EP0143681A1 - Method and device for controlling the correct functioning of a cable car transport installation - Google Patents

Method and device for controlling the correct functioning of a cable car transport installation Download PDF

Info

Publication number
EP0143681A1
EP0143681A1 EP84401921A EP84401921A EP0143681A1 EP 0143681 A1 EP0143681 A1 EP 0143681A1 EP 84401921 A EP84401921 A EP 84401921A EP 84401921 A EP84401921 A EP 84401921A EP 0143681 A1 EP0143681 A1 EP 0143681A1
Authority
EP
European Patent Office
Prior art keywords
line
cable
power
signal
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84401921A
Other languages
German (de)
French (fr)
Other versions
EP0143681B1 (en
Inventor
Denis Creissels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poma SA
Original Assignee
CREISSELS DENIS SA
Pomagalski SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CREISSELS DENIS SA, Pomagalski SA filed Critical CREISSELS DENIS SA
Priority to AT84401921T priority Critical patent/ATE28155T1/en
Publication of EP0143681A1 publication Critical patent/EP0143681A1/en
Application granted granted Critical
Publication of EP0143681B1 publication Critical patent/EP0143681B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/06Safety devices or measures against cable fracture

Definitions

  • the invention relates to a method and a device for controlling the operating condition of an overhead cable transport installation driven by an electric motor and capable of transporting vehicles of variable load along a line of transportation. displacement extending between two stations, in which installation the instantaneous power of cable drive is measured and reduced by a signal.
  • the tractor or carrier-tractor cable is driven by a power station and the movement is transmitted by the cable over a trajectory of several hundred meters or even over kilometers of which surveillance over the entire route is practically impossible.
  • User safety nevertheless requires instant detection of any incident at any point in the installation, and detectors are known for cable derailment or untimely movement of the cable tension counterweight.
  • the derailment detectors must be placed in line with each cable guide pulley and be connected by an electrical safety line extending along the installation, while the operation of the detector associated with the counterweight is unreliable.
  • the present invention aims to remedy these inconveniences. come by carrying out a permanent control of the operation of the installation. It starts from the observation that the driving power of the cable at a given time is a function of the speed of the cable, the slope of the cable at the location of the vehicle (s) along the line, the load carried by the or vehicles and the condition of the facility. By determining the first three parameters, it is therefore possible to check the operating status of the installation.
  • the method according to the invention is characterized in that the line data is recorded in a memory unit for the evaluation of the normal drive power of the cable as a function of the value of the load transported, of the position of the line vehicles and cable speed, which is provided to a central processing unit for data on cable drive speed, line vehicle load value and position of line vehicles at each instant, said central unit interrogating the memory unit to generate from said data a signal representative of said normal power and that said normal power and instantaneous power signals are continuously compared in a comparison block to develop a representative output signal the difference between said powers, said output signal triggering an alarm and / or a device for stopping the installation when a predetermined threshold is crossed completed.
  • the position of the vehicle is given by the movement of the winch of the towing cable and it suffices to record the profile of the line and read this recording during the movement of the vehicle to have the data of calculation of normal power, if care is taken to count or weigh the passengers on board.
  • the memory unit and the central processing unit can be very simple and produced by any suitable means. If the cable car has two skips, calculate the normal power for each skip and deduct the resulting total normal power.
  • the control device receives the starting information at each clutch of a cabin in one or the other of the stations, at the same time as the information of the load. transported.
  • the control device is advantageously in this case a computer, which tracks each cabin during its online movement and knowing at all times the different positions of the cabins, their loads, the speed of the gondola and the profile of the line, can calculate or determine the normal drive power of the cable.
  • a simple comparator for example a differential amplifier and a threshold circuit, allows signaling of a notable difference between instantaneous and normal powers. Abnormal advancement resistance can thus be detected before the incident or accident and allows preventive intervention.
  • a cable car comprises a motor 10 for driving the winch of the towing cable 12 of a bucket 14 circulating between the two stations A and B.
  • a scale 16 weighs the passengers embarking in the bucket 14 and provides a signal P of the total weight of the bucket 14 to a central processing unit 18 of a control device designated by the general reference 20.
  • a tachometer generator 22 coupled to the motor 10 supplies this central unit 18 with a signal V of the speed of the cable 12.
  • the motor 10 drives by a transmission 24 a magnetic recording tape 26 with read heads 28, 30.
  • the tape 26 moves in synchronism with the bucket 14 and the read heads 28, 30 read the recorded information corresponding to the location of the bucket online.
  • One of the recording tracks of the tape 26 can represent the profile of the line, in this case the abscissas and ordinates of the ends of the staff, while the other track can represent correction factors, in particular at the start and braking of the bucket, as well as an increase in friction when passing a pylon.
  • the central unit 18 permanently has the stored information read by the heads 28, 30 and the speed and load information and this data is transmitted to a calculation unit 32 which determines the normal drive power of the cable 12.
  • the signal of calculated normal power is supplied to a comparator 34 which receives an instantaneous power signal emitted by a measuring device 36 of the electric power W supplied to the motor 10.
  • the comparator 34 indicates the difference between these two powers and triggers an alarm or stops the installation if this difference exceeds a predetermined threshold.
  • the device control can be simplified if the load transported is substantially constant and if the installation operates at one or two predetermined speeds. It is then possible to store directly on the tape 26 the normal drive power for each of the speeds and to read the information corresponding to the selected speed, the control device being limited to the comparator 34. It is clear that the speed signal can be calculated by the central unit, which may include a clock, on the basis of a movement signal of the strip 26 and that the load of the cabin can be determined in a different way.
  • FIG. 2 shows an example of variation of the power as a function of the location of the bucket 14 on the line.
  • the power difference can be permanent or at a given location which makes it possible to locate the anomaly.
  • a scale (not shown) at the station B supplies the load signal P and the control device 20 receives slope change information.
  • the cabins 38 are disengaged from the carrier-tractor cable 40 in the stations and run on transfer rails 42. At the outlet, the cabins 38 are engaged on the cable 40, which is permanently driven by a driving pulley 44 coupled to a motor. electric 46.
  • the clutch of a cabin 38 is signaled by a through contact 48, which sends a start signal to a central unit 50 of a control computer 52.
  • a scale 54 weighs the people embarking in the cabin and the corresponding signal P is transmitted to the central unit 50.
  • This unit 50 also receives a displacement signal emitted by a pulse wheel 56 coupled to the driving pulley 44.
  • the computer 52 includes a memory 58 in which are recorded the characteristics of the line, in particular the online profile and a unit of calculation 60, the time base being provided by a clock.
  • the computer 52 emits a normal power signal transmitted to a comparator 62, which compares this signal with an instantaneous power signal W supplied by a Wattmeter 64 for measuring the electric power W supplying the motor 46.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Electric Cable Installation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Pipeline Systems (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Conveyors (AREA)

Abstract

1. A method for controlling the correct functioning of an aerial cable transport installation (12, 40) driven by an electric motor (10, 46) and which may transport cars (14, 38) with variable loads (P) along the transport line extending between two stations, in which installation the instantaneous cable driving power (W) is measured and represented by a signal, characterized in that the data of the line are registered in a memory unit (26, 58) for the calculation of the normal cable driving power in accordance with the transported load, the car positions (14, 38) along the line and the cable speed (V), in that at each moment the data relating to the cable speed, the load value of the cars on the line and the car positions on the line are provided to a central processing unit (18, 50) which reads in the memory unit (26, 58) the data for elaborating therefrom a signal representing said normal power and that said normal power signal and instantaneous power signal are permanently compared in a comparator unit (34, 62) to elaborate an output signal which represents the difference between said powers, said output signal providing an alarm and/or an installation stopping when it passes a predetermined threshold.

Description

L'invention est relative à un procédé et à un dispositif de contrôle de l'état de fonctionnement d'une installation de transport à câble aérien entraîné par un moteur électrique et susceptible de transporter des véhicules de charge variable le long d'une ligne de déplacement s'étendant entre deux stations, dans laquelle installation la puissance instantanée d'entraînement du câble est mesurée et raduite par un signal.The invention relates to a method and a device for controlling the operating condition of an overhead cable transport installation driven by an electric motor and capable of transporting vehicles of variable load along a line of transportation. displacement extending between two stations, in which installation the instantaneous power of cable drive is measured and reduced by a signal.

Dans les installations du genre indiqué, notamment les téléfériques, télésièges et télécabines, le câble tracteur ou porteur-tracteur est entraîné par une station motrice et le mouvement est transmis par le câble sur une trajectoire de plusieurs centaines de mètres ou même sur des kilomètres dont la surveillance sur l'ensemble du parcours est pratiquement impossible. La sécurité des utilisateurs impose néanmoins une détection instantanée de tout incident en un point quelconque de l'installation et l'on connaît des détecteurs de déraillement du câble ou de déplacement intempestif du contrepoids de tension du câble. Les détecteurs de déraillement doivent être disposés au droit de chaque poulie de guidage du câble et être reliés par une ligne électrique de sécurité s'étendant le long de l'installation, tandis que le fonctionnement du détecteur associé au contre-poids est peu fiable.In installations of the type indicated, in particular cable cars, chairlifts and cable cars, the tractor or carrier-tractor cable is driven by a power station and the movement is transmitted by the cable over a trajectory of several hundred meters or even over kilometers of which surveillance over the entire route is practically impossible. User safety nevertheless requires instant detection of any incident at any point in the installation, and detectors are known for cable derailment or untimely movement of the cable tension counterweight. The derailment detectors must be placed in line with each cable guide pulley and be connected by an electrical safety line extending along the installation, while the operation of the detector associated with the counterweight is unreliable.

Il a déjà été proposé de détecter des variations intempestives, notamment de la puissance consommée du moteur d'entraînement, mais la sensibilité de ces dispositifs est forcément limitée si on veut éviter des déclenchements en fonctionnement normal et ils sont incapables de détecter une variation lente due par exemple à une usure ou à un grippage.It has already been proposed to detect untimely variations, in particular of the power consumed by the drive motor, but the sensitivity of these devices is necessarily limited if one wishes to avoid tripping in normal operation and they are unable to detect a slow variation due for example to wear or seizure.

La présente inνention a pour but de remédier à ces inconvénients en réalisant un contrôle permanent du fonctionnement de l'installation. Elle part de la constatation que la puissance d'entraînement du câble à un instant donné est fonction de la vitesse du câble, de la pente du câble à l'emplacement du ou des véhicules le long de la ligne, de la charge transportée par le ou les véhicules et de l'état de l'installation. En déterminant les trois premiers paramètres il est donc possible de contrôler l'état de fonctionnement de l'installation.The present invention aims to remedy these inconveniences. come by carrying out a permanent control of the operation of the installation. It starts from the observation that the driving power of the cable at a given time is a function of the speed of the cable, the slope of the cable at the location of the vehicle (s) along the line, the load carried by the or vehicles and the condition of the facility. By determining the first three parameters, it is therefore possible to check the operating status of the installation.

Le procédé selon l'invention est caractérisé en ce qu'on enregistre dans une unité mémoire les données de la ligne pour l'évaluation de la puissance normale d'entraînement du câble en fonction de la valeur de la charge transportée, de la position des véhicules en ligne et de la vitesse du câble, qu'on fournit à une unité centrale de traitement les données pour connaître la vitesse d'entraînement du câble, la valeur de la charge des véhicules en ligne et la position des véhicules en ligne à chaque instant, ladite unité centrale questionnant l'unité mémoire pour élaborer à partir desdites données un signal représentatif de ladite puissance normale et que lesdits signaux de puissance normale et de puissance instantanée sont comparés en permanence dans un bloc de comparaison pour élaborer un signal de sortie représentatif de l'écart entre lesdites puissances, ledit signal de sortie déclenchant un alarme et/ou un dispositif d'arrêt de l'installation lors d'un franchissement d'un seuil prédéterminé. Il est même possible de ne pas intégrer la charge utile des véhicules insérés, en utilisant comme base de références, les puissances consommées dans une période relativement brève après la mise en vitesse des véhicules (fixes ou débrayables). On sait que la force nécessaire pour déplacer une charge P sur une pente d'un angle oL-est donnée par la formule Pxsinoα, la puissance étant V Pxsinα, si V est la vitesse de déplacement. Il convient bien entendu d'y ajouter les forces de friction et les forces d'inertie en cas de variation de vitesse, mais ces forces peuvent être évaluées ou mesurées à l'origine et il est possible d'en tenir compte. Dans le cas d'une installation à attaches fixes, notamment d'un téléférique à une seule benne, la position du véhicule est donnée par le mouvement du treuil du câble tracteur et il suffit d'enregistrer le profil de la ligne et de lire cet enregistrement au cours du déplacement du véhicule pour disposer des données de calcul de la puissance normale, si l'on prend soin de compter ou de peser les voyageurs embarqués. L'unité mémoire et l'unité centrale de traitement peuvent être très simples et réalisées par tout moyen approprié. Si le téléférique comporte deux bennes il faut calculer la puissance normale pour chaque benne et en déduire la puissance normale totale résultante.The method according to the invention is characterized in that the line data is recorded in a memory unit for the evaluation of the normal drive power of the cable as a function of the value of the load transported, of the position of the line vehicles and cable speed, which is provided to a central processing unit for data on cable drive speed, line vehicle load value and position of line vehicles at each instant, said central unit interrogating the memory unit to generate from said data a signal representative of said normal power and that said normal power and instantaneous power signals are continuously compared in a comparison block to develop a representative output signal the difference between said powers, said output signal triggering an alarm and / or a device for stopping the installation when a predetermined threshold is crossed completed. It is even possible not to integrate the payload of the inserted vehicles, by using as a reference base, the powers consumed in a relatively short period after the speeding up of the vehicles (fixed or disengageable). We know that the force necessary to move a load P on a slope of an angle oL-is given by the formula Pxsinoα, the power being V Pxsinα, if V is the speed of displacement. It is of course appropriate to add the friction forces and the inertial forces in the event of a speed variation, but these forces can be evaluated or measured at the origin and it is possible to take them into account. In the case of an installation with fixed attachments, in particular of a cable car with a single skip, the position of the vehicle is given by the movement of the winch of the towing cable and it suffices to record the profile of the line and read this recording during the movement of the vehicle to have the data of calculation of normal power, if care is taken to count or weigh the passengers on board. The memory unit and the central processing unit can be very simple and produced by any suitable means. If the cable car has two skips, calculate the normal power for each skip and deduct the resulting total normal power.

Pour des installations plus complexes à véhicules débrayables, notamment des télécabines, le dispositif de contrôle reçoit les informations de départ à chaque embrayage d'une cabine dans l'une ou l'autre des stations, en même temps que l'information de la charge transportée. Le dispositif de contrôle est dans ce cas avantageusement un ordinateur, qui suit chaque cabine au cours de son déplacement en ligne et connaissant à chaque instant les différentes positions des cabines, leurs charges, la vitesse de la télécabine et le profil de la ligne, peut calculer ou déterminer la puissance normale d'entraînement du câble. Un simple comparateur, par exemple un amplificateur différentiel et un circuit seuil, permet une signalisation d'une différence notable entre les puissances instantanées et normales. Une résistance à l'avancement anormale peut ainsi être détectée avant l'incident ou l'accident et permet une intervention préventive.For more complex installations with detachable vehicles, in particular cable cars, the control device receives the starting information at each clutch of a cabin in one or the other of the stations, at the same time as the information of the load. transported. The control device is advantageously in this case a computer, which tracks each cabin during its online movement and knowing at all times the different positions of the cabins, their loads, the speed of the gondola and the profile of the line, can calculate or determine the normal drive power of the cable. A simple comparator, for example a differential amplifier and a threshold circuit, allows signaling of a notable difference between instantaneous and normal powers. Abnormal advancement resistance can thus be detected before the incident or accident and allows preventive intervention.

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de deux modes de mise en oeuvre de l'invention, donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :

  • - la figure 1 est une vue schématique d'un téléférique à une seule benne, équipé d'un dispositif de contrôle selon l'invention;
  • - la figure 2 représente la courbe de variation de la puissance d'entraînement en fonction de la position de la benne du téléférique selon la fig. 1;
  • - la figure 3 est une vue analogue à celle de la fig. 1, montrant une télécabine.
Other advantages and characteristics will emerge more clearly from the description which follows of two embodiments of the invention, given by way of nonlimiting examples and represented in the appended drawings, in which:
  • - Figure 1 is a schematic view of a cable car with a single bucket, equipped with a control device according to the invention;
  • - Figure 2 shows the variation curve of the drive power as a function of the position of the cable car grab according to fig. 1;
  • - Figure 3 is a view similar to that of FIG. 1, showing a gondola.

Sur la figure 1, un téléférique comporte un moteur 10 d'entraînement du treuil du câble tracteur 12 d'une benne 14 circulant entre les deux stations A et B. Pour des raisons de simplicité de l'exposé il est sùpposé que le téléférique comporte une seule benne. Une balance 16 pèse les passagers s'embarquant dans la benne 14 et fournit un signal P du poids total de la benne 14 à une unité centrale de traitement 18 d'un dispositif de contrôle désigné par le repère général 20. Une génératrice tachymétrique 22 accouplée au moteur 10 fournit à cette unité centrale 18 un signal V de vitesse du câble 12. Le moteur 10 entraîne par une transmission 24 une bande magnétique enregistreuse 26 à têtes de lecture 28, 30. La bande 26 se déplace en synchronisme avec la benne 14 et les têtes de lecture 28, 30 lisent les informations enregistrées correspondant à l'emplacement de la benne en ligne. L'une des pistes d'enregistrement de la bande 26 peut représenter le profil de la ligne, en l'occurrence les abscisses et ordonnées des extrémités de la portée, tandis que l'autre piste peut représenter des facteurs de correction, notamment au démarrage et au freinage de la benne, ainsi qu'une augmentation de friction au passage d'un pylône. L'unité centrale 18 dispose en permanence des informations mémorisées lues par les têtes 28, 30 et les informations de vitesse et de charge et ces données sont transmises à une unité de calcul 32 qui détermine la puissance normale d'entraînement du câble 12. Le signal de puissance normale calculée est fournie à un comparateur 34 qui reçoit un signal de puissance instantanée émis par un appareil de mesure 36 de la puissance électrique W fournie au moteur 10. Le comparateur 34 indique l'écart entre ces deux puissances et déclenche une alarme ou arrête l'installation si cet écart dépasse un seuil prédéterminé. Le dispositif de contrôle peut être simplifié si la charge transportée est sensiblement constante et si l'installation fonctionne à une ou deux vitesses prédéterminées. On peut alors mémoriser sur la bande 26 directement la puissance normale d'entraînement pour chacune des vitesses et lire l'information correspondant à la vitesse sélectionnée, le dispositif de contrôle se limitant au comparateur 34. Il est clair que le signal vitesse peut être calculé par l'unité centrale, qui peut comporter une horloge, à partir d'un signal de dépl'acement de la bande 26 et que la charge de la cabine peut être déterminée d'une manière différente.In FIG. 1, a cable car comprises a motor 10 for driving the winch of the towing cable 12 of a bucket 14 circulating between the two stations A and B. For reasons of simplicity of the description it is assumed that the cable car comprises a single bucket. A scale 16 weighs the passengers embarking in the bucket 14 and provides a signal P of the total weight of the bucket 14 to a central processing unit 18 of a control device designated by the general reference 20. A tachometer generator 22 coupled to the motor 10 supplies this central unit 18 with a signal V of the speed of the cable 12. The motor 10 drives by a transmission 24 a magnetic recording tape 26 with read heads 28, 30. The tape 26 moves in synchronism with the bucket 14 and the read heads 28, 30 read the recorded information corresponding to the location of the bucket online. One of the recording tracks of the tape 26 can represent the profile of the line, in this case the abscissas and ordinates of the ends of the staff, while the other track can represent correction factors, in particular at the start and braking of the bucket, as well as an increase in friction when passing a pylon. The central unit 18 permanently has the stored information read by the heads 28, 30 and the speed and load information and this data is transmitted to a calculation unit 32 which determines the normal drive power of the cable 12. The signal of calculated normal power is supplied to a comparator 34 which receives an instantaneous power signal emitted by a measuring device 36 of the electric power W supplied to the motor 10. The comparator 34 indicates the difference between these two powers and triggers an alarm or stops the installation if this difference exceeds a predetermined threshold. The device control can be simplified if the load transported is substantially constant and if the installation operates at one or two predetermined speeds. It is then possible to store directly on the tape 26 the normal drive power for each of the speeds and to read the information corresponding to the selected speed, the control device being limited to the comparator 34. It is clear that the speed signal can be calculated by the central unit, which may include a clock, on the basis of a movement signal of the strip 26 and that the load of the cabin can be determined in a different way.

La figure 2 montre un exemple de variation de la puissance en fonction de l'emplacement de la benne 14 sur la ligne. L'écart de puissance peut être permanent ou à un emplacement donné ce qui permet de localiser l'anomalie.FIG. 2 shows an example of variation of the power as a function of the location of the bucket 14 on the line. The power difference can be permanent or at a given location which makes it possible to locate the anomaly.

Sur le parcours de descente de la benne 14, une balance (non représentée) à la station B fournit le signal de charge P et le dispositif de contrôle 20 reçoit une information de changement de pente.On the descent path of the bucket 14, a scale (not shown) at the station B supplies the load signal P and the control device 20 receives slope change information.

En se référant à la figure 3, on voit une station d'une télécabine débrayable monocâble. Les cabines 38 sont débrayées du câble porteur-tracteur 40 dans les stations et circulent sur des rails de transfert 42. A la sortie les cabines 38 sont embrayées sur le câble 40, qui est entrainé en permanence par une poulie motrice 44 accouplée à un moteur électrique 46. L'embrayage d'une cabine 38 est signalé par un contact de passage 48, qui envoie un signal de départ à une unité centrale 50 d'un ordinateur de contrôle 52. Une balance 54 pèse les personnes s'embarquant dans la cabine et le signal P correspondant est transmis à l'unité centrale 50. Cette unité 50 reçoit de plus un signal de déplacement émis par une roue à impulsions 56 accouplée à la poulie motrice 44. L'ordinateur 52 comporte une mémoire 58 dans laquelle sont enregistrées les caractéristiques de la ligne, notamment le profil en ligne et une unité de calcul 60, la base de temps étant fournie par une horloge. L'ordinateur 52 émet un signal de puissance normale transmis à un comparateur 62, qui compare ce signal à un signal de puissance instantanée W fourni par un Wattmètre 64 de mesure de la puissance électrique W d'alimentation du moteur 46.Referring to Figure 3, we see a station of a detachable single cable gondola. The cabins 38 are disengaged from the carrier-tractor cable 40 in the stations and run on transfer rails 42. At the outlet, the cabins 38 are engaged on the cable 40, which is permanently driven by a driving pulley 44 coupled to a motor. electric 46. The clutch of a cabin 38 is signaled by a through contact 48, which sends a start signal to a central unit 50 of a control computer 52. A scale 54 weighs the people embarking in the cabin and the corresponding signal P is transmitted to the central unit 50. This unit 50 also receives a displacement signal emitted by a pulse wheel 56 coupled to the driving pulley 44. The computer 52 includes a memory 58 in which are recorded the characteristics of the line, in particular the online profile and a unit of calculation 60, the time base being provided by a clock. The computer 52 emits a normal power signal transmitted to a comparator 62, which compares this signal with an instantaneous power signal W supplied by a Wattmeter 64 for measuring the electric power W supplying the motor 46.

Le dispositif selon la figure 3 fonctionne de la manière suivante :

  • Lors de l'installation de la télécabine on introduit dans la mémoire 58 les données relatives à la ligne, en particulier le profil de la ligne. Lors de l'embrayage de la première cabine 38, signalé par le contact 48, l'ordinateur 52 enregistre la charge P transportée, mesurée par la balance 54 et il suit la cabine dans sa progression le long de la ligne à partir des impulsions de déplacement fournies par la roue 56. Il opère de même pour les cabines suivantes partant de l'une et de l'autre des stations. A chaque instant l'ordinateur connaît la position de chaque cabine et sa charge. En interrogeant la mémoire 58 il connaît la pente de la ligne à l'emplacement de la cabine et il peut calculer à partir du signal de déplacement la vitesse. Il dispose ainsi de tous les éléments pour calculer la puissance normale d'entraînement de chaque cabine et d'élaborer le signal de puissance normale d'entraînement du câble 40, lequel signal est comparé dans le comparateur 62 au signal de puissance réelle.
  • L'invention est bien entendu applicable à tout type de transporteur aérien, l'ordinateur pouvant en même temps réaliser d'autres fonctions, par exemple de comptage et d'optimisation de la vitessé ou du nombre des cabines en ligne. Le système de pesée directe peut être remplacé par une mesure des puissances consommées pendant une courte période après la mise en vitesse ou l'embrayage de la cabine et un calcul par l'ordinateur de la charge correspondante, ce qui simplifie l'installation et l'application aux installations existantes.
The device according to FIG. 3 operates as follows:
  • During the installation of the gondola, the data relating to the line, in particular the profile of the line, is entered into memory 58. When the first cabin 38 is engaged, signaled by the contact 48, the computer 52 records the load P transported, measured by the balance 54 and it follows the cabin in its progression along the line from the pulses of displacement provided by the wheel 56. It operates in the same way for the following cabins departing from one and the other of the stations. At all times the computer knows the position of each cabin and its load. By interrogating memory 58, it knows the slope of the line at the location of the cabin and it can calculate the speed from the displacement signal. It thus has all the elements for calculating the normal drive power of each cabin and of developing the normal drive power signal of the cable 40, which signal is compared in the comparator 62 with the real power signal.
  • The invention is of course applicable to any type of air carrier, the computer being able at the same time to perform other functions, for example counting and optimizing the speed or the number of cabins in line. The direct weighing system can be replaced by a measurement of the powers consumed for a short period after the gear-up or clutching of the cabin and a calculation by the computer of the corresponding load, which simplifies installation and 'application to existing installations.

Claims (9)

1. Procédé de contrôle de l'état de fonctionnement d'une installation de transport à câble aérien (12, 40) entraîné par un moteur électrique (10, 46) et susceptible de transporter des véhicules (14, 38) de charge (P) variable le long .d'une ligne de déplacement s'étendant entre deux stations, dans laquelle installation la puissance (W) instantanée d'entraînement du câble est mesurée et traduite par un signal, caractérisé en ce qu'on enregistre dans une unité mémoire (26, 58) les données de la ligne pour l'évaluation de la puissance normale d'entraînement du câble en fonction de la valeur de la charge transportée, de la position des véhicules (14, 38) en ligne et de la vitesse (V) du câble, qu'on fournit à une unité (18, 50) centrale de traitement les données pour connaître la vitesse d'entraînement du câble, la valeur de la charge des véhicules en ligne et la position des véhicules en ligne à chaque instant, ladite unité centrale (18, 50) questionnant l'unité mémoire (26, 58) pour élaborer à partir desdites données un signal représentatif de ladite puissance normale et que lesdits signaux de puissance normale et de puissance instantanée sont comparés en permanence dans un bloc de comparaison (34, 62) pour élaborer un signal de sortie représentatif de l'écart entre lesdites puissances, ledit signal de sortie déclenchant une alarme et/ou un dispositif d'arrêt de l'installation lors d'un franchissement d'un seuil prédéterminé.1. Method for checking the operating state of an overhead cable transport installation (12, 40) driven by an electric motor (10, 46) and capable of transporting load vehicles (14, 38) (P ) variable along a displacement line extending between two stations, in which installation the instantaneous power (W) of cable drive is measured and translated by a signal, characterized in that it is recorded in a unit memory (26, 58) the line data for the evaluation of the normal cable drive power as a function of the value of the transported load, the position of the vehicles (14, 38) in line and the speed (V) of the cable, which is supplied to a central processing unit (18, 50) with the data for knowing the cable drive speed, the value of the load of the vehicles in line and the position of the vehicles in line at at each instant, said central unit (18, 50) questioning the memory unit (26, 58) for elab orer from said data a signal representative of said normal power and that said normal power and instantaneous power signals are continuously compared in a comparison block (34, 62) to produce an output signal representative of the difference between said powers, said output signal triggering an alarm and / or a device for stopping the installation when a predetermined threshold is crossed. 2. Procédé selon la revendication 1, caractérisé en ce qu'on introduit dans ladite unité mémoire (26, 58) les don- nées relatives au profil de la ligne, notamment les abscisses et ordonnées des têtes de pylône et que l'unité centrale (18, 50) calcule la puissance d'entraînement en fonction de l'emplacement d'un véhicule en tenant compte de sa charge (P), de la vitesse d'entraînement (V) et de la pente en cet emplacement.2. Method according to claim 1, characterized in that introduced into said memory unit (26, 58) don - born on the line profile, in particular the abscissa and ordinate of the pole head and that the central unit (18, 50) calculates the drive power as a function of the location of a vehicle taking into account its load (P), the drive speed (V) and the slope at this location. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on introduit dans ladite unité mémoire (40) au départ d'un véhicule (38) d'une station l'instant de départ et la valeur de la charge transportée par le véhicule et que l'unité centrale (50) détermine à chaque instant la position du véhicule en ligne et la puissance normale d'en- trainement de ce véhicule.3. Method according to claim 1 or 2, characterized in that introduced into said memory unit (40) from a vehicle (38) from a station the start time and the value of the load transported by the vehicle and that the central unit (50) determines at all times the position of the vehicle in line and the normal drive power of this vehicle. 4. Procédé selon la revendication 1, 2 ou 3 pour une installation à plusieurs véhicules en ligne, caractérisé en ce que l'unité centrale (50) détermine pour chaque véhicule (38) en ligne la puissance d'entraînement normale et en totalisant ces puissances normales pour l'ensemble des véhicules calcule la puissance normale d'entrainement de l'installation.4. Method according to claim 1, 2 or 3 for an installation with several vehicles in line, characterized in that the central unit (50) determines for each vehicle (38) in line the normal drive power and by adding these normal powers for all vehicles calculates the normal drive power of the installation. 5. Procédé selon la revendication 3 ou 4, caractérisé en ce que l'information relative à la valeur de la charge transportée est déuite et/ou calculée par l'unité centrale (18, 50) d'une mesure de la puissance instantanée juste après la mise en vitesse ou l'embrayage du véhicule sur le câble (12, 40).5. Method according to claim 3 or 4, characterized in that the information relating to the value of the load transported is deduced and / or calculated by the central unit (18, 50) of a measurement of the instantaneous power just after the vehicle has started up or is engaged on the cable (12, 40). 6. Dispositif pour la mise en oeuvre du procéde selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un dispositif de mesure (36, 64) de la puissance (W) instantanée d'entraînement du câble (12, 40), un dispositif de pesée (16, 54) des charges embarquées sur les véhicules (14, 38), un dispositif de mesure (22, 56) de la vitesse (V) du câble, une unité mémoire (26, 58) d'enregistrement des données caractéristiques de l'installation pour l'évaluation de la puissance normale d'entral- nement en fonction de la vitesse (V), des charges (P) et de la position en ligne des véhicules, une unité centrale (18, 50) de détermination de ladite puissance normale et un bloc comparateur (34, 62) pour déterminer l'écart de cette puissance normale et de la puissance instantanée, ledit bloc comparateur émettant un signal d'alarme et/ou d'arrêt en cas de dépassement d'un seuil prédéterminé dudit écart.6. Device for implementing the method according to any one of the preceding claims, characterized in that it comprises a device (36, 64) for measuring the instantaneous power (W) for driving the cable (12, 40), a weighing device (16, 54) of the loads carried on the vehicles (14, 38), a device for measuring (22, 56) the speed (V) of the cable, a memory unit (26, 58) recording of characteristic data of the installation for the evaluation of the normal drive power as a function of the speed (V), the loads (P) and the line position of the vehicles, a central unit ( 18, 50) for determining said normal power and a comparator block (34, 62) for determining the difference between this normal power and the instantaneous power, said comparator block emitting an alarm and / or stop signal in case of exceeding a predetermined threshold of said deviation. 7, Dispositif de contrôle selon la revendication 6, caractérisé en ce que ledit dispositif de pesée (16, 54) totalise le poids des passagers embarqués sur un véhicule (14, 38) et la tare.7, control device according to claim 6, characterized in that said weighing device (16, 54) totals the weight of the passengers on board a vehicle (14, 38) and the tare weight. 8. Dispositif selon la revendication 6 ou 7, caractérisé en ce que ladite unité centrale (18, 50) comporte une unité de calcul (32, 60) pour multiplier le signal de charge (P) par le signal de vitesse (V) et diviser ce produit par le signal de pente sinα, fourni par l'unité mémoire (26, 58), α étant l'angle de pente de la ligne à l'emplacement du véhicule.8. Device according to claim 6 or 7, characterized in that said central unit (18, 50) comprises a calculation unit (32, 60) for multiplying the load signal (P) by the speed signal (V) and divide this product by the slope signal sinα, supplied by the memory unit (26, 58), α being the angle of slope of the line at the location of the vehicle. 9. Dispositif selon la revendication 6, 7 ou 8, caractérisé en ce qu'il comporte un détecteur de départ (48) fournissant à l'unité centrale (50) le signal de départ d'un véhicule (38), un dispositif de mesure (56) de déplacement du câble (40) permettant à l'unité centrale (50) de connaître la position des véhicules en ligne et de déterminer pour chaque véhicule la part de puissance normale d'entrai- nement requise.9. Device according to claim 6, 7 or 8, characterized in that it comprises a departure detector (48) supplying the central unit (50) with the departure signal of a vehicle (38), a device for measurement (56) of movement of the cable (40) allowing the central unit (50) to know the position of the vehicles in line and to determine for each vehicle the share of normal power of drive required.
EP84401921A 1983-10-03 1984-09-26 Method and device for controlling the correct functioning of a cable car transport installation Expired EP0143681B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401921T ATE28155T1 (en) 1983-10-03 1984-09-26 METHOD AND DEVICE FOR CHECKING THE FUNCTIONALITY OF A CABLEWAY TRANSPORT INSTALLATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8315839 1983-10-03
FR8315839A FR2552725B1 (en) 1983-10-03 1983-10-03 METHOD AND DEVICE FOR MONITORING THE PROPER FUNCTIONING OF AN AIR CABLE TRANSPORTATION SYSTEM

Publications (2)

Publication Number Publication Date
EP0143681A1 true EP0143681A1 (en) 1985-06-05
EP0143681B1 EP0143681B1 (en) 1987-07-08

Family

ID=9292833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401921A Expired EP0143681B1 (en) 1983-10-03 1984-09-26 Method and device for controlling the correct functioning of a cable car transport installation

Country Status (5)

Country Link
EP (1) EP0143681B1 (en)
JP (1) JPS60110561A (en)
AT (1) ATE28155T1 (en)
DE (1) DE3464567D1 (en)
FR (1) FR2552725B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890929A1 (en) * 2005-09-21 2007-03-23 Telepheriques Tarentaise Mauri Auxiliary moving or braking unit controlling method for e.g. aerial cable transport installation, involves determining curve representative of variation of vehicle speed, and determining value of instantaneous torque
CN103057547A (en) * 2012-12-19 2013-04-24 山东省科学院自动化研究所 Method and device for detecting steel rope twisting faults of reciprocating cableways

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665131B1 (en) * 1990-07-27 1995-01-13 Reel Sa CABLE TRANSFER INSTALLATION COMPRISING MEANS FOR CONTROLLING THE TENSION AND THE ADHESION OF THE TRACTOR CABLE ON THE DRIVE PULLEY.
US5528219A (en) * 1994-04-28 1996-06-18 Konrad Doppelmayr & Sohn Ropeway safety monitoring system
JP4831748B2 (en) * 2006-08-22 2011-12-07 株式会社アドバンテスト Electronic component testing equipment
JP6989108B2 (en) * 2017-09-25 2022-01-05 日本ケーブル株式会社 Cableway operation status display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1937763A1 (en) * 1969-07-25 1971-02-11 Pohlig Heckel Bleichert Device for automatic towing force test on moving cable car
FR2122809A5 (en) * 1971-01-22 1972-09-01 Pomagalski Sa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1937763A1 (en) * 1969-07-25 1971-02-11 Pohlig Heckel Bleichert Device for automatic towing force test on moving cable car
FR2122809A5 (en) * 1971-01-22 1972-09-01 Pomagalski Sa

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890929A1 (en) * 2005-09-21 2007-03-23 Telepheriques Tarentaise Mauri Auxiliary moving or braking unit controlling method for e.g. aerial cable transport installation, involves determining curve representative of variation of vehicle speed, and determining value of instantaneous torque
CN103057547A (en) * 2012-12-19 2013-04-24 山东省科学院自动化研究所 Method and device for detecting steel rope twisting faults of reciprocating cableways
CN103057547B (en) * 2012-12-19 2015-06-03 山东省科学院自动化研究所 Method and device for detecting steel rope twisting faults of reciprocating cableways

Also Published As

Publication number Publication date
EP0143681B1 (en) 1987-07-08
ATE28155T1 (en) 1987-07-15
FR2552725B1 (en) 1986-09-19
DE3464567D1 (en) 1987-08-13
FR2552725A1 (en) 1985-04-05
JPS60110561A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
EP1642096B1 (en) Method and device for estimating the total mass of a motor vehicle
CA2137306C (en) Method and apparatus for detecting overdimensioning of charges in an aircraft
US2963575A (en) Hot box detector alarm circuit
EP0143681B1 (en) Method and device for controlling the correct functioning of a cable car transport installation
EP0664271A1 (en) Anticollision device and method for mobiles on common rails
FR2696435A1 (en) Control system for cable crane.
JP2009078875A (en) Device and method for diagnosing amount of slack in passenger conveyor chain
JPH05193850A (en) Counting of passenger getting on and off elevator
EP2389306B1 (en) Method for monitoring the progress of a vehicle in a ropeway installation
CN104176613A (en) Abnormity diagnostic system of passenger conveyer
EP0120813B1 (en) Process for the continuous weighing of divided products, and device for carrying out this process
CN110126878A (en) The wheel wear appraisal procedure of rail traffic vehicles, apparatus and system
US4065975A (en) Apparatus for measuring the slip of locomotive wheels and preventing sliding thereof
US20180172718A1 (en) Optical standoff sensor
CN101613052A (en) The armrest drive force monitoring apparatus of passenger conveyors
EP2716516A1 (en) Method and device for supervising a movement of a plurality of vehicles inside a station of an aerial cableway, in particular of a chair-lift or cable-car
JPH09508873A (en) Guidance guidance system and method for controlling lateral tilt conditions in a rail vehicle
NL9100591A (en) Pressure sensitive mat counting feet to monitor passenger traffic - is placed in entry or exit path of vehicle, building etc. to detect and count persons passing through
FR2602894A1 (en) MOBILE MOUNTING SYSTEM IN BOTH SENSES ON A SINGLE PATH USING DIRECT DETECTION PHOTOELECTRIC CELLS
EP0404606A1 (en) System for elaborating an alarm signal aboard an aircraft if an anomaly occured during take-off
US3633412A (en) Equipment for testing the brakes of automobiles
JPH1016777A (en) Heating part detector of track equipment
KR102273272B1 (en) Conveyor system and control method for the conveyor system
FR2645482A1 (en) SAFETY BRAKING DEVICE OF A FUNICULAR
US3235723A (en) Hot-box detector alarm circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE IT LI SE

17P Request for examination filed

Effective date: 19851122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POMAGALSKI S.A.

17Q First examination report despatched

Effective date: 19860918

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE IT LI SE

REF Corresponds to:

Ref document number: 28155

Country of ref document: AT

Date of ref document: 19870715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3464567

Country of ref document: DE

Date of ref document: 19870813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900921

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910927

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930909

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930929

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PVP

Owner name: CREDIT LYONNAIS SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

EUG Se: european patent has lapsed

Ref document number: 84401921.6

Effective date: 19920408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL