EP0140559B1 - Procédé ultra rapide pour la fabrication de fil de polyester entièrement étiré - Google Patents
Procédé ultra rapide pour la fabrication de fil de polyester entièrement étiré Download PDFInfo
- Publication number
- EP0140559B1 EP0140559B1 EP84306276A EP84306276A EP0140559B1 EP 0140559 B1 EP0140559 B1 EP 0140559B1 EP 84306276 A EP84306276 A EP 84306276A EP 84306276 A EP84306276 A EP 84306276A EP 0140559 B1 EP0140559 B1 EP 0140559B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polyethylene terephthalate
- process according
- multifilamentary
- multifilamentary material
- particulate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
Definitions
- the invention relates to a process for the production of a highly spin oriented polyethylene terephthalate yarn.
- Polyethylene terephthalate multifilamentary yarns have been produced in the prior art under a variety of conditions. For instance, in much of the prior art polyester filaments have been melt extruded, quenched, and taken up at relatively low speeds under relatively low stress conditions. Such filaments must be subsequently drawn in a separate processing step at an elevated temperature in order to produce a fully drawn yarn which possesses tensile properties satisfactory for commercial use (e.g. as textile fibres). In some instances particulate materials including titanium dioxide and silicon dioxide have been included in polyethylene terephthalate fibers and films of the prior art.
- polyethylene terephthalate fibers possessing fully drawn properties may be prepared in the absence of a conventional drawing step by passing the filaments immediately following quenching through a conditioning zone provided with a gaseous atmosphere at a temperature above the glass transition temperature and below the melting temperature thereof and withdrawing the same at a relatively high speed. While passing through the conditioning zone substantial crystallisation of the previously solidified filamentary material takes place.
- processing conditions offer the significant advantage of eliminating the time and equipment requirements associated with a subsequent conventional drawing step. See particularly United States Patents 3,946,100, 4,195,161 and 4,246,747. See also Swiss Patent 530,479, DE-A-2,117,659 and NL-A-7204536.
- particulate material such as titanium dioxide has been included in fibres formed by such high speed spinning. As is known in the prior art, such titanium dioxide particles impart a semi-dull or dull appearance to the resulting filaments.
- the multifilamentary material is of a greatertotal denier (e.g. a total denier above 40) and/or if titanium dioxide particles are not present in the polyethylene terephthalate polymer at the time of melt spinning.
- the present invention provides an improved high speed process for forming a fully drawn polyethylene terephthalate yarn.
- the present invention provides a number of surprising advantages, among which are the following:
- the starting material selected for use in the process of the present invention is principally fibre-forming polyethylene terephthalate which has substantially uniformly dispersed therein a minor concentration of finely divided particulate silicon dioxide which surprisingly has been found to enhance the uniformity of the multifilamentary yarn which is formed under the conditions described herein.
- the polymer which is selected for use in the process contains at least 85 mole percent of polyethylene terephthalate and preferably at least 90 mole percent polyethylene terephthalate. Accordingly, the term "polyethylene terephthalate" as used in the present description may optionally include minor amounts of other ester-forming ingredients which may be copolymerised with the dominant polyethylene terephthalate units.
- ester-forming ingredients which may be copolymerised with the polyethylene terephthalate units include glycols (such as diethylene glycol, tetramethylene glycol and hexamethylene glycol) and dicarboxylic acids (such as hexahydroterephthalic acid, bibenzoic acid, adipic acid, sebacic acid and azelaic acid).
- glycols such as diethylene glycol, tetramethylene glycol and hexamethylene glycol
- dicarboxylic acids such as hexahydroterephthalic acid, bibenzoic acid, adipic acid, sebacic acid and azelaic acid.
- the polymer employed is substantially all polyethylene terephthalate.
- the polyethylene terephthalate which is selected for use in the improved process of the present invention preferably exhibits an intrinsic viscosity, i.e. I.V., of 0.35 to 1.0, and most preferably 0.5 to 0.8 (e.g. approximately 0.7) determined with a solution of 0.1 gram of the polymer dissolved in 100 ml. of ortho-chlorophenol at 25°C.
- I.V. intrinsic viscosity
- melt-spinnable polyethylene terephthalate may be conveniently determined by the equation where l l r is the "relative viscosity" obtained by dividing the viscosity of a dilute solution of the polymer by the viscosity of the solvent employed (measured at the same temperature), and c is the polymer concentration of the solution expressed in grams/100 ml.
- the polyethylene terephthalate when spun into fibres commonly exhibits a glass transition temperature of 75 to 80°C., and a melting point of 250 to 265°C. (e.g. approximately 260°C.)
- the polymer melting point will be influenced by factors such as polymer modifications, the degree of orientation achieved and so on.
- the finely divided silicon dioxide is substantially uniformly dispersed in the polyethylene terephthalate prior to extrusion in a concentration of 0.05 to 1.5 (e.g. 0.1 to 1.0) percent by weight.
- silicon dioxide is substantially uniformly dispersed in the polyethylene terephthalate in a concentration of 0.1 to 0.4 (e.g. 0.2 to 0.4) percent by weight.
- Such finely divided silicon dioxide exhibits a weight average particle size of less than 1 micron. Suitable particle size analysers for use when making such particle size determination are available from Micrometrics Instrument Corporation of Norcross, Georgia, and the Leeds and Northrup Corporation of Saint Louis, Florida (Microtrac particle size analyser).
- the silicon dioxide particles may be obtained from a variety of sources and may be termed fumed silica, colloidal silica, precipitated silica, etc.
- silicon dioxide particles are selected which have a substantial concentration of available silanol groups present upon their surfaces.
- a preferred silicon dioxide for use in the process of the present invention is fumed silica having a nominal particle size of less than 0.02 micron as determined by the BET method while assuming that the silicon dioxide particles are spherical in configuration.
- a representative particularly preferred example of such material is Cab-O-Sil fumed silica, Grade M-5, which is commercially available from the Cabot Corporation of Boston, Massachusetts. (Cab-O-Sil is a Trade Mark).
- Such particles possess an enormous surface area (e.g. 200 ⁇ 25 m 2 /gram), are covered with a substantial concentration of silanol groups and tend to assume a chain-like structure which may be broken up to some degree by shearing prior to use.
- the particulate silicon dioxide may be substantially uniformly dispersed within the polyethylene terephthalate prior to the melt spinning thereof by any suitable blending technique commonly employed to introduce particulate materials into a melt-processable polymer.
- suitable blending technique commonly employed to introduce particulate materials into a melt-processable polymer.
- known melt compounding techniques using single screw extruders, co-rotating twin screw extruders, counter-rotating twin screw extruders or kneaders may be employed, provided the required substantially uniform dispersal is achieved. If additional particulate material such as titanium dioxide is present, it too may be introduced by the same technique.
- the particulate silicon dioxide is intimately admixed with the reactants or monomers capable of forming polyethylene terephthalate prior to polymerisation and is present with such reactants while they are polymerised in accordance with conventional techniques.
- reactants or monomers capable of forming polyethylene terephthalate prior to polymerisation are present with such reactants while they are polymerised in accordance with conventional techniques.
- dimethylterephthalate and ethylene glycol may be reacted to form the polyethylene terephthalate.
- terephthalic acid and ethylene glycol may be the monomers employed during the polymerisation reaction.
- polyethylene terephthalate additionally may contain various chemical and physical modifiers which are routinely provided in such polymer.
- small amounts of monomers may be included which serve as cationic dyeable polymer modifiers and/or other modifiers such as isophthalic acid or 5-sulphoisophthalic acid may be present.
- Polymer meeting the specified requirements may additionally or alternatively contain minor amounts of materials used in conventional yarns such as stabilisers (e.g. phosphorus-containing stabilisers), delustrants, optical brighteners, polymer modifiers and the like.
- 0.05 to 1.5 percent by weight of particulate titanium dioxide having a weight average particle size of less than 2 microns additionally are uniformly dispersed in the polyethylene terephthalate as an additional ingredient.
- the extrusion orifices may be selected from among those commonly utilised during the melt extrusion of polyethylene terephthalate by a high speed process to form a fully drawn multifilamentary yarn.
- the orifices may be provided in a variety of cross-sectional configurations so as to form substantially uniform filaments having different cross-sectional shapes. For instance, the orifices may be round, trilobal, etc.
- the spinneret selected will commonly have from 6 to 200 holes. Such holes when round commonly are 9 to 60 mils (0.229 to 1.52 mm) in diameter (e.g. 9 to 40 mils (0.229 or 1.02 mm) or the equivalent thereof if not round. Spinnerets preferably are selected having 20 to 48 holes.
- the molten polyethylene terephthalate having the particulate silicon dioxide substantially uniformly dispersed therein is supplied to the extrusion orifices at a temperature above the melting point of the polyethylene terephthalate.
- such polymeric material will commonly be supplied to the extrusion orifices at a temperature of 270 to 310°C., and most preferably at a temperature of 280 to 300°C. (e.g. 282°C).
- a molten multifilamentary material is formed.
- the resulting molten multifilamentary material is passed in the direction of its length through a solidification or quench zone provided with a gaseous atmosphere at a temperature below the glass transition temperature thereof wherein the molten filamentary material is transformed to a solid multifilamentary material.
- the gaseous atmosphere commonly is provided at a temperature below 75 to 80°C.
- the molten material passes from a melt to a semi-solid consistency, and from the semi-solid consistency to a solid consistency. While present in the solidification zone, the multifilamentary material undergoes substantial orientation while present as a semi-solid.
- the gaseous atmosphere present within the solidification zone preferably circulates so as to bring about more efficient heat transfer.
- the gaseous atmosphere of the solidication zone is provided at a temperature of 10 to 40°C., and most preferably at a temperature of 25 to 30°C.
- the chemical composition of the gaseous atmosphere is not critical to the operation of the process provided the gaseous atmosphere is not unduly reactive with the polyethylene terephthalate.
- the gaseous atmosphere of the solidication zone is air.
- Other representative gaseous atmospheres which may be selected for use in the solidication zone include inert gases such as helium, argon, nitrogen, etc.
- the gaseous atmosphere of the solidification zone preferably impinges upon the extruded polyethylene terephthalate so as to produce a substantially uniform quench.
- the uniformity of the quench may be demonstrated through the ability of the multifilamentary product to exhibit no substanlial tendency to undergo self-crimping upon the application of heat.
- a flat multifilamentary yarn accordingly is produced in a preferred embodiment of the process.
- the solidification zone is preferably disposed immediately below the extrusion orifices and the extruded polyethylene terephthalate is present while axially suspended therein for a residence time of 0.0008 to 0.4 second, and most preferably for a residence time of 0.033 to 0.14 second.
- the solidification zone possesses a length of 1 to 7 feet (0.30 to 2.13 m).
- a standard crossflow quench may be employed.
- a centre flow quench or any other technique capable of bringing about the desired quenching may be utilised.
- the resulting multifilamentary material is passed in the direction of its length through a conditioning zone provided with a gaseous atmosphere at a temperature above the glass transition temperature thereof and below the melting temperature thereof wherein substantial crystallisation of the multifilamentary material takes place.
- a conditioning zone provided with a gaseous atmosphere at a temperature above the glass transition temperature thereof and below the melting temperature thereof wherein substantial crystallisation of the multifilamentary material takes place.
- the glass transition temperature of the filaments will typically be 75 to 80°C. and the melting point of the polyethylene terephthalate commonly will be 250 to 265°C. (e.g., approximately 260°C).
- the gaseous atmosphere within the conditioning zone commonly is provided at a temperature within the range 90 to 200°C. (e.g. 135 to 220°C.), and the previously solidified multifilamentary material commonly is present therein for a residence time of 0.0001 to 0.8 second (e.g., 0.001 to 0.8 second).
- the optimum residence time required to produce substantial crystallisation may vary with exact composition of the polyethylene terephthalate involved. Longer residence times may commonly be used without commensurate advantage.
- the chemical composition of the gaseous atmosphere provided within the conditioning zone is not critical to the operation of the process provided the gaseous atmosphere is not unduly reactive with the multifilamentary material.
- Static air conveniently may be selected.
- Other representative gaseous atmospheres which may be employed in the conditioning zone include helium argon, nitrogen, etc.
- Band heaters or any other heating means may be provided which will maintain the conditioning zone at the required temperature.
- the conditioning zone commonly will have a length of 0.5 to 12 feet (0.152 to 3.66 m) and preferably a length of 3 to 12 feet (0.914 to 3.66 m).
- the multifilamentary material is heat treated under constant tension.
- this heat treatment small -amounts of thermally induced elongation may occur, but this process is to be differentiated from a conventional draw process because of the constant tension rather than the constant strain criterion.
- the level of tension on the multifilamentary material in the conditioning zone is important to the development of the desired properties and is primarily influenced by the rate of withdrawal from the conditioning zone.
- the passage of multifilamentary material through the conditioning zone modifies the internal morphology of the filaments and renders a subsequent conventional hot drawing step unnecessary. Accordingly, the multifilamentary product exhibits properties generally analogous to those of a fully drawn yarn.
- the resulting multfilamentary material is withdrawn from the conditioning zone at a relatively high speed in excess of 8,000 feet (2438 m) per minute.
- withdrawal speeds in excess of 8,000 feet (2438 m) per minute up to 16,000 feet (4877 m) per minute are selected (e.g., 11,000 to 13,000 feet (3353 to 3962 m) per minute).
- a representative technique for accomplishing the high speed withdrawal is to pass the multifilamentary material to pairs of godet rolls situated at the exit end of the conditioning zone prior to packaging. As will be apparent to those skilled in the art, a substantial drawdown will occur along the spinline while operating under such conditions.
- the presence of the particulate silicon dioxide substantially uniformly dispersed within the polyethylene terephthalate prior to melt extrusion beneficially enhances the uniformity of the multifilamentary product formed in accordance with the overall process described herein.
- Such uniformity enhancement is possible regardless of whether particulate material other than silicon dioxide (e.g. a conventional titanium dioxide delustrant) is present therein.
- the multifilamentary product of the present invention is particularly suited for use in textile applications and may be readily woven or knitted.
- Such multifilamentary polyethylene terephthalate product will commonly consist of 6 to 200 continuous filaments each having a substantially constant denier of 1 to 5.
- the enhanced uniformity of the multifilamentary product is evidenced by an inspection of the individual filaments present therein under magnification. It is found that a more constant thickness or diameter along the length of individual filaments is observed. Accordingly, there is a lesser incidence of undesirable thick filament areas which were drawn to a lesser degree. Such thick areas are detrimental since they often tend to absorb dye more readily and can lead to darker streaks in a dyed textile product where they occur. Additionally, the mean deviation in overall dye uptake variability is lessened as a result of the improved process of the present invention. If further has been observed that the susceptibility of the polymer to thermal and oxidative degradation is diminished because of the presence of the silicon dioxide particles.
- a semi-dull multifilamentary yarn of enhanced uniformity having a total denier of 20 to 200 is formed which also includes titanium dioxide particles dispersed therein.
- the resulting polyethylene terephthalate exhibits an intrinsic viscosity of approximately 0.675 determined with a solution of 0.1 gram of polymer dissolved in 100 ml. of ortho-chlorophenol at 25°C., and the silicon dioxide particles are substantially uniformly dispersed therein in a concentration 0.2 percent by weight.
- the spinneret selected for melt extrusion possesses 30 trilobal orifices, each lobe having a maximum width of 0.005 inch (0.127 mm), a length of 0.009 inch (0.229 mm) measured from the centre point, and a depth of 0.018 inch (0.457 mm).
- Such trilobal orifices are equivalent in size to a 0.013 inch (0.330 mm) round extrusion hole.
- the molten polyethylene terephthalate containing the silicon dioxide particles dispersed therein while at a temperature of 282°C. is extruded through the extrusion orifices to form a molten multifilamentary material.
- the apparatus arrangement selected generally corresponds to that illustrated in United States Patent 3,946,100.
- the molten filamentary material passes downward in the direction of its length through a crossflow quench zone having a length of approximately 3 feet (0.914 m) which is provided with flowing air at a temperature of approximately 30°C. While present in such quench zone, the molten multifilamentary material is uniformly quenched and is transformed to a solid multifilamentary material.
- a conditioning zone having a length of approximately 3 feet (0.914 m) through which the multifilamentary material next passes in the direction of its length.
- the conditioning zone is a cylindrical tube into which heated air is introduced at the bottom. The air is present in the conditioning zone at a temperature above the glass transition temperature of the polyethylene terephthalate and below the melting temperature thereof. At the midpoint of the conditioning zone the temperature is approximately 155°C.
- the multifilamentary material is immediately passed through such conditioning zone where it is structurally modified as described in United States Patents 3,946,100 and 4,195,161 and substantial crystallisation takes place.
- the resulting multifilamentary material is next withdrawn from the conditioning zone at a rate of approximately 11,500 feet (3505 m) per minute with the aid of godet rolls, has a finish applied thereto, is passed through a pneumatic intermingling jet to improve handleabiltiy and is packaged.
- the resulting 30 filament multifilamentary yarn has a total denier of approximately 40, possesses a lustrous appearance and exhibits a tenacity of approximately 4.4 grams per denier at room temperature, an elongation of 55 to 60 percent at room temperature and a boiling water shrinkage of approximately 4.5 percent.
- the multifilamentary product exhibits enhanced uniformity when compared to a similarly prepared multifilamentary yarn wherein no silicon dioxide is added to the polyethylene terephthalate prior to melt extrusion.
- the yarn prepared as described above as well as a control yarn may be knitted in a warp knit configuration and dyed with Eastman Blue 210 dye using jet dyeing in accordance with standard dyeing conditions and the uniformity of the dye uptake observed.
- Over a 100 foot (30.48 m) section of the dyed knitted fabric composed of the multifilamentary yarn formed in accordance with the present invention no streak areas will be observed where non-uniform filaments of increased thickness have adsorbed a greater quantity of the dye.
- a similarly prepared knitted fabric which lacks silicon dioxide particles dispersed therein will exhibit approximately 50 darkened streak areas where non-uniform filaments of increased thickness have absorbed a greater quantity of the dye.
- the fabric containing filaments formed in accordance with the present invention will exhibit reduced signal variability in grams of standard deviation from the mean. More specifically, the fabric of the present invention will exhibit a value of approximately 3.3, while the control which lacks silicon dioxide will exhibit a greater standard deviation from the mean of approximately 4.
- titanium dioxide having a weight average particle size of approximately 1.06 micron.
- the titanium dioxide particles are substantially uniformly dispersed in the resulting polyethylene terephthalate in a concentration of 0.3 percent by weight.
- the spinneret selected for the melt extrusion possesses 30 round orifices each having a diameter of 0.013 inch (0.330 mm) and a length of 0.018 inch (0.457 mm).
- the molten polymer containing the silicon dioxide particles dispersed therein is supplied to the spinneret at a rate of 3.6 Ibs./hr. (1.63 kg/hr.).
- the resulting multifilamentary yarn product exhibits a total denier of approximately 70 and a semi-dull appearance.
- the fabric containing filaments formed in accordance with the present invention will exhibit a reduced signal variability in grams of standard deviation from the mean of approximately 5.0, while the control which lacks silicon dioxide will exhibit a value of approximately 6.2.
- Example I is substantially repeated with the exceptions indicated.
- titanium dioxide having a weight average particle size of approximately 1.06 micron.
- the titanium dioxide particles are substantially uniformly dispersed in the resulting polyethylene terephthalate in a concentration of approximately 0.3 percent by weight.
- the spinneret selected for the melt extrusion possesses 30 round orifices each having a diameter of 0.013 inch (0.330 mm) and a length of 0.018 inch (0.457 mm).
- the molten polyethylene terephthalate containing the silicon dioxide particles dispersed therein is supplied to the spinneret at a rate of 6.43 Ibs./hr. (2.92 kg/hr.) It will be noted that this extrusion rate is greater than that employed in Example II.
- the resulting multifilamentary product exhibits a total denier of approximately 125 and a semi-dull appearance.
- the fabric containing filaments formed in accordance with the present invention will exhibit a reduced signal variability in grams of standard deviation from the mean of approximately 12.8, while the control which lacks silicon dioxide will exhibit a value of approximately 15.0.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53197683A | 1983-09-14 | 1983-09-14 | |
US531976 | 1983-09-14 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0140559A2 EP0140559A2 (fr) | 1985-05-08 |
EP0140559A3 EP0140559A3 (en) | 1986-05-28 |
EP0140559B1 true EP0140559B1 (fr) | 1989-03-22 |
Family
ID=24119869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84306276A Expired EP0140559B1 (fr) | 1983-09-14 | 1984-09-13 | Procédé ultra rapide pour la fabrication de fil de polyester entièrement étiré |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0140559B1 (fr) |
JP (1) | JPS6088121A (fr) |
KR (1) | KR850002489A (fr) |
CA (1) | CA1233009A (fr) |
DE (1) | DE3477407D1 (fr) |
MX (1) | MX159093A (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4909976A (en) * | 1988-05-09 | 1990-03-20 | North Carolina State University | Process for high speed melt spinning |
FR2658840B1 (fr) * | 1989-12-20 | 1994-02-11 | Rhone Poulenc Fibres | Procede pour l'obtention de fils pet avec une meilleure productivite. |
DE4021545A1 (de) * | 1990-07-06 | 1992-01-16 | Engineering Der Voest Alpine I | Verfahren und vorrichtung zum herstellen von kunststoffaeden oder -fasern aus polymeren, insbesondere polyamid, polyester oder polypropylen |
FR2856703B1 (fr) * | 2003-06-27 | 2005-12-30 | Rhodianyl | Fils, fibres, filaments en matiere synthetique ignifugee |
KR100499220B1 (ko) * | 2003-06-30 | 2005-07-01 | 주식회사 효성 | 방사성이 우수한 고강력 폴리에틸렌-2,6-나프탈레이트섬유 및 이의 제조방법 |
EP1719828A1 (fr) * | 2005-05-06 | 2006-11-08 | Diolen Industrial Fibers B.V. | Corde pour pneumatiques et son procédé de préparation |
JP5523462B2 (ja) * | 2008-08-27 | 2014-06-18 | エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | マルチフィラメント糸を溶融紡糸し、延伸しかつ巻き上げる方法並びにこの方法を実施する装置 |
CN117512790B (zh) * | 2024-01-08 | 2024-06-18 | 江苏恒力化纤股份有限公司 | 一种减少涤纶工业丝皮芯结构的纺丝方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1347696A (fr) * | 1962-08-23 | 1964-01-04 | Eastman Kodak Co | Nouvelle composition à base de polyester et ses applications |
JPS512942A (ja) * | 1974-06-28 | 1976-01-12 | Hitachi Ltd | Bosenbako |
JPS5946254B2 (ja) * | 1976-10-06 | 1984-11-12 | 東レ株式会社 | 粒子分散性の優れたポリエステルの製造法 |
JPS5360952A (en) * | 1976-11-12 | 1978-05-31 | Toray Ind Inc | Biaxially oriented polyethylene terephthalate film |
US4246747A (en) * | 1979-01-02 | 1981-01-27 | Fiber Industries, Inc. | Heat bulkable polyester yarn and method of forming same |
JPS55127431A (en) * | 1979-03-27 | 1980-10-02 | Toray Ind Inc | Production of polyester |
JPS5643419A (en) * | 1979-09-07 | 1981-04-22 | Kuraray Co Ltd | Polyseter fiber with novel type surface and its production |
JPS5751814A (en) * | 1980-09-11 | 1982-03-26 | Teijin Ltd | Method of spinning polyester fiber |
JPS58149325A (ja) * | 1982-03-01 | 1983-09-05 | Toray Ind Inc | シリカ含有ポリエステルの溶融紡糸方法 |
JPS5980431A (ja) * | 1982-10-29 | 1984-05-09 | Asahi Chem Ind Co Ltd | シリカ含有ポリエステルの製造方法 |
-
1984
- 1984-09-12 CA CA000462957A patent/CA1233009A/fr not_active Expired
- 1984-09-13 EP EP84306276A patent/EP0140559B1/fr not_active Expired
- 1984-09-13 DE DE8484306276T patent/DE3477407D1/de not_active Expired
- 1984-09-13 MX MX202697A patent/MX159093A/es unknown
- 1984-09-13 KR KR1019840005577A patent/KR850002489A/ko not_active Application Discontinuation
- 1984-09-14 JP JP59191886A patent/JPS6088121A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
KR850002489A (ko) | 1985-05-13 |
DE3477407D1 (en) | 1989-04-27 |
JPS6088121A (ja) | 1985-05-17 |
CA1233009A (fr) | 1988-02-23 |
MX159093A (es) | 1989-04-14 |
EP0140559A3 (en) | 1986-05-28 |
EP0140559A2 (fr) | 1985-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3946100A (en) | Process for the expeditious formation and structural modification of polyester fibers | |
US3227793A (en) | Spinning of a poly(polymethylene) terephthalamide | |
US3361859A (en) | Melt-spinning process | |
US4518744A (en) | Process of melt spinning of a blend of a fibre-forming polymer and an immiscible polymer and melt spun fibres produced by such process | |
US3382305A (en) | Process for preparing oriented microfibers | |
US2604667A (en) | Yarn process | |
EP0080906B1 (fr) | Fibres en polyester et leur fabrication | |
US3350871A (en) | Yarn blend | |
EP1192302B2 (fr) | Fil a denier fin de poly(trimethylene terephthalate) | |
US4195161A (en) | Polyester fiber | |
EP0201189B2 (fr) | Procédé de filage à grande vitesse de fibres de polyamide | |
US4415521A (en) | Process for achieving higher orientation in partially oriented yarns | |
EP0140559B1 (fr) | Procédé ultra rapide pour la fabrication de fil de polyester entièrement étiré | |
US5207959A (en) | Process for obtaining pet yarns with an improved production efficiency | |
US4113821A (en) | Process for preparing high strength polyamide and polyester filamentary yarn | |
US4970038A (en) | Process of preparing polyester yarn | |
EP0035796B1 (fr) | Filaments synthétiques thermoplastiques et procédé pour leur fabrication | |
EP0207489A2 (fr) | Fibre de polyester à rétraction élevée et procédé pour sa fabrication; fil mélangé de polyester et son procédé de fabrication | |
EP0126519A2 (fr) | Procédé pour la fabrication de fils auto-frisants de polyester | |
US4356234A (en) | Thermoplastic synthetic filaments and process for producing the same | |
US3523151A (en) | Ultra-stable polymers of bbb type,articles such as fibers made therefrom,and high temperature process for forming such polymers and articles | |
JPH0931749A (ja) | ポリエステル繊維の製造方法 | |
US4505867A (en) | Process for polyester yarns | |
JPS61194218A (ja) | ポリエステル繊維の製造法 | |
JPH0617317A (ja) | ポリエステル繊維の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19861103 |
|
17Q | First examination report despatched |
Effective date: 19880607 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3477407 Country of ref document: DE Date of ref document: 19890427 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: VISCOSUISSE SA Effective date: 19891214 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19910628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940615 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940627 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950913 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960927 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980603 |