EP0140726B1 - Verfahren zum Messen von Strömungsparametern eines fliessfähigen Mediums und Vorrichtung zur Durchführung dieses Verfahrens - Google Patents

Verfahren zum Messen von Strömungsparametern eines fliessfähigen Mediums und Vorrichtung zur Durchführung dieses Verfahrens Download PDF

Info

Publication number
EP0140726B1
EP0140726B1 EP84401670A EP84401670A EP0140726B1 EP 0140726 B1 EP0140726 B1 EP 0140726B1 EP 84401670 A EP84401670 A EP 84401670A EP 84401670 A EP84401670 A EP 84401670A EP 0140726 B1 EP0140726 B1 EP 0140726B1
Authority
EP
European Patent Office
Prior art keywords
signal
order
flow
autocorrelation function
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84401670A
Other languages
English (en)
French (fr)
Other versions
EP0140726A1 (de
Inventor
Olivier Lannuzel
Thierry Pradal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CGR Ultrasonic SA
Original Assignee
CGR Ultrasonic SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8313658A external-priority patent/FR2551213B1/fr
Priority claimed from FR8320198A external-priority patent/FR2556845B1/fr
Application filed by CGR Ultrasonic SA filed Critical CGR Ultrasonic SA
Priority to AT84401670T priority Critical patent/ATE63642T1/de
Publication of EP0140726A1 publication Critical patent/EP0140726A1/de
Application granted granted Critical
Publication of EP0140726B1 publication Critical patent/EP0140726B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8954Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using a broad-band spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8977Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using special techniques for image reconstruction, e.g. FFT, geometrical transformations, spatial deconvolution, time deconvolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation

Definitions

  • the invention relates to a method for measuring the flow parameters of a fluid and to a device implementing this method.
  • This method and this device are more particularly used in the medical field, the fluid considered is then the blood of a patient, and the interesting flow parameters are the average speed of flow of the blood, and the distribution of the velocities of the particles. of this blood in a particular section of a vein or artery. Its most useful application is ultrasound ultrasound.
  • the measurement of the average speed of a fluid in a tube is interesting because it makes it possible, knowing the cross-section of the tube in question, to determine the fluid flow rate.
  • the distribution of the velocity of the particles of the fluid in the section of the tube makes it possible to assess the presence or absence of turbulence in the flow.
  • a slightly disturbed flow presents, at all points of a section, a flow speed substantially equal to the average speed, while a strongly disturbed flow presents a great dispersion of its speed diagram.
  • a turbulent flow there may even be particles of the fluid moving in the opposite direction to the average flow speed due to the presence of vortices.
  • the useful dimensions of the cells cannot be reduced as much as desired. In most cases each of the dimensions of these cells, both in width or length and in depth, is entirely comparable to the dimensions of the cross-section of the flow tube. Consequently, the backscattered signal does not vibrate at a single acoustic frequency, shifted by Doppler shift from the acoustic emission frequency but is a complex signal whose spectral distribution extends in a significant band.
  • the Doppler slip corresponding to each of these particles will be between zero and 25 kilohertz if the frequency d the acoustic emission is of the order of 4 Megahertz and if the speed of propagation of the acoustic pulse in the interposed medium is of the order of 1500 meters per second.
  • N is the spectral density of noise in the band of the useful signal it is necessary to replace Z (f) by Z (f) - N. If it is possible to calculate N easily by measuring its value in the absence of backscattered signal on the other hand, it is very cumbersome to introduce N into the calculation of each of the moments of the Fourier transform Z (f). A method using the FFT technique is described in US.A. 4265726.
  • the method of counting zero crossings is also intolerant of noise because to avoid, in the presence of noise, untimely counts the counters have a set of lower and upper thresholds and only the crossing by the signal of these two different thresholds successively causes a count. Consequently, on the one hand, the measurement of the average frequency is always obtained by default since the oscillations of the filtered demodulated backscattered signal whose amplitudes are between these two thresholds are not taken into account. On the other hand, the noisier the signal the more it is necessary to raise each of these thresholds and the more the result is imprecise.
  • the object of the invention is to remedy the disadvantages mentioned by posing the problem differently. Indeed, the user is not interested in the whole spectrum of the Doppler signal but only in its mean and its variance. Also, rather than calculating the amplitudes of each of the lines of the spectrum and then performing on this amplitude distribution calculations of moments allowing the average frequency and the variance to be evaluated, it proposes a method which, while being less rich in knowledge of the phenomenon calculates directly and only the results that interest the user.
  • This can be written as a general expression:
  • the invention also relates to a device for measuring the flow parameters of a fluid, comprising means for periodically emitting an acoustic pulse signal vibrating at an acoustic frequency periodically, means for receiving this acoustic signal when it is backscattered.
  • means for demodulating in quadrature phase the received signal comprising two oscillators tuned to the frequency of the acoustic signal, and means for filtering and quantifying each of the two demodulated signals and thereby producing a complex sampled signal representative of the received signal, characterized in that it comprises means delay for calculating the product of a sampled complex signal corresponding to a sample by the same signal corresponding to an immediately preceding sample, summing means for summing the signals delivered by the delay means and thus for calculating the real and imaginary parts d a complex signal representative of the discrete autocorrelation function of the sampled complex signal, and means for calculating the derivatives of order n of this autocorrelation function corresponding to the fluid flow parameters.
  • FIG. 1 represents the general diagram of an apparatus for measuring the parameters of flow of a fluid in accordance with the invention.
  • a cell 44 of the fluid 45 circulating in a tube 46 is subjected to an acoustic excitation emitted by a probe 47.
  • This acoustic excitation is produced in impulse form by a transmitter 48.
  • the transmitter 48 delivers pulses at a rate of 1.
  • the acoustic signal contained in these pulses vibrates at a frequency fo.
  • the duration of each pulse is a few periods of the frequency fo.
  • the orientation of the probe 47, and therefore the main direction of propagation of the emitted waves makes with the normal to the section of the tube at the location of the cell an angle 49. In practice the angle 49 is between 45 ° and 60 °.
  • the probe 47 of a reversible type picks up the signal Z (t) backscattered by the cell and injects it into a receiver 51.
  • the receiver 51 is according to the invention and calculates in particular the autocorrelation function R ( T ) of the signal Z (t).
  • the receiver 51 delivers the measurement results of the desired flow parameters. These can be used in any way and in particular can be recorded in a recorder 52. These parameters correspond to the diagram 53 of the speeds of the fluid 45.
  • the signal Z (t) is introduced simultaneously on a first input of two demodulators 1 and 2 receiving respectively on their second input signals in quadrature, cos (2 ⁇ f o t) and sin (2 ⁇ f o t), delivered by two quadrature oscillators 41 and 42.
  • These two demodulators transpose the Doppler spectrum of a magnitude equal to f o . They perform a so-called quadrature demodulation because the signals which attack them on their second input are in phase quadrature with respect to each other.
  • each of the demodulated signals By passing each of the demodulated signals through a low-pass filter, respectively 3 and 4, and by sampling them in samplers respectively 5 and 6 each comprising a sampler-blocker followed by an analog-digital converter (ADC), obtains a complex sampled signal whose real part xp is delivered by the sampler 5 and whose imaginary part yp is delivered by the sampler 6.
  • the devices of FIGS. 2 and 3 also include circuits 7 for calculating the autocorrelation function of the signal Z (t) and of circuits 8 and 9 to calculate the derivatives of orders 1 and 2 of this autocorrelation function.
  • the discrete autocorrelation function r ( T ) is complex, and its real part is X, its imaginary part being Y.
  • the circuit 7 of FIG. 2 comprises delay means 10 for knowing, at each pulse received, the magnitudes xp and yp of the complex sampled signal corresponding to the sample of rank p and for knowing the same elements of the immediately preceding sample that is to say of rank p - 1.
  • the delay means 10 comprise two delay lines 11 and 12 respectively connected in cascade to the outputs of the samplers 5 and 6. These delay lines 11 and 12 do not deliver at their outputs the information they receive at an instant t only after a time t + T , where r corresponds to the aforementioned sampling period.
  • these delay lines can consist of shift registers, receiving on their inputs in parallel the binary information of the quantized signal delivered by the samplers, and restoring this information on their outputs in parallel under the effect of a pulse d clock h produced by a sequencer 13.
  • This sequencer 13 is synchronized with the emission of the acoustic pulses.
  • the means 8 for calculating the derivative of order 1 of the autocorrelation function comprise a divider 21 performing the division of the imaginary part Y of the autocorrelation function by the real part X of this same function, in accordance with the application of the final expression of the order moment 1.
  • Cascade with the divider 21 is an arc-tangent table 22 receiving in address on its inputs the value of the tangent of a desired angle and outputting the value of this angle.
  • all the calculations carried out by the circuits numbered 10 to 22 can be carried out by a microprocessor.
  • the table 22 is a preprogrammed read-only memory capable of responding to the arc-tangent trigonometric transformation.
  • the signal Z (t) is noisy, it is advisable to replace R (0) by R (0) - N, N being the energy of the noise in the analysis window.
  • the final expression of the variance will be equivalent to:
  • the means 9 for calculating the second order moment of the Fourier transform Z (f) quite simply perform this last operation.
  • R ( 7 ) should be replaced by r ( 7 ).
  • the means 7 for calculating the autocorrelation function seen previously the real part X and the imaginary part Y of this latter function are available.
  • the modulus of such a complex signal being equal to the square root of the sum of the squares of the real and imaginary parts, each of the signals X or Y is introduced on the two inputs of a multiplier delivering at output a quantity representing the square of the size admitted as input.
  • the multipliers 23 and 24 receive respectively on their inputs the signals X and Y.
  • a circuit 25 receiving on its inputs the outputs of the multipliers 23 and 24 performs the operation corresponding to the square root of the sum of the signals introduced at its inputs. In doing so, the output of circuit 25 delivers a quantity equal to the module of r ( 7 ).
  • a circuit 26 receiving on one of its inputs the output of circuit 25 and on another input an electrical quantity proportional to (R (0) - N) performs the ratio of these two quantities and subtracts from them the quantity 1.
  • R (0) is the average energy of the received signal, that is to say the useful signal in the presence of noise. This energy can be measured by any conventional means.
  • N is the energy of the noise which is measured with means identical to the previous ones, but during an absence of the useful signal, that is to say outside of any acoustic emission.
  • Subtraction (R (0) - N) also presents no difficulty. All of these means are noted 43.
  • the circuit 26 therefore delivers a signal representative of the variance of the Doppler spectrum corresponding to the variance of the flow speed of the cell of the fluid studied.
  • all the operations carried out by the operators 23 to 26 under the action of the sequencer 13 are made by a microprocessor programmed for this purpose.
  • This microprocessor can be the same as that which was used for the calculation of the average frequency.
  • the circuits 23 and 24 carry out multiplications like the multipliers 14 to 17 and that they therefore correspond in the microprocessor which would be used for the same type of operations. The method and the device which have just been described therefore make it possible to effectively resolve the problem posed.
  • circuit 7 of the calculation of the autocorrelation function of FIG. 3 we calculate in a delay circuit 27 the argument of the complex signal sampled for each sample by introducing the real parts xp, and imaginary parts yp, of this sample at the address entries of a table 28 performing the arc-tangent trigonometric transformation of The argument 8p is then introduced on the "plus” input of an adder 29 while the argument ⁇ p-1 is introduced on the "minus” input of this adder 29.
  • ⁇ p-1 is obtained by passing 8p through a delay line 30 similar to delay lines 11 or 12.
  • the signal delivered by the adder 29 is then transmitted simultaneously to the address inputs of a cosine table 31 and a sine table 32
  • the two tables 31 and 32 can, like tables 22 and 28, be made up of read-only memories, preprogrammed to fulfill these trigonometric functions.
  • the delay circuit 27 is followed by a summing circuit 33 comprising two summing-accumulators 34 and 35 respectively connected to tables 31 and 32.
  • the summing-accumulators 34 and 35 differ from the summing-accumulators 19 and 20 in that they have only one entry.
  • These summing-accumulators 34 and 35 respectively deliver signals X 'and Y' corresponding to the real and imaginary parts of the discrete autocorrelation function for which the assumption on the variation of the modulus of the complex sampled signal has been made.
  • the rest of the processing undergone by these signals X 'and Y' is identical to that which was undergone by X and Y.
  • the last circuit 7 for calculating the autocorrelation function comprising the delay circuit 27 and the summing circuit 33 can like the circuit 7 of FIG. 2 in a preferred embodiment be replaced by a microprocessor which performs the same calculations. It has the advantage compared to that of FIG. 2 that there is no longer any multiplication operation to be carried out. The only operations performed are table read operations and summation-accumulation operations. It also has the advantage that all processing can be carried out in real time. Finally, we note that in a version where a microprocessor is used, the table 22 identical to the table 28 can be unique and that, moreover, the multipliers 23 and 24 can be replaced by a square table delivering as an output a signal representing the square of the signal admitted at the entrance.
  • the means 8 for calculating the derivative of order 1 of the autocorrelation function comprise a divider 52 performing the division of the imaginary part Y of the autocorrelation function by the real part X of this same function, in accordance with the application of the final expression of the order moment 1.
  • a divider 52 performing the division of the imaginary part Y of the autocorrelation function by the real part X of this same function, in accordance with the application of the final expression of the order moment 1.
  • an arc-tangent table 53 receiving in address on its inputs the value of the tangent of a sought angle and outputting the value of this angle.
  • the divider 52 may be a logarithmic divider, that is to say that it is composed of two logarithm tables, the tables 54 and 55 receiving the addresses respectively quantities X and Y. These tables output the values Log X and Log Y respectively.
  • a subtractor 56 receiving the values produced by these tables, produces a result (Log Y - Log X) which is equivalent to Log Y / X.
  • table 53 of the calculation of the tangent arc (Y / X) is replaced by an arc-tangent-exponential table of Log Y / X.
  • the registers with offset contain 2 P boxes (P corresponds to the optimum number of samples). These registers receive the products produced by multipliers 14 and 15 on the one hand and 16 and 17 on the other.
  • a couple of real products (y p ⁇ y p-1 and x p ⁇ x p-1 ) and a couple of imaginary products (x p-1 ⁇ y p and xp * yp- 1 ) are introduced respectively into these shift registers, while a pair of real products and corresponding imaginary products but of anterior rank (of rank pP; y pP ⁇ y p-1-P , x pP ⁇ x p-1-P ; and x p-1-P ⁇ y pP , x pP ⁇ y p-1-P ) are extracted from these registers.
  • the summers-accumulators then add the products introduced at the same time as they subtract the products extracted. In this case, the demodulation and the
  • multipliers 14 to 17 are replaced by multiplier-accumulators 61 to 64 which receive the sample zp and the sample Z p at the same time. 1 delayed by delay lines.
  • These multiplier-accumulators 61 to 64 deliver a result which corresponds to the accumulation of a certain number of multiplications. Each of them performs on the one hand the multiplication of the operands introduced at its inputs and on the other hand the accumulation of the results of its multiplications.
  • TDC 1008, 1009 or 1010 from the company TRW (United States).
  • each of the multiplier-accumulators 61 to 64 of circuit 10 delivers an accumulation, on a packet of 16 samples, of the real products x p-1 ⁇ x p and y p -1 ⁇ y p and imaginary products xp "yp. 1 and x p-1 ⁇ y p ⁇
  • Each of these accumulations of real or imaginary products is introduced, at the end of the processing of each packet, into an addition circuit 65 to 68 respectively.
  • the circuits 65 to 68 are identical.
  • the circuit 65 which is the only detailed one, comprises a register 69 with 5-box shift (64/16 + 1) controlled by the sequencer 13, an adder 70 with three inputs, and a memory 71.
  • Each box of the register 69 contains the result of the accumulation of one of the last five successive packets of samples.
  • the adder 70 and the memory 71 constitute an accumulator of conventional type.
  • this conventional type accumulator recursively adds, as and when they arrive, the accumulations delivered by the multiplier-accumulator 61. In addition, it subtracts the accumulation relating to the packet whose rank is five rows earlier than rank of the last packet to arrive. It therefore permanently contains the sum of the accumulations of the last four packets arrived.
  • Two summers 72 and 73 connected respectively to circuits 65 and 66 and to circuits 67 and 68 deliver the real X and imaginary parts Y from the discrete autocorrelation function.

Claims (12)

1. Verfahren zum Messen von Strömungsparametern eines Fluids, in dem:
- periodisch entsprechend einer Wiederholfrequenz (1/r) ein akustisches Impulssignal, das mit einer Schallfrequenz (fo) schwingt, ausgesandt wird (48, 47);
- das akustische Signal (Z(t)) empfangen wird (51, 47), wenn es von einer zu untersuchenden Fluidzelle zurückgestreut wird;
- das empfangene Signal mit Hilfe zweier mit der Frequenz des Schallsignals oszillierender Oszillatoren (41, 42) in Phasenquadratur demoduliert wird;
- jedes der zwei demodulierten Signale gefiltert (3, 4) und quantifiziert (5, 6) wird, um zwei den Real- bzw. den Imaginärteilen eines das empfangene Signal darstellenden komplexen abgetasteten Signals (zp) entsprechende elektrische Größen (xp, yp) zu gewinnen;

dadurch gekennzeichnet, daß
- für eine Anzahl P von Abtastproben des komplexen abgetasteten Signals die diskrete Autokorrelationsfunktion (r(r)) dieses komplexen abgetasteten Signals berechnet wird;
- und die Ableitungen n-ter Ordnung dieser Autokorrelationsfunktion berechnet werden, um die jeder dieser Ordnungen entsprechenden Strömungsparameter des Fluids zu gewinnen.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Ableitungen n-ter Ordnung der Autokorrelationsfunktion für eine einer optimalen Meßgenauigkeit entsprechende Anzahl P von Abtastproben berechnet werden.
3. Verfahren gemäß Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß für eine nichtstationäre Fluidströmung die optimale Anzahl von Abtastproben und die Strömungsparameter des Fluids unter der Annahme einer stationären Strömung berechnet werden.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß für die Berechnung des mittleren Geschwindigkeitsparameters der Strömung und für die Berechnung der Varianz dieser Strömung der Realteil (X) und der Imaginärteil (Y) der diskreten Autokorrelationsfunktion getrennt berechnet werden.
5. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß für die Berechnung des mittleren Geschwindigkeitsparameters der Strömung und/oder für die Berechnung des Varianzparameters dieser Strömung für jede Probe das Argument (ep) des komplexen abgetasteten Signals berechnet wird (28).
6. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß die den Probensätzen (k+1, k+16) entsprechenden Realteile (X) und Imaginärteile (Y) der Autokorrelationsfunktion teilweise berechnet werden (61 - 61) und daß die Ergebnisse dieser Teilberechnungen untereinander rekombiniert werden (65 bis 73), damit die Berechnung der Autokorrelationsfunktion auf eine optimale Anzahl (P) von Abtastproben gestützt ist, die größer als die in den Sätzen enthaltene ist.
7. Vorrichtung zum Messen der Strömungsparameter eines Fluids, mit Mitteln (47, 48) zum periodischen Aussenden entsprechend einer Wiederholfrequenz (1/T) eines mit einer Schallfrequenz (fo) schwingenden akustischen Impulssignals, Mitteln (47, 50, 51) zum Empfangen dieses akustischen Signals (Z(t)), wenn dieses von einer zu untersuchenden Fluidzelle zurückgestreut wird, Mitteln zur Demodulation des empfangenen Signals in Phasenquadratur, die zwei auf die Frequenz (fo) des Schallsignals abgestimmte Oszillatoren (41, 42) enthalten, und Mitteln (3 bis 6) zum Filtern und Quantifizieren eines jeden der zwei demodulierten Signale, um auf diese Weise ein das empfangene Signal darstellendes komplexes abgetastetes Signal (zp) zu erzeugen, dadurch gekennzeichnet, daß sie Verzögerungsmittel (10 oder 27) zum Berechnen des Produktes des einer Probe (p) entsprechenden komplexen abgetasteten Signals mit dem gleichen, einer unmittelbar vorgehenden Probe (p-1) entsprechenden Signal, Summatormittel (18 oder 33) zum Summieren der von den Verzögerungsmitteln ausgegebenen Signale, um auf diese Weise die Realteile (X) und Imaginärteile (Y) des die diskrete Autokorrelationsfunktion (r(r)) des komplexen abgetasteten Signals darstellenden komplexen Signals zu berechnen, und Mittel (8 und 9) zum Berechnen der den Strömungsparametern des Fluids entsprechenden Ableitungen n-ter Ordnung dieser Autokorrelationsfunktion umfaßt.
8. Vorrichtung gemäß Anspruch 7, dadurch gekennzeichnet, daß die Mittel (8) zum Berechnen der Ableitung 1. Ordnung der Autokorrelationsfunktion Dividiermittel (21) zum Ausführen der Division des Imaginärteils der Autokorrelationsfunktion durch ihren Realteil und trigonometrische Transformationsmittel (22), die mit den Dividiermitteln verbunden sind, um ein Signal zu entwickeln, das das der mittleren Strömungsgeschwindigkeit des Fluids entsprechende Argument (Arg r(r)) der Autokorrelationsfunktion darstellt, umfassen.
9. Vorrichtung gemäß Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, daß die Mittel (9) zum Berechnen der Ableitung 2. Ordnung der Autokorrelationsfunktion Mittel (23 bis 25) zum Entwickeln eines den Betrag der Autokorrelationsfunktion darstellenden Signals, Mittel (43) zum Messen der Intensität des empfangenen Signals bei vorhandenem Rauschen und zum alleinigen Messen der Intensität des Rauschens und algebraische Rechenmittel (26) zum Erzeugen eines die Varianz der Strömung darstellenden Signals anhand der Messungen dieses Betrags und dieser zwei Intensitäten umfassen.
10. Vorrichtung gemäß einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Verzögerungsmittel (10) zwei mit Quantifizierungsmitteln (5, 6) verbundene Verzögerungsleitungen (11, 12), vier Multiplikatoren (14 bis 17) zum Empfangen des Realteils oder des Imaginärteils eines auf eine gegebene Probe bezogenen komplexen abgetasteten Signals an einem ihrer zwei Eingänge und zum Empfang des Realteils oder des Imaginärteils des auf eine vorhergehende Probe bezogenen abgetasteten Signals an deren zweiten Eingang, um so die verschiedenen Terme der Realteile und der Imaginärteile des Produktes dieser zwei komplexen abgetasteten Signale (zp * Zp./) auszugeben, umfassen und daß die Summatormittel (18) Mittel (19, 20) umfassen, um Signale (X, Y) auszugeben, die jeweils die Summen der P letzten Realteile und Imaginärteile, die den P letzten bekannten Produkten entsprechen, darstellen.
11. Vorrichtung gemäß einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Verzögerungsmittel (27) trigonometrische Transformationsmittel (28) zum Berechnen des Arguments (Bp) des komplexen abgetasteten Signals für jede Probe, eine mit diesen trigonometrischen Transformationsmitteln (28) verbundeneund einem Subtraktor (29) zugeordnete Verzögerungsleitung (30) zum Berechnen des Arguments des Produktes eines einer Probe entsprechenden komplexen abgetasteten Signals mit dem gleichen, einer vorhergehenden Probe entsprechenden Signal und eine Gruppe (31, 32) von Mitteln zur inversen trigonometrischen Transformation zum Berechnen der Realteile und der Imaginärteile dieses Produktes anhand dieses Arguments umfassen und daß die Summatormittel (33) Mittel umfassen, die Signale ausgeben, die jeweils die Summen der P letzten Realteile und Imaginärteile, die den P letzten Produkten entsprechen, darstellen.
12. Ultraschallechograph mit einer Vorrichtung zum Messen der Strömungsparameter des Blutes in einem Gefäß des menschlichen Körpers eines Patienten, in dem das Verfahren gemäß einem der Ansprüche 1 bis 6 ausgeführt wird.
EP84401670A 1983-08-24 1984-08-14 Verfahren zum Messen von Strömungsparametern eines fliessfähigen Mediums und Vorrichtung zur Durchführung dieses Verfahrens Expired - Lifetime EP0140726B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401670T ATE63642T1 (de) 1983-08-24 1984-08-14 Verfahren zum messen von stroemungsparametern eines fliessfaehigen mediums und vorrichtung zur durchfuehrung dieses verfahrens.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8313658A FR2551213B1 (fr) 1983-08-24 1983-08-24 Procede de mesure des parametres d'ecoulement d'un fluide et dispositif mettant en oeuvre ce procede
FR8313658 1983-08-24
FR8320198 1983-12-16
FR8320198A FR2556845B1 (fr) 1983-12-16 1983-12-16 Procede de caracterisation par ondes acoustiques de la structure d'un milieu et dispositif mettant en oeuvre ce procede

Publications (2)

Publication Number Publication Date
EP0140726A1 EP0140726A1 (de) 1985-05-08
EP0140726B1 true EP0140726B1 (de) 1991-05-15

Family

ID=26223562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401670A Expired - Lifetime EP0140726B1 (de) 1983-08-24 1984-08-14 Verfahren zum Messen von Strömungsparametern eines fliessfähigen Mediums und Vorrichtung zur Durchführung dieses Verfahrens

Country Status (3)

Country Link
US (1) US4583409A (de)
EP (1) EP0140726B1 (de)
DE (1) DE3484586D1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2562675B1 (fr) * 1984-04-06 1989-10-13 Cgr Ultrasonic Procede de levee d'ambiguite de la mesure par effet doppler de la vitesse d'un mobile
US4780837A (en) * 1984-06-23 1988-10-25 Aloka Co., Ltd. Doppler signal frequency converter
JPH0614930B2 (ja) * 1985-02-19 1994-03-02 株式会社日立メデイコ 超音波診断装置
US4848355A (en) * 1985-05-20 1989-07-18 Matsushita Electric Industrial Co., Ltd. Ultrasonic doppler blood flowmeter
JPS6262268A (ja) * 1985-09-12 1987-03-18 Aloka Co Ltd 運動反射体の超音波加速度測定装置
US4803990A (en) * 1985-12-03 1989-02-14 U.S. Philips Corporation Examining moving objects by ultrasound echograpy
CA1262958A (en) * 1985-12-26 1989-11-14 Kouroku Namekawa Ultrasonic doppler diagnostic apparatus
JPH07100064B2 (ja) * 1986-09-29 1995-11-01 株式会社日立メデイコ 超音波ドプラ流速計
US4790323A (en) * 1986-11-03 1988-12-13 Hewlett-Packard Company Flow imaging detector
US4787252A (en) * 1987-09-30 1988-11-29 Panametrics, Inc. Differential correlation analyzer
GB2274713B (en) * 1993-01-29 1997-07-02 Schlumberger Ltd Flow meter
US5419332A (en) * 1993-08-02 1995-05-30 Sabbah; Benjamin Mapping of flow parameters
HRP940025A2 (en) * 1994-01-14 1996-06-30 Branko Breyer A blood flow velocity measurement system perpendicular to a single probing beam
US5561245A (en) * 1995-04-17 1996-10-01 Western Atlas International, Inc. Method for determining flow regime in multiphase fluid flow in a wellbore
DE60220449T2 (de) * 2002-02-18 2008-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Verfahren und gerät zur dopplerspreizschätzung und dopplerverschiebungsschätzung
CN100577111C (zh) * 2007-12-29 2010-01-06 中国人民解放军第四军医大学 利用超声多普勒信息显示血流图像的方法及装置
RU2606172C2 (ru) * 2015-05-18 2017-01-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ определения акустических частотных характеристик звукопоглощающих конструкций

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2447041A1 (fr) * 1979-01-19 1980-08-14 Inst Nat Sante Rech Med Perfectionnements aux velocimetres doppler a bruit pseudo-aleatoires
US4265126A (en) * 1979-06-15 1981-05-05 General Electric Company Measurement of true blood velocity by an ultrasound system
US4324258A (en) * 1980-06-24 1982-04-13 Werner Huebscher Ultrasonic doppler flowmeters
FI67627C (fi) * 1981-10-19 1985-04-10 Eino Haerkoenen Foerfarande och anordning foer maetning av stroemningshastigheten i stroemmen av uppslamningar genom utnyttjandet av ultraljud
JPS58188433A (ja) * 1982-04-28 1983-11-02 アロカ株式会社 超音波診断装置

Also Published As

Publication number Publication date
DE3484586D1 (de) 1991-06-20
EP0140726A1 (de) 1985-05-08
US4583409A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
EP0140726B1 (de) Verfahren zum Messen von Strömungsparametern eines fliessfähigen Mediums und Vorrichtung zur Durchführung dieses Verfahrens
EP0261736B1 (de) Vorrichtung zur Untersuchung von ortsveränderlichen Medien mittels Ultraschall-Echographie
EP0166836B1 (de) Verfahren zur Charakterisierung der Struktur eines Mediums und Vorrichtung dafür
EP0409054B1 (de) Verfahren zur Verarbeitung eines elektrischen Distanzsignals
EP0161956B1 (de) Verfahren zur eindeutigen Dopplergeschwindigkeitsmessung eines bewegten Objektes
EP0852725B1 (de) Vorrichtung zur akustischen messung des durchflusses einer flüssigkeit
JPH0158469B2 (de)
FR2701111A1 (fr) Débitmètre de fluide.
EP0225667A1 (de) Gerät zur Ultraschallechographie der Bewegung von Körperorganen, insbesondere der Blutströmung oder des Herzens
EP0338618B1 (de) Gerät zur Messung der Geschwindigkeit von Organen und der Blutströmung durch Korrelationsverfahren
EP1097354B1 (de) Kreuzmessen von akustischen signalen eines durchflussmessers
Baudet et al. Detection of coherent vorticity structures using time-scale resolved acoustic spectroscopy
EP0458384B1 (de) Mess- und Anzeigevorrichtung für die Geschwindigkeit der Blutströmung mittels Ultraschallechographie
FR2606157A1 (fr) Systeme de traitement de signaux noyes dans un bruit et son application en velocimetrie laser a franges
EP0596342B1 (de) Ultraschallmessgerät mit Minimierung der Zahl der durch die Verarbeitungsmitteln verarbeiteten digitalen Daten
EP0441451B1 (de) Echographievorrichtung zur Messung der Blutströmung und zur Geschwindigkeitsmessung von bewegten Organen mit erhöhter messbarer Geschwindigkeit
EP0197582B1 (de) Verfahren und Vorrichtung zur Untersuchung von Medien mittels Ultraschall-Echographie
FR2551213A1 (fr) Procede de mesure des parametres d'ecoulement d'un fluide et dispositif mettant en oeuvre ce procede
EP0201460B1 (de) Verfahren und Gerät zum Bestimmen von Geschwindigkeiten mittels Ultraschall-Doppler-Echographie im Inneren eines sich bewegenden Fluids
EP0197854A1 (de) Ultraschallabbildungsgerät
FR2800876A1 (fr) Perfectionnement aux anemometres a ultrasons
EP0457396A1 (de) Gerät zur Festechounterdrückung für einen Ultraschallechograph
CH685420A5 (fr) Procédé de mesure par ultrasons de la position d'au moins une paroi mobile et appareil pour la mise en oeuvre de ce procédé.
EP0149939A1 (de) Verfahren zur farbigen Ultraschall-Abbildung der internen Struktur eines Körpers
Fisher et al. Spectral reconstruction method for liquid velocity measurement beyond the Nyquist limit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19850603

17Q First examination report despatched

Effective date: 19861002

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910515

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19910515

Ref country code: AT

Effective date: 19910515

REF Corresponds to:

Ref document number: 63642

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3484586

Country of ref document: DE

Date of ref document: 19910620

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: CGR ULTRASONIC

Effective date: 19910831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030806

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030820

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030930

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040814

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent