissance normale d'entraînement du câble en fonction de la valeur de la charge transportée, de la position des véhicules en ligne et de la vitesse du câble, qu'on fournit à une unité centrale de traitement les données pour connaître la vitesse d'entraînement du câble, la valeur de la charge des véhicules en ligne et la position des véhicules en ligne à chaque instant, ladite unité centrale questionnant l'unité mémoire pour élaborer à partir desdites données un signal représentatif de ladite puissance normale et que lesdits signaux de puissance normale et de puissance instantanée sont comparés en permanence dans un bloc de comparaison pour élaborer un signal de sortie représentatif de l'écart entre lesdites puissances, ledit signal de sortie déclenchant un alarme et/ou un dispositif d'arrêt de l'installation lors d'un franchissement d'un seuil prédéterminé. Il est même possible de ne pas intégrer la charge utile des véhicules insérés, en utilisant comme base de références, les puissances consommées dans une période relativement brève après la mise en vitesse des véhicules (fixes ou débrayables).The method according to the invention is characterized in that the line data is recorded in a memory unit for the evaluation of the normal driving power of the cable as a function of the value of the load transported, of the position of the vehicles in line and the speed of the cable, which is supplied to a central processing unit with data to know the speed of cable drive, the value of the load of the vehicles in line and the position of the vehicles in line each instant, said central unit interrogating the memory unit to generate from said data a signal representative of said normal power and that said normal power and instantaneous power signals are continuously compared in a comparison block to develop a representative output signal the difference between said powers, said output signal triggering an alarm and / or a device for stopping the installation when a predetermined threshold is crossed completed. It is even possible not to integrate the payload of the inserted vehicles, by using as a reference base, the powers consumed in a relatively short period after the speeding up of the vehicles (fixed or disengageable).

On sait que la force nécessaire pour déplacer une charge P sur une pente d'un angle α est donnée par la formule P sin α, la puissance étant V - P - sin a, si V est la vitesse de déplacement. Il convient bien entendu d'y ajouter les forces de friction et les forces d'inertie en cas de variation de vitesse, mais ces forces peuvent être évaluées ou mesurées à l'origine et il est possible d'en tenir compte. Dans le cas d'une installation à attaches fixes, notamment d'un téléphérique à une seule benne, la position du véhicule est donnée par le mouvement du treuil du câble tracteur et il suffit d'enregistrer le profil de la ligne et de lire cet enregistrement au cours du déplacement du véhicule pour disposer des données de calcul de la puissance normale, si l'on prend soin de compter ou de peser les voyageurs embarqués. L'unité mémoire et l'unité centrale de traitement peuvent être très simples et réalisées par tout moyen approprié. Si le téléphérique comporte deux bennes il faut calculer la puissance normale pour chaque benne et en déduire la puissance normale totale résultante.We know that the force necessary to move a load P on a slope of an angle α is given by the formula P sin α, the power being V - P - sin a, if V is the speed of displacement. It is of course appropriate to add the friction forces and the inertial forces in the event of a speed variation, but these forces can be evaluated or measured at the origin and it is possible to take them into account. In the case of an installation with fixed attachments, in particular of a cable car with a single skip, the position of the vehicle is given by the movement of the winch of the towing cable and it suffices to record the profile of the line and read this recording during the movement of the vehicle to have the data for calculating the normal power, if care is taken to count or weigh the passengers on board. The memory unit and the central processing unit can be very simple and produced by any suitable means. If the cable car has two skips, calculate the normal power for each skip and deduct the resulting total normal power.

Pour des installations plus complexes à véhicules débrayables, notamment des télécabines, le dispositif de contrôle reçoît les informations de départ à chaque embrayage d'une cabine dans l'une ou l'autre des stations, en même temps que l'information de la charge transportée. Le dispositif de contrôle est dans ce cas avantageusement un ordinateur, qui suit chaque cabine au cours de son déplacement en ligne et connaissant à chaque instant les différentes positions des cabines, leurs charges, la vitesse de la télécabine et le profil de la ligne, peut calculer ou déterminer la puissance normale d'entraînement du câble. Un simple comparateur, par exemple un amplificateur différentiel et un circuit seuil, permet une signalisation d'une différence notable entre les puissances instantanées et normales. Une résistance à l'avancement anormale peut ainsi être détectée avant l'incident ou l'accident et permet une intervention préventive.For more complex installations with detachable vehicles, in particular gondolas, the control device receives the starting information at each clutch of a cabin in one or the other of the stations, at the same time as the information of the load. transported. The control device is advantageously in this case a computer, which tracks each cabin during its online movement and knowing at all times the different positions of the cabins, their loads, the speed of the gondola and the profile of the line, can calculate or determine the normal drive power of the cable. A simple comparator, for example a differential amplifier and a threshold circuit, allows signaling of a notable difference between instantaneous and normal powers. Abnormal advancement resistance can thus be detected before the incident or accident and allows preventive intervention.

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de deux modes de mise en oeuvre de l'invention, donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :

  • la figure 1 est une vue schématique d'un téléphérique à une seule benne, équipé d'un dispositif de contrôle selon l'invention ;
  • la figure 2 représente la courbe de variation de la puissance d'entraînement en fonction de la position de la benne du téléphérique selon la fig. 1 ;
  • la figure 3 est une vue analogue à celle de la fig. 1, montrant une télécabine.
Other advantages and characteristics will emerge more clearly from the description which follows of two embodiments of the invention, given by way of nonlimiting examples and represented in the appended drawings, in which :
  • Figure 1 is a schematic view of a cable car with a single bucket, equipped with a control device according to the invention;
  • FIG. 2 represents the variation curve of the driving power as a function of the position of the cable car grab according to FIG. 1;
  • Figure 3 is a view similar to that of FIG. 1, showing a gondola.

Sur la figure 1, un téléphérique comporte un moteur 10 d'entraînement du treuil du câble tracteur 12 d'une benne 14 circulant entre les deux stations A et B. Pour des raisons de simplicité de l'exposé il est supposé que le téléphérique comporte une seule benne. Une balance 16 pèse les passagers s'embarquant dans la benne 14 et fournit un signal P du poids total de la benne 14 à une unité centrale de traitement 18 d'un dispositif de contrôle désigné par le repère général 20. Une génératrice tachymétrique 22 accouplée au moteur 10 fournit à cette unité centrale 18 un signal V de vitesse du câble 12. Le moteur 10 entraîne par une transmission 24 une bande magnétique enregistreuse 26 à têtes de lecture 28, 30. La bande 26 se déplace en synchronisme avec la benne 14 et les têtes de lecture 28, 30 lisent les informations enregistrées correspondant à l'emplacement de la benne en ligne. L'une des pistes d'enregistrement de la bande 26 peut représenter le profil de la ligne, en l'occurrence les abscisses et ordonnées des extrémités de la portée, tandis que l'autre piste peut représenter des facteurs de correction, notamment au démarrage et au freinage de la benne, ainsi qu'une augmentation de friction au passage d'un pylône. L'unité centrale 18 dispose en permanence des informations mémorisées lues par les têtes 28, 30 et les informations de vitesse et de charge et ces données sont transmises à une unité de calcul 32 qui détermine la puissance normale d'entraînement du câble 12. Le signal de puissance normale calculée est fournie à un comparateur 34 qui reçoit un signal de puissance instantanée émis par un appareil de mesure 36 de la puissance électrique W fournie au moteur 10. Le comparateur 34 indique l'écart entre ces deux puissances et déclenche une alarme ou arrête l'installation si cet écart dépasse un seuil prédéterminé. Le dispositif de contrôle peut être simplifié si la charge transportée est sensiblement constante et si l'installation fonctionne à une ou deux vitesses prédéterminées. On peut alors mémoriser sur la bande 26 directement la puissance normale d'entraînement pour chacune des vitesses et lire l'information correspondant à la vitesse sélectionnée, le dispositif de contrôle se limitant au comparateur 34. Il est clair que le signal vitesse peut être calculé par l'unité centrale, qui peut comporter une horloge, à partir d'un signal de déplacement de la bande 26 et que la charge de la cabine peut être déterminée d'une manière différente.In FIG. 1, a cable car comprises a motor 10 for driving the winch of the towing cable 12 of a bucket 14 circulating between the two stations A and B. For reasons of simplicity of the description it is assumed that the cable car comprises a single bucket. A scale 16 weighs the passengers embarking in the bucket 14 and provides a signal P of the total weight of the bucket 14 to a central processing unit 18 of a control device designated by the general reference 20. A tachometer generator 22 coupled to the motor 10 provides this central unit 18 with a signal V of speed of the cable 12. The motor 10 drives by a transmission 24 a magnetic tape recorder 26 with read heads 28, 30. The strip 26 moves in synchronism with the bucket 14 and the read heads 28, 30 read the recorded information corresponding to the location of the bucket online. One of the recording tracks of tape 26 can represent the profile of the line, in this case the abscissas and ordinates of the ends of the staff, while the other track can represent correction factors, in particular at the start. and braking the bucket, as well as an increase in friction when passing a pylon. The central unit 18 permanently has the stored information read by the heads 28, 30 and the speed and load information and this data is transmitted to a calculation unit 32 which determines the normal drive power of the cable 12. The signal of calculated normal power is supplied to a comparator 34 which receives an instantaneous power signal emitted by a measuring device 36 of the electric power W supplied to the motor 10. The comparator 34 indicates the difference between these two powers and triggers an alarm or stops the installation if this difference exceeds a predetermined threshold. The control device can be simplified if the load transported is substantially constant and if the installation operates at one or two predetermined speeds. It is then possible to store directly on the tape 26 the normal drive power for each of the speeds and to read the information corresponding to the selected speed, the control device being limited to the comparator 34. It is clear that the speed signal can be calculated by the central unit, which may include a clock, on the basis of a signal for movement of the strip 26 and that the cabin load can be determined in a different manner.

La figure 2 montre un exemple de variation de la puissance en fonction de l'emplacement de la benne 14 sur la ligne. L'écart de puissance peut être permanent ou à un emplacement donné ce qui permet de localiser l'anomalie.FIG. 2 shows an example of variation of the power as a function of the location of the bucket 14 on the line. The power difference can be permanent or at a given location which makes it possible to locate the anomaly.

Sur le parcours de descente de la benne 14, une balance (non représentée) à la station B fournit le signal de charge P et le dispositif de contrôle 20 reçoît une information de changement de pente.On the descent path of the bucket 14, a scale (not shown) at station B supplies the load signal P and the control device 20 receives slope change information.

En se référant à la figure 3, on voit une station d'une télécabine débrayable monocâble. Les cabines 38 sont débrayées du câble porteur-tracteur 40 dans les stations et circulent sur des rails de transfert 42. A la sortie les cabines 38 sont embrayées sur le câble 40, qui est entraîné en permanence par une poulie motrice 44 accouplée à un moteur électrique 46. L'embrayage d'une cabine 38 est signalé par un contact de passage 48, qui envoie un signal de départ à une unité centrale 50 d'un ordinateur de contrôle 52. Une balance 54 pèse les personnes s'embarquant dans la cabine et le signal P correspondant est transmis à l'unité centrale 50. Cette unité 50 reçoît de plus un signal de déplacement émis par une roue à impulsions 56 accouplée à la poulie motrice 44. L'ordinateur 52 comporte une mémoire 58 dans laquelle sont enregistrées les caractéristiques de la ligne, notamment le profil en ligne et une unité de calcul 60, la base de temps étant fournie par une horloge. L'ordinateur 52 émet un signal de puissance normale transmis à un comparateur 62, qui compare ce signal à un signal de puissance instantanée W fourni par un Wattmètre 64 de mesure de la puissance électrique W d'alimentation du moteur 46.Referring to Figure 3, we can see a station of a detachable single cable gondola. The cabins 38 are disengaged from the carrier-tractor cable 40 in the stations and run on transfer rails 42. At the outlet, the cabins 38 are engaged on the cable 40, which is permanently driven by a driving pulley 44 coupled to a motor. electric 46. The clutch of a cabin 38 is signaled by a through contact 48, which sends a start signal to a central unit 50 of a control computer 52. A scale 54 weighs the people embarking in the cabin and the corresponding signal P is transmitted to the central unit 50. This unit 50 also receives a displacement signal emitted by a pulse wheel 56 coupled to the driving pulley 44. The computer 52 includes a memory 58 in which are recorded the characteristics of the line, in particular the online profile and a calculation unit 60, the time base being provided by a clock. The computer 52 emits a normal power signal transmitted to a comparator 62, which compares this signal with an instantaneous power signal W supplied by a Wattmeter 64 for measuring the electric power W supplying the motor 46.

Le dispositif selon la figure 3 fonctionne de la manière suivante :

  • Lors de l'installation de la télécabine on introduit dans la mémoire 58 les données relatives à la ligne, en particulier le profil de la ligne. Lors de l'embrayage de la première cabine 38, signalé par le contact 48, l'ordinateur 52 enregistre la charge P transportée, mesurée par la balance 54 et il suit la cabine dans sa progression le long de la ligne à partir des impulsions de déplacement fournies par la roue 56. Il opère de même pour les cabines suivantes partant de l'une et de l'autre des stations. A chaque instant l'ordinateur connaît la position de chaque cabine et sa charge. En interrogeant la mémoire 58 il connaît la pente de la ligne à l'emplacement de la cabine et il peut calculer à partir du signal de déplacement la vitesse. Il dispose ainsi de tous les éléments pour calculer la puissance normale d'entraînement de chaque cabine et d'élaborer le signal de puissance normale d'entraînement du câble 40, lequel signal est comparé dans le comparateur 62 au signal de puissance réelle.
The device according to FIG. 3 operates as follows:
  • During the installation of the gondola, the data relating to the line, in particular the profile of the line, is entered into memory 58. When the first cabin 38 is engaged, signaled by the contact 48, the computer 52 records the load P transported, measured by the balance 54 and it follows the cabin in its progression along the line from the pulses of displacement provided by the wheel 56. It operates in the same way for the following cabins departing from one and the other of the stations. At all times the computer knows the position of each cabin and its load. By interrogating memory 58, it knows the slope of the line at the location of the cabin and it can calculate the speed from the displacement signal. It thus has all the elements for calculating the normal drive power of each cabin and of developing the normal drive power signal of the cable 40, which signal is compared in the comparator 62 with the real power signal.

L'invention est bien entendu applicable à tout type de transporteur aérien, l'ordinateur pouvant en même temps réaliser d'autres fonctions, par exemple de comptage et d'optimisation de la vitesse ou du nombre des cabines en ligne. Le système de pesée directe peut être remplacé par une mesure des puissances consommées pendant une courte période après la mise en vitesse ou l'embrayage de la cabine et un calcul par l'ordinateur de la charge correspondante, ce qui simplifie l'installation et l'application aux installations existantes.The invention is of course applicable to any type of air carrier, the computer being able at the same time to perform other functions, for example counting and optimizing the speed or number of cabins in line. The direct weighing system can be replaced by a measurement of the powers consumed for a short period after the gearbox has been put into gear or the clutch and a calculation by the corresponding load computer, which simplifies installation and application to existing installations.

Claims (9)

1. A method for controlling the correct functioning of an aerial cable transport installation (12, 40) driven by an electric motor (10, 46) and which may transport cars (14, 38) with variable loads (P) along the transport line extending between two stations, in which installation the instantaneous cable driving power (W) is measured and represented by a signal, characterized in that the data of the line are registered in a memory unit (26, 58) for the calculation of the normal cable driving power in accordance with the transported load, the car positions (14, 38) along the line and the cable speed (V), in that at each moment the data relating to the cable speed, the load value of the cars on the line and the car positions on the line are provided to a central processing unit (18, 50) which reads in the memory unit (26, 58) the data for elaborating therefrom a signal representing said normal power and that said normal power signal and instantaneous power signal are permanently compared in a comparator unit (34, 62) to elaborate an output signal which represents the difference between said powers, said output signal providing an alarm and/or an installation stopping when it passes a predetermined threshold.
2. Method according to claim 1, characterized in that the data relating to the line profil, particularly the distance and the height of tower heads are entered in said memory unit (26, 58) and that the central unit (18, 50) calculates the driving power in accordance with the car position, its load (P), the driving speed (V) and the slope at this position.
3. Method according to claim 1 or 2, characterized in that one enters in said memory unit (40) at the start of a car from a station, the starting time and the value of the load transported by the car (38) and that the central unit (50) calculates at each moment the car position on the line and the normal car driving power.
4. Method according to claim 1, 2 or 3, for an installation having a plurality of cars on the line, characterized in that the central unit (50) calculates for each car (38) on the line the normal driving power and by adding these normal powers for all the vehicles calculates the normal driving power of the installation.
5. Method according to claim 3 or 4, characterized in that the information about the transported load value is deducted and/or calculated by the central unit (18, 50) from the instantaneous power measurement just after the acceleration or coupling of the car on the cable (12, 40).
6. Device for the realization of the method according to anyone of the preceding claims, characterized in that it comprises a measuring device (36, 64) of the instantaneous cable (12, 40) driving power (W), a weighting device (16, 54) of the loads in said cars (14, 38), a cable speed (V) measuring device (22, 56), a memory unit (26, 58) for registering the data which characterize the installation for the calculation of the normal driving power in function of the speed (V), the loads (P) and the car position on the line, a central unit (18, 50) for the determination of said normal power and a comparator unit (34, 62) for the determination of the difference between this normal power and the instantaneous power, said comparator unit providing an alarm signal and/or a stopping when said difference passes over a predetermined threshold.
7. Control device according to claim 6, characterized in that said weighting device (16. 54) adds the weight of the passengers in the car (14, 38) and the weight of the car.
8. Device according to claim 6 or 7, characterized in that said central unit (18, 50) comprises a calculating unit (32. 60) to multiply the load signal (P) and the speed signal (V) and to multiply this product by the slope signal sin a, given by the memory unit (26, 58), a being the slope angle of the line at the car position.
9. Device according to claim 6, 7 or 8, characterized in that it comprises a start detector (48) giving to the control unit (50) the car, start signal (38), a measuring device (56) of the cable (40) movement so that the central unit (50) knows the car position on the line and may determine for each car the required power part of the normal driving power.
EP84401921A 1983-10-03 1984-09-26 Method and device for controlling the correct functioning of a cable car transport installation Expired EP0143681B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401921T ATE28155T1 (en) 1983-10-03 1984-09-26 METHOD AND DEVICE FOR CHECKING THE FUNCTIONALITY OF A CABLEWAY TRANSPORT INSTALLATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8315839 1983-10-03
FR8315839A FR2552725B1 (en) 1983-10-03 1983-10-03 METHOD AND DEVICE FOR MONITORING THE PROPER FUNCTIONING OF AN AIR CABLE TRANSPORTATION SYSTEM

Publications (2)

Publication Number Publication Date
EP0143681A1 EP0143681A1 (en) 1985-06-05
EP0143681B1 true EP0143681B1 (en) 1987-07-08

Family

ID=9292833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401921A Expired EP0143681B1 (en) 1983-10-03 1984-09-26 Method and device for controlling the correct functioning of a cable car transport installation

Country Status (5)

Country Link
EP (1) EP0143681B1 (en)
JP (1) JPS60110561A (en)
AT (1) ATE28155T1 (en)
DE (1) DE3464567D1 (en)
FR (1) FR2552725B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665131B1 (en) * 1990-07-27 1995-01-13 Reel Sa CABLE TRANSFER INSTALLATION COMPRISING MEANS FOR CONTROLLING THE TENSION AND THE ADHESION OF THE TRACTOR CABLE ON THE DRIVE PULLEY.
US5528219A (en) * 1994-04-28 1996-06-18 Konrad Doppelmayr & Sohn Ropeway safety monitoring system
FR2890929B1 (en) * 2005-09-21 2007-11-09 Telepheriques Tarentaise Mauri METHOD AND APPARATUS FOR CONTROLLING AN AUXILIARY BRAKING OR BRAKING DEVICE FOR A CABLE TRANSPORTATION SYSTEM
JP4831748B2 (en) * 2006-08-22 2011-12-07 株式会社アドバンテスト Electronic component testing equipment
CN103057547B (en) * 2012-12-19 2015-06-03 山东省科学院自动化研究所 Method and device for detecting steel rope twisting faults of reciprocating cableways
JP6989108B2 (en) * 2017-09-25 2022-01-05 日本ケーブル株式会社 Cableway operation status display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2122809A5 (en) * 1971-01-22 1972-09-01 Pomagalski Sa

Also Published As

Publication number Publication date
DE3464567D1 (en) 1987-08-13
JPS60110561A (en) 1985-06-17
FR2552725A1 (en) 1985-04-05
EP0143681A1 (en) 1985-06-05
FR2552725B1 (en) 1986-09-19
ATE28155T1 (en) 1987-07-15

Similar Documents

Publication Publication Date Title
KR950002939B1 (en) Method and apparatus for verifications of rail braking distances
CA2137306C (en) Method and apparatus for detecting overdimensioning of charges in an aircraft
EP1642096B1 (en) Method and device for estimating the total mass of a motor vehicle
US5812249A (en) Speed and acceleration monitoring device using visible laser beams
US5435416A (en) Determination of the number of persons entering and leaving an elevator car
EP0143681B1 (en) Method and device for controlling the correct functioning of a cable car transport installation
EP0664271A1 (en) Anticollision device and method for mobiles on common rails
CH651144A5 (en) Processing unit and recording data of a vehicle.
EP2389306B1 (en) Method for monitoring the progress of a vehicle in a ropeway installation
CN110126878A (en) The wheel wear appraisal procedure of rail traffic vehicles, apparatus and system
EP4080472A1 (en) Control system
EP0356067A2 (en) Weighing vehicles
CN101759089A (en) Diagnostic device of passenger transmission equipment
KR100866613B1 (en) Apparatus and method of setting up wheel diameter
FR2602894A1 (en) MOBILE MOUNTING SYSTEM IN BOTH SENSES ON A SINGLE PATH USING DIRECT DETECTION PHOTOELECTRIC CELLS
JPH0257463A (en) Safe running control system for bucket of cableway
FR2645482A1 (en) SAFETY BRAKING DEVICE OF A FUNICULAR
JP2017133897A (en) Cable full-length measuring device in circulating ropeway
JPH1081474A (en) Door diagnosing device of elevator
JPH10297491A (en) Train physical injury preventing system
CA1062357A (en) Continuous speed control process and equipment for motor vehicles
SU1169870A1 (en) Apparatus for determining weight characteristics of uncoupled train sections
TW202210338A (en) Rail-guided carrier system
SU823203A1 (en) Device for measuring the path rolled by railway vehicle wheels
JPS60128065A (en) Guide apparatus for position of getting-on

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE IT LI SE

17P Request for examination filed

Effective date: 19851122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POMAGALSKI S.A.

17Q First examination report despatched

Effective date: 19860918

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE IT LI SE

REF Corresponds to:

Ref document number: 28155

Country of ref document: AT

Date of ref document: 19870715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3464567

Country of ref document: DE

Date of ref document: 19870813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900921

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910927

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930909

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930929

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PVP

Owner name: CREDIT LYONNAIS SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

EUG Se: european patent has lapsed

Ref document number: 84401921.6

Effective date: 19920408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL