EP0142180B1 - Procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique, et antenne plane ainsi réalisée - Google Patents

Procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique, et antenne plane ainsi réalisée Download PDF

Info

Publication number
EP0142180B1
EP0142180B1 EP84201264A EP84201264A EP0142180B1 EP 0142180 B1 EP0142180 B1 EP 0142180B1 EP 84201264 A EP84201264 A EP 84201264A EP 84201264 A EP84201264 A EP 84201264A EP 0142180 B1 EP0142180 B1 EP 0142180B1
Authority
EP
European Patent Office
Prior art keywords
mould
plastic material
layer
metallic
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84201264A
Other languages
German (de)
English (en)
Other versions
EP0142180A1 (fr
Inventor
Michel Jean-Claude Monnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0142180A1 publication Critical patent/EP0142180A1/fr
Application granted granted Critical
Publication of EP0142180B1 publication Critical patent/EP0142180B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • C25D1/22Separating compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Definitions

  • the invention relates to a process for producing a molded plastic body coated with a metallic layer and finds its application in the manufacture of planar microwave antennas composed of radiating elements with microstrip lines associated with a dielectric substrate.
  • these antennas consist of two metal plates in which are made, on the one hand, openings directed towards the propagation medium, constituting the radiating elements, and on the other hand, a network of splines intended to receive central conductors.
  • the latter carried by a dielectric film sandwiched between the two metal plates, constitute with the radiating elements and the grooves, the antenna supply network.
  • the total area of these antennas can range from a few square centimeters to several square meters.
  • Such antennas are of growing interest because they find their application in the reception of television programs relayed by satellites.
  • Many other planar antenna structures have been proposed in recent years, but these structures do not meet the conditions imposed by the specifications of the CCIR (International Radio Consultative Committee) whereas the planar antennas produced according to the patent application cited have low losses, high gain and wide bandwidth in the wavelength range concerned.
  • Such a method has the drawback, moreover cited in this document, of allowing the production of only a small number of parts.
  • the vinyl layer the aim of which is to avoid the adhesion of the metal layer to the mold, does not allow good precision to be obtained on the dimension of the details of the molded part. Indeed, it does not have a uniform thickness over the whole of a large area.
  • the method described in the cited document does not allow large parts to be produced.
  • the aim of the present production method is therefore to remedy the drawbacks presented by the methods described in the cited documents by proposing a process for producing a molded plastic body coated with a metallic layer, according to which an intermediate layer intended to facilitate demolding having been previously formed on the surface of the mold, the metal layer is deposited in the mold before the introduction of the plastic, and according to which first, the mold is metallic and the intermediate layer is formed by passivation mold metal, then the metal coating layer is deposited by electrolysis and the plastic material introduced into the mold thus prepared and, finally, after hardening of the plastic material, demolding is carried out by practicing a heat treatment.
  • the mold is produced by machining a solid metal part, and its surface is electrolytically polished.
  • the mold is made of stamped sheet metal.
  • the plastic can be a thermosetting resin and can be poured into molds.
  • the plastic can also be a thermoplastic resin and be injected hot into the mold.
  • the mold is made of an iron-nickel-chromium alloy, it is chemically passivated, and the heat treatment used for demolding is cooling.
  • the mold is made of aluminum, passivated by an oxide layer, and the heat treatment used for demolding is heating.
  • the metallic coating layer may be made of a copper, or silver, or gold, and nickel compound.
  • the polishing and metal deposition operations can be done by an electrolytic method, which makes it possible to manufacture, on the one hand, large parts and on the other hand many pieces at once.
  • the passivation layer of the metal of the mold does not change the dimensions of the latter and that, in this case, the precision on the dimensions of the details of the molded part is the same as the precision on the realization of the mold.
  • the layer formed by passivation of the metal of the mold does not constitute an intermediate layer added between the mold and the molding, but forms an integral part of the mold. Consequently, and particularly in the case of a machined mold, the precision obtained for the molded part can be extremely high, which may be required when making certain types of microwave antennas.
  • the moldings made from the same mold are extremely repetitive.
  • the quality of the parts is improved, and the manufacturing is simplified and accelerated.
  • the radiating element of the planar antenna is composed of two metal plates 40 and 50 in which the openings 41 and 51 are made facing one another. These two plates enclose the dielectric sheet 20 supporting the central conductor 30.
  • the flaring 61 is intended to improve the gain and the reflective plane 71 is intended to improve the adaptation.
  • the central conductors 30 progress towards the antenna outlet in the grooves 42 and 52 formed in the plates 40 and 50 respectively, and shown in section in FIG. 1b.
  • All antenna surfaces along which the signal to be transmitted or transmitted is propagated must be metallized.
  • the only surface which it is not essential to metallize is therefore the rear face of the antenna which is not turned towards the propagation medium.
  • the plate 40 for example, it is necessary to metallize the surfaces 14 and 16, while for the plate 50, it suffices to metallize the surface 15, as shown in FIGS. 2a and 2b.
  • the manufacture of the planar antenna using the method according to the invention is implemented in the manner illustrated in FIGS. 3 and 4.
  • This manufacture includes the production of the two plates 40 and 50 using molds specifically provided for each of these parts.
  • Each of these molds can be obtained from a solid machined metal part, which is shown in Figure 3, or from a stamped sheet which is shown in Figure 4.
  • the use of a metallic material for the manufacture of the mold is made necessary because most of the operations carried out on the mold, according to the present invention, are preferably of the electrolytic type.
  • the mold is machined.
  • the plate 40 For the production of the plate 40, it comprises two parts 1 and 2 as shown in FIG. 3a. After machining, each of the parts constituting the mold is polished by a preferably electrolytic process. Then these parts 1 and 2 are passivated, so that the metal layer, which is there subsequently filed, cannot join.
  • the metal chosen to make the mold is steel, passivation is obtained by the action of hot nitric acid. If the chosen metal is aluminum, the passivation is done by anodic oxidation.
  • Each part of the mold thus prepared receives a metallic deposit, preferably by electrolysis, using a metal having electrolytic properties on the one hand and being compatible with the operation of a microwave antenna on the other hand. This is why a compound of copper, or silver, or gold with nickel is preferably chosen.
  • the metal layer produced by an electrolytic method is deposited both inside and outside the mold.
  • the electrolytic methods are used in preference to all others as giving the best results on the large areas presented by the antennas.
  • the electrolytic pickling allows on the one hand to obtain an excellent surface condition on very large parts, and the electrolytic deposition on the other hand provides particularly uniform and homogeneous layers, on these same parts.
  • these results are perfectly repetitive in the case of mass production.
  • many parts can be processed at the same time, which is also favorable for mass production.
  • a plastic or resin is then introduced between parts 1 and 2 of the mold.
  • This resin can be of the thermosetting or thermoplastic type, and depending on the case, it can be molded or injected. For the molding and / or hardening of such a resin, it is never necessary to raise the temperature of the mold to the melting temperature of the metallization, which therefore does not risk being deteriorated.
  • demolding takes place by separating parts 1, 40 and 2. If the metallic material constituting the mold has a lower coefficient of expansion than that of resin, demolding is obtained using a heat treatment consisting of cooling of the parts, which causes the dimensions of the plastic body to shrink. The latter is ejected, causing metallization with it. This type of operation is used in the case where the metallic material used for the mold is for example an iron-nickel-chromium alloy of the INVAR type.
  • the metallic material constituting the mold has a coefficient of expansion greater than that of the resin, which is the case if the mold is made of aluminum for example, demolding is obtained using a consistent heat treatment in a heating which causes an expansion of the mold, and the separation of the plastic body which is ejected causing the metallization with it.
  • Another advantage of this method lies in the fact that the molds can be reused a large number of times.
  • the latter For the manufacture of the plate 50 using a machined mold, the latter comprises two parts 3 and 4, as shown in FIG. 3b.
  • the surface 15 of the body 50 having to be metallized alone, there is only the part 4 of the mold which receives the metallization.
  • the part 3 can be made of any material, metallic or not, such that its surface 17 does not adhere to the part 50 in resin. If this surface adhered to the resin, it could remain stuck on it and would in no way affect the functioning of the antenna. But one should then provide a part 3 of the new mold, for each antenna manufactured, which is not desired, so as not to increase the manufacturing cost.
  • the part 3 of the mold can therefore be provided in teflon for example, or else metallic and coated with a varnish.
  • the molding and demolding of the part 50 of the antenna is then carried out in the same way as has been described for the part 40.
  • the molds can be produced by stamping a sheet as shown in FIGS. 4a and 4b.
  • the latter technique has a number of additional advantages. Firstly, less weight of metallic material is used to make the molds, which reduces the cost and makes it easier to use in the case of large parts, which are not easy to handle.
  • stamping is a simpler and less expensive operation than machining. Indeed, in the case of mass production, a large number of molds is necessary, and a low cost of manufacturing the molds is sought in the same way as a low cost of the parts themselves.
  • the stamped sheet has a sufficiently good surface condition to avoid the polishing operation. Finally the stamped sheet is flexible and facilitates demolding.
  • a stamped mold may be used in place of a more precise machined mold.
  • the precision lost on the stamped mold is gained on molding, since the intermediate layer intended to facilitate demolding has, in the process according to the invention, a negligible thickness, being a simple passivation layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

  • L'invention concerne un procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique et trouve son application dans la fabrication d'antennes planes hyperfréquences composées d'éléments rayonnants à lignes microrubans associées à un substrat diélectrique.
  • De telles antennes sont décrites dans la demande de brevet européen No 0108463.
  • Pour la réception ou la transmission d'un signal présentant une seule polarisation, ces antennes sont constituées de deux plaques métalliques dans lesquelles sont pratiquées, d'une part, des ouvertures dirigées vers le milieu de propagation, constituant les éléments rayonnants, et d'autre part, un réseau de cannelures destiné à recevoir des conducteurs centraux. Ces derniers, portés par un film diélectrique enserré entre les deux plaques métalliques, constituent avec les éléments rayonnants et les cannelures, le réseau d'alimentation de l'antenne. La surface totale de ces antennes peut aller de quelques centimètres carrés à plusieurs mètres carrés.
  • De telles antennes présentent un intérêt grandissant du fait qu'elles trouvent leur application dans la réception d'émission de télévision relayées par satellites. De nombreuses autres structures d'antennes planes ont été proposées au cours de ces dernières années, mais ces structures ne répondent pas aux conditions imposées par les spécifications du C.C.I.R (Comité Consultatif International de Radio) alors que les antennes planes réalisées selon la demande de brevet cité présentent des faibles pertes, un gain élevé et une large bande passante dans le domaine de longueur d'onde concerné.
  • Dans ces conditions, il est impératif de mettre au point un procédé de fabrication permettant la réalisation de telles antennes, en grande quantité, avec un faible coût. En effet, les applications dans le domaine de la réception de télévision impliquent toujours des fabrications en grande série pour une gamme de produits présentant un rapport satisfaisant entre la qualité et le prix.
  • C'est pourquoi, il est intéressant de remplacer, dans la fabrication de ces antennes, les plaques métalliques par des plaques en plastique métallisés, tout en imposant à l'ensemble une grande résistance à l'usage et aux intempéries.
  • Pour la réalisation des corps en plastique métallisé, il est connu du brevet GB-A-2 044 543 un procédé pour faire adhérer une couche électrolytique à une couche de résine moulée. Une vis crée l'effort mécanique permettant de séparer la couche électrolytique du moule support. Mais cette méthode ne peut fonctionner que pour la réalisation de pièces moulées extrêmement simples, ce qui n'est pas le cas des plaques conductrices nécessaires à la réalisation de l'antenne plane, ceci malgré le fait qu'elle ne présente qu'un réseau de conducteurs.
  • Il est d'autre part connu du brevet US-A-4 363 705 d'utiliser l'action de la passivation du nickel pour séparer deux couches en nickel dans la fabrication des matrices de disques microsillons. Mais cette méthode concerne la séparation de deux "couches" métalliques présentant de très fines aspérités, et qui de ce fait peuvent "peler" facilement. Il n'est pas dit comment appliquer cette méthode à la séparation entre un moule métallique substantiellement rigide et une couche métallique attachée à une couche plastique formant un ensemble également substantiellement rigide et à reliefs beaucoup plus grands en comparaison de ceux des matrices positives et négatives du document cité.
  • Il est encore connu du brevet FR-A-1 175 166 un procédé pour réaliser un guide d'onde, ou corps creux, formé d'une couche de nickel, à partir d'un mandrin ou bloc en aluminium recou- vert d'une couche d'alumine puis d'une couche mince d'argent et enfin d'une couche épaisse galvanique en nickel. Selon ce procédé on ménage une lumière pour éliminer le mandrin grâce à une attaque de l'aluminium par l'alcali et pour obtenir ainsi le corps creux formé d'une couche de nickel pour constituer un guide d'onde. Mais cette méthode est destructrice du moule, ou mandrin.
  • Et il est connu par le brevet anglais GB-A-1.1 67.690, publié le 22 octobre 1969, de fabriquer de tels corps en plastique métallisé. La méthode proposée par ce document consiste à revêtir un moule en bois d'une Première couche de vinyle destinée à favoriser le démoulage et qui sera éliminée lors de cette opération. Puis une couche métallique est pulvérisée sur le vinyle dans le moule ainsi préparé et le corps plastique est moulé par injection. Il suffit ensuite de dissoudre la couche de vinyle pour obtenir le corps en plastique revêtu de la couche métallique.
  • Une telle méthode présente l'inconvénient, d'ailleurs cité dans ce document, de ne permettre la réalisation que d'un petit nombre de pièces. En outre, la couche de vinyle, dont le but est d'éviter l'adhérence de la couche métallique sur le moule, ne permet pas d'obtenir une bonne précision sur la dimension des détails de la pièce moulée. En effet, elle ne présente pas une épaisseur uniforme sur l'ensemble d'une grande surface. Enfin la méthode décrite dans le document cité ne permet pas de réaliser des pièces de grandes dimensions.
  • Le but du présent procédé de réalisation est donc de remédier aux inconvénients présentés par les méthodes décrites dans les documents cités en proposant un procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique, selon lequel, une couche intermédiaire destinée à faciliter le démoulage ayant été préalablement formée à la surface du moule, la couche métallique est déposée dans le moule avant l'introduction de la matière plastique, et selon lequel d'abord, le moule est métallique et la couche intermédiaire est formée par passivation du métal du moule, ensuite la couche métallique de revêtement est déposée par électrolyse et la matière plastique introduite dans le moule ainsi préparé et, enfin, après durcissement de la matière plastique, le démoulage est effectué en pratiquant un traitement thermique.
  • Dans une mise en oeuvre du procédé selon l'invention, le moule est réalisé par usinage d'une pièce métallique massive, et sa surface est polie électrolytiquement.
  • Dans une autre mise en oeuvre du procédé selon l'invention le moule est réalisé en tôle emboutie.
  • Dans l'une ou l'autre de ces mises en oeuvre du procédé selon l'invention le plastique peut être une résine thermodurcissable et être coulé dans les moules. Le plastique peut également être une résine thermoplastique et être injecté à chaud dans le moule.
  • Dans une mise en oeuvre du procédé selon l'invention le moule est fait en un alliage fer-nickel-chrome, il est passivé chimiquement, et le traitement thermique employé pour le démoulage est un refroidissement.
  • Dans une autre mise en oeuvre du procédé selon l'invention, le moule est en aluminium, passivé par une couche d'oxyde, et le traitement thermique employé pour le démoulage est un réchauffement.
  • Dans chacune de ces mises en oeuvre du procédé selon l'invention, la couche métallique de revêtement peut être en un composé de cuivre, ou argent, ou or, et de nickel.
  • Dans ces conditions, du fait de l'emploi d'un moule conducteur, les opérations de polissage et de dépôt métallique peuvent être faites par une méthode électrolytique, ce qui permet de fabriquer d'une part, des pièces de grandes dimensions et d'autre part de nombreuses pièces à la fois.
  • Mais il est surtout notable que la couche de passivation du métal du moule ne change pas les dimensions de ce dernier et que, dans ce cas, la précision sur les dimensions des détails de la pièce moulée est la même que la précision sur la réalisation du moule. En effet, la couche formée par passivation du métal du moule, ne constitue pas une couche intermédiaire ajoutée entre le moule et le moulage, mais fait partie intégrante du moule. Par conséquent, et particulièrement dans le cas d'un moule usiné, la précision obtenue pour la pièce moulée peut être extrêmement grande, ce qui peut être demandé lors de la réalisation de certains types d'antennes hyperfréquences. Enfin, les moulages réalisés à partir d'un même moule sont extrêmement répétitifs.
  • Ainsi, par le procédé selon l'invention, la qualité des pièces est améliorée, et la fabrication en est simplifiée et accélérée.
  • L'invention sera mieux comprise à l'aide de la description détaillée de ces modes de réalisation, appliqués à la fabrication d'une antenne plane hyperfréquence, prise comme exemple non limitatif, et illustrés schématiquement par les figures ci-après annexées.
    • La figure 1a représente en coupe schématique un élément rayonnant d'antenne plane tel que décrit dans la demande de brevet européen EP-A-0 108 463.
    • La figure 1b représente en coupe schématique une ligne d'alimentation d'une telle antenne.
    • La figure 1c représente, vue de dessus, une partie d'une telle antenne.
    • Les figures 2a et 2b représentent en coupe schématique les plaques d'antenne obtenues par le procédé selon l'invention.
    • Les figures 3a et 3b représentent, en coupe schématique, le moulage de ces plaques d'antenne dans le cas où le moule utilisé est en métal usiné.
    • Les figures 4a et 4b représentent, en coupe schématique, le moulage de ces plaques d'antenne dans le cas où le moule utilisé est en tôle emboutie.
  • Tel que représenté sur les figures 1a et 1c, l'élément rayonnant d'antenne plane est composé de deux plaques métalliques 40 et 50 dans lesquelles sont pratiquées les ouvertures 41 et 51 en regard l'une de l'autre. Ces deux plaques enserrent la feuille de diélectrique 20 supportant le conducteur central 30. L'évasement 61 est destiné à améliorer le gain et le plan réflecteur 71 est destiné à améliorer l'adaptation. Les conducteurs centraux 30 progressent vers la sortie d'antenne dans les cannelures 42 et 52 pratiquées dans les plaques 40 et 50 respectivement, et représentées en coupe sur la figure 1b.
  • Toutes les surfaces de l'antenne le long desquelles se propage le signal à transmettre ou à émettre doivent être métallisées. La seule surface qu'il n'est pas indispensable de métalliser est donc la face postérieure de l'antenne qui n'est pas tournée vers le milieu de propagation. Pour la plaque 40 par exemple, il est nécessaire de métalliser les surfaces 14 et 16, alors que pour la plaque 50, il suffit de métalliser la surface 15, comme il est montré sur les figures 2a et 2b.
  • La fabrication de l'antenne plane à l'aide du procédé selon l'invention est mise en oeuvre de la façon illustrée par les figures 3 et 4. Cette fabrication comprend la réalisation des deux plaques 40 et 50 à l'aide de moules spécifiquement prévus pour chacune de ces pièces.
  • Chacun de ces moules peut être obtenu à partir d'une pièce métallique massive usinée, ce qui est montré sur la figure 3, ou bien à partir d'une tôle emboutie ce qui est montré sur la figure 4. L'emploi d'un matériau métallique pour la fabrication du moule est rendu nécessaire du fait que la plupart des opérations effectuées sur le moule, selon la présente invention, sont préférentiellement du type électrolytique.
  • Dans une première mise en oeuvre du procédé selon l'invention, le moule est usiné. Pour la réalisation de la plaque 40, il comprend deux parties 1 et 2 comme il est montré sur la figure 3a. Après usinage, chacune des parties constituant le moule est polie par un procédé de préférence électrolytique. Puis ces parties 1 et 2 sont passi- vées, en sorte que la couche métallique, qui y est déposée ultérieurement, ne peut y adhérer. A titre d'exemple, si le métal choisi pour réaliser le moule est un acier, la passivation est obtenue par l'action de l'acide nitrique chaud. Si le métal choisi est l'aluminium, la passivation est faite par oxydation anodique.
  • Chaque partie du moule ainsi préparée reçoit un dépôt métallique, de préférence par électrolyse, à l'aide d'un métal possédant des propriétés électrolytiques d'une part et étant compatible avec le fonctionnement d'une antenne hyperfréquence d'autre part. C'est pourquoi un composé de cuivre, ou argent, ou or avec le nickel est choisi de préférence.
  • On notera que la couche métallique réalisée par une méthode électrolytique se dépose aussi bien à l'intérieur qu'à l'extérieur du moule. Afin de diminuer l'usure du bain électrolytique, il est préférable de recouvrir l'extérieur du moule d'une couche de vernis par exemple, permettant d'éviter ce dépôt.
  • Dans chacune des mises en oeuvre du procédé selon l'invention, les méthodes électrolytiques sont employées de préférence à toutes autres comme donnant les meilleurs résultats sur les grandes surfaces présentées par les antennes. Le décapage électrolytique permet d'une part d'obtenir un excellent état de surface sur de très grandes pièces, et le dépôt électrolytique d'autre part fournit des couches particulièrement uniformes et homogènes, sur ces mêmes pièces. De plus ces résultats sont parfaitement répétitifs dans le cas d'une fabrication en grande série. Enfin de nombreuses pièces peuvent être traitées à la fois, ce qui est également favorable à une fabrication en série.
  • Une matière plastique ou résine est ensuite introduite entre les pièces 1 et 2 du moule. Cette résine peut être du type thermodurcissable ou thermoplastique, et suivant le cas, elle peut être moulée ou injectée. Pour le moulage et/ou le durcissement d'une telle résine, il n'est jamais nécessaire d'élever la température du moule jusqu'à la température de fusion de la métallisation, laquelle ne risque donc pas d'être détériorée.
  • Après durcissement de la résine, le démoulage a lieu par séparation des pièces 1, 40 et 2. Si le matériau métallique constituant le moule présente un coefficient de dilatation inférieur à celui de la résine, le démoulage est obtenu à l'aide d'un traitement thermique consistant en un refroidissement des pièces, et qui provoque un retrait des dimensions du corps plastique. Ce dernier est éjecté, entraînant la métallisation avec lui. Ce type d'opération est employé dans le cas où le matériau métallique utilisé pour le moule est par exemple un alliage fer-nickel-chrome du type INVAR.
  • Au contraire, si le matériau métallique constituant le moule présente un coefficient de dilatation supérieur à celui de la résine, ce qui est le cas si le moule est en aluminium par exemple, le démoulage est obtenu à l'aide d'un traitement thermique consistant en un réchauffement qui provoque une dilatation du moule, et le décole- ment du corps plastique qui est éjecté entraînant la métallisation avec lui.
  • Un autre avantage de cette méthode réside dans le fait que l'on peut réutiliser les moules un grand nombre de fois.
  • Pour la fabrication de la plaque 50 à l'aide d'un moule usiné, ce dernier comprend deux parties 3 et 4, comme il est montré sur la figure 3b. La surface 15 du corps 50 devant seule être métallisée, il n'y a que la pièce 4 du moule qui reçoive la métallisation. La pièce 3 peut être constituée par n'importe quel matériau, métallique ou non, tel que sa surface 17 n'adhère pas à la pièce 50 en résine. Si cette surface adhérait à la résine, elle pourrait y rester collée et ne nuirait en rien au fonctionnement de l'antenne. Mais on devrait alors prévoir une partie 3 du moule nouvelle, pour chaque antenne fabriquée, ce qui n'est pas souhaité, de manière à ne pas augmenter le coût de fabrication. La pièce 3 du moule peut donc être prévue en téflon par exemple, ou bien métallique et enduite d'un vernis.
  • Le moulage et le démoulage de la pièce 50 de l'antenne sont ensuite conduits de la même façon qu'il a été décrit pour la pièce 40.
  • Dans un second exemple de mise en oeuvre du procédé selon l'invention, les moules peuvent être réalisés par emboutissage d'une tôle comme il est montré sur les figures 4a et 4b. Cette dernière technique présente un certain nombre d'avantages supplémentaires. En premier lieu, il est utilisé un poids moins grand de matériau métallique pour réaliser les moules, ce qui en réduit le coût et en facilite la mise en oeuvre dans le cas de grandes pièces, peu aisées à manipuler. D'autre part l'emboutissage est une opération plus simple et moins coûteuse que l'usinage. En effet, dans le cas d'une fabrication en grande série, un grand nombre de moules est nécessaire, et un faible coût de fabrication des moules est recherché au même titre qu'un faible coût des pièces elles-mêmes. De plus la tôle emboutie présente un état de surface suffisamment bon pour éviter l'opération de polissage. Enfin la tôle emboutie est souple et facilite le démoulage.
  • En dehors des simplifications et des particularités exposées ci-dessus, la mise en oeuvre du procédé selon l'invention à l'aide de moules en tôle emboutie est conduite comme il a été décrit pour le moulage à l'aide de moules usinés.
  • L'une ou l'autre méthode est choisie en fonction de la précision recherchée.
  • Il est à noter que dans bien des cas, on pourra employer un moule embouti à la place d'un moule usiné plus précis. En effet, la précision perdue sur le moule embouti est gagnée sur le moulage, puisque la couche intermédiaire destinée à faciliter le démoulage a, dans le procédé selon l'invention, une épaisseur négligeable, étant une simple couche de passivation.

Claims (9)

1. Procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique selon lequel, une couche intermédiaire destinée à faciliter le démoulage ayant été préalablement formée à la surface d'un moule, (3, 4) a la couche métallique est déposée dans le moule avant l'introduction de la matière plastique, et selon lequel d'abord, le moule est métallique et la couche intermédiaire est formée par passivation du métal du moule, ensuite la couche métallique de revêtement est déposée par électrolyse et la matière plastique est introduite dans le moule ainsi préparé et, enfin, après durcissement de la matière plastique, le démoulage est effectué en pratiquant un traitement thermique.
2. Procédé selon la revendication 1, caractérisé en ce que le moule métallique est réalisé par usinage d'une pièce métallique massive et sa surface polie électrolytiquement.
3. Procédé selon la revendication 1, caractérisé en ce que le moule est en tôle emboutie.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le plastique est une résine thermodurcissable coulée dans le moule.
5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le plastique est une résine thermoplastique injectée à chaud dans le moule.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le moule est en alliage fer-nickel-chrome passivé chimiquement et en ce que le traitement thermique utilisé pour le démoulage est un refroidissement.
7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le moule est en aluminium passivé par une couche d'oxyde et en ce que le traitement thermique utilisé pour le démoulage est un réchauffement.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la couche métallique est en un composé de cuivre, ou argent, ou or, et de nickel.
9. Antenne plane hyperfréquence du type à lignes microrubans associées à un support diélectrique, caractérisé en ce que les parties destinées à former les cavités des éléments rayonnants ou celles des lignes d'alimentation sont réalisées par un procédé selon l'une des revendications 1 à 8.
EP84201264A 1983-09-07 1984-09-04 Procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique, et antenne plane ainsi réalisée Expired - Lifetime EP0142180B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8314254 1983-09-07
FR8314254A FR2551587B1 (fr) 1983-09-07 1983-09-07 Procede de realisation d'un corps moule en matiere plastique revetu d'une couche metallique, et antenne plane ainsi realisee

Publications (2)

Publication Number Publication Date
EP0142180A1 EP0142180A1 (fr) 1985-05-22
EP0142180B1 true EP0142180B1 (fr) 1990-04-25

Family

ID=9292036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84201264A Expired - Lifetime EP0142180B1 (fr) 1983-09-07 1984-09-04 Procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique, et antenne plane ainsi réalisée

Country Status (5)

Country Link
US (1) US4627894A (fr)
EP (1) EP0142180B1 (fr)
JP (1) JPS6099623A (fr)
DE (1) DE3482080D1 (fr)
FR (1) FR2551587B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257657B1 (fr) * 1986-08-29 1994-07-13 Hitachi Chemical Co., Ltd. Substrat pour circuit haute fréquence et son procédé de fabrication
US5160421A (en) * 1991-12-02 1992-11-03 Xerox Corporation Electroforms with high dimensional stability
US6004447A (en) * 1995-05-22 1999-12-21 Xerox Corporation Electroforming process
US6052889A (en) * 1996-11-21 2000-04-25 Raytheon Company Radio frequency antenna and its fabrication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108463A1 (fr) * 1982-11-08 1984-05-16 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2646396A (en) * 1949-03-17 1953-07-21 Reginald S Dean Method of making electroformed articles
FR1107396A (fr) * 1953-09-18 1955-12-30 Thomson Houston Comp Francaise Procédé perfectionné de construction des guides d'ondes
BE557579A (fr) * 1956-05-17
NL6517040A (fr) * 1965-12-28 1967-06-29
US3536800A (en) * 1966-02-25 1970-10-27 Montecatini Edison Ellettronic Method of forming radio frequency devices employing a destructible mold
GB1167690A (en) * 1968-09-30 1969-10-22 Ford Motor Co A Method of Making a Metal Coated Article
US3954568A (en) * 1970-01-30 1976-05-04 Xerox Corporation Electroforming an endless flexible seamless xerographic belt
DE2335206A1 (de) * 1973-07-11 1975-01-30 Kabel Metallwerke Ghh Verfahren zur herstellung eines weitverkehrsrundhohlleiters
US4067782A (en) * 1977-05-09 1978-01-10 Xerox Corporation Method of forming an electroforming mandrel
JPS5952715B2 (ja) * 1977-09-05 1984-12-21 ソニー株式会社 メツキ方法
GB2044543B (en) * 1979-03-14 1983-03-09 Marconi Co Ltd Electrically conductive bodies
US4363705A (en) * 1981-07-16 1982-12-14 Capitol Records, Inc. Passivating and silver removal method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108463A1 (fr) * 1982-11-08 1984-05-16 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés

Also Published As

Publication number Publication date
US4627894A (en) 1986-12-09
EP0142180A1 (fr) 1985-05-22
FR2551587B1 (fr) 1988-04-29
FR2551587A1 (fr) 1985-03-08
DE3482080D1 (de) 1990-05-31
JPS6099623A (ja) 1985-06-03

Similar Documents

Publication Publication Date Title
EP0428458B1 (fr) Matériau multicouche comprenant du graphite souple renforcé mécaniquement, électriquement et thermiquement par un métal et procédé de fabrication
FR2475302A1 (fr) Interconnexion electrique et son procede de realisation
EP0308334A1 (fr) Matériau magnétique composite et son procédé de fabrication
EP0142180B1 (fr) Procédé de réalisation d'un corps moulé en matière plastique revêtu d'une couche métallique, et antenne plane ainsi réalisée
FR2766618A1 (fr) Procede de fabrication d'un film conducteur anisotrope a inserts conducteurs
EP1550180B1 (fr) Procede de fabrication d'une antenne hyperfrequences a guide d'onde
EP0193514A2 (fr) Procédé de polymérisation de résines et installation pour la mise en oeuvre de ce procédé
FR3094565A1 (fr) Refroidissement de dispositifs électroniques
WO1989002213A1 (fr) Procede de realisation des motifs conducteurs sur un substrat
EP0651458A1 (fr) Antenne plane et procédé de réalisation d'une telle antenne
EP0117804B1 (fr) Procédé de fabrication d'une cavité hyperfréquence, et cavité obtenue par ce procédé
EP1097254B1 (fr) Procede de revetement de mousse pour la fabrication d'elements d'antennes
WO1993006255A1 (fr) Procede de realisation d'une piece composite a surface antiabrasion, et pieces obtenues par ce procede
FR2703523A1 (fr) Procédé de fabrication d'un rotor de collecteur électrique tournant.
EP0418148B1 (fr) Procédé de fabrication d'un support metallisé à base de polyméthylpentène
EP0865097A1 (fr) Procédé et dispositif de fabrication en guides d'ondes à fentes, notamment utilisables pour des longueurs d'ondes millimétriques
FR2682688A1 (fr) Procede pour la metallisation de la surface de pieces en materiau plastique et pieces a usage electronique ainsi obtenues.
FR2552293A1 (fr) Procede de traitement thermique, par application d'energie micro-onde, de revetements sur supports dielectriques, en particulier de revetements electriquement conducteurs, et produits obtenus
EP0497644B1 (fr) Procédé de lithogravure sur substrat semi-conducteur, notamment pour le traitement localisé sur saillie
FR2713139A1 (fr) Support métallisé à base de mousse organique, assemblage d'au moins deux de ces supports et procédé de fabrication de ce support.
WO2020053253A1 (fr) Procédé de fabrication d'un substrat de composant opto-electronique et dispositifs associés
EP2965855A2 (fr) Procede de realisation d'un motif en relief, en un materiau de type polymere, sur un substrat
EP0494126A1 (fr) Procédé pour la fabrication d'une carte à mémoire et carte à mémoire ainsi obtenue
WO2002043207A1 (fr) LASER A ZnO POLYCRISTALLIN POMPE ELECTRIQUEMENT ET PROCEDE DE REALISATION
FR3091418A1 (fr) Structure protectrice intégrant un réseau sélectif en fréquence des ondes électromagnétiques et procédés de préfabrication et de fabrication d’une telle structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19851121

17Q First examination report despatched

Effective date: 19870930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3482080

Country of ref document: DE

Date of ref document: 19900531

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900831

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900926

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901123

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910905

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84201264.3

Effective date: 19920408