EP0136220B1 - Pump system for chromatography in the liquid phase - Google Patents

Pump system for chromatography in the liquid phase Download PDF

Info

Publication number
EP0136220B1
EP0136220B1 EP84401725A EP84401725A EP0136220B1 EP 0136220 B1 EP0136220 B1 EP 0136220B1 EP 84401725 A EP84401725 A EP 84401725A EP 84401725 A EP84401725 A EP 84401725A EP 0136220 B1 EP0136220 B1 EP 0136220B1
Authority
EP
European Patent Office
Prior art keywords
cylinders
cylinder
fact
pumping system
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401725A
Other languages
German (de)
French (fr)
Other versions
EP0136220A1 (en
Inventor
François Couillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GROUPE INDUSTRIEL DE REALISATION ET D'APPLICATION GIRA SA
Original Assignee
GROUPE INDUSTRIEL DE REALISATION ET D'APPLICATION GIRA SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GROUPE INDUSTRIEL DE REALISATION ET D'APPLICATION GIRA SA filed Critical GROUPE INDUSTRIEL DE REALISATION ET D'APPLICATION GIRA SA
Publication of EP0136220A1 publication Critical patent/EP0136220A1/en
Application granted granted Critical
Publication of EP0136220B1 publication Critical patent/EP0136220B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • F04B5/02Machines or pumps with differential-surface pistons with double-acting pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0075Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons connected in series
    • F04B11/0083Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons connected in series the pistons having different cross-sections

Definitions

  • the subject of the present invention is various improvements to liquid pumping systems with constant and precise flow over time, that is to say in which the instantaneous flow of liquid is precisely maintained at predetermined values.
  • This type of pumping system finds many industrial applications, in particular in the field of precision instrumentation and, in particular, in liquid chromatography.
  • the total flow must be 300 cm 3 in 40 seconds, or 75 cm 3 in 10 seconds.
  • the upstream cylinder sucks 300 cm 3
  • the downstream cylinder must discharge 75 cm 3 , which defines its capacity.
  • the upstream cylinder delivers 300 cm 3
  • the downstream cylinder draws 75 cm 3 , the rest 225 cm 3 being driven downstream at the rate of 75 cm 3 per 10 seconds.
  • the cross sections of the cylinders are proportional to the capacities, 300 cm 3 for the upstream cylinder and 75 cm 3 for the downstream cylinder.
  • the pistons then move in reverse, one driving back during the suction time of the other and vice versa. This can be obtained by mounting in opposition, by camshaft or any other suitable means.
  • V is the volume of the upstream cylinder
  • V 2 that of the downstream cylinder
  • t At the suction time of the upstream cylinder t R , its delivery time, we deduce from this principle that: t A , + t R , represent the period of the operating cycle.
  • the object of the present invention is to remedy these drawbacks by ensuring constant flow both at suction and at delivery.
  • patent application DE-A-2 725 464 describes a pumping system for liquid chromatography which comprises a main pipe into which open three cylinders and on which are mounted non-return devices, the piston of each of these cylinders being controlled by a drive system defining its movement over time so that one of the pistons operates in phase opposition with the other two, sucking while the other two push back, and vice versa.
  • the cylinders of this known device are all identical to each other, and their pistons are driven by means of cams whose profile is defined by extremely complicated equations, which makes it difficult and expensive to produce such a pumping system.
  • the object of the present invention is to remedy the drawbacks of these known devices by ensuring perfect constancy of the flow rate, both at suction and at discharge, by means of a pumping system which is simpler and less expensive than those of known devices.
  • FIGS. 1 and 2 each schematically represent in section two variants of devices according to the invention.
  • FIG. 1 three cylinders 0, 1 and 2, are mounted at T on a pipe 3 taking at 4 the liquid from an upstream source not shown to discharge it at 5; the T fittings, 6, 7 and 8 are preceded, separated and followed by non-return valves or equivalent symbolized by the arrows 9,10.11 and 12, so that the liquid can only pass from 4 to 6, from 6 in 7, 7 in 8 and 8 in 5, to the deviations towards the cylinders close.
  • the cylinders 0, 1 and 2 are provided with pistons 13, 14 and 15 controlled by cams 16, 17 and 18 carried by a common shaft.
  • cams are identical here but mounted for 16 and 18 in the same position and for 17 in position shifted by ⁇ (180 °), their profile generates a linear movement of the pistons in one direction and in the other hence a profile of cam in arithmetic spirals, one for the going of the pistons and the other for the return.
  • V o , V 1 and V 2 are the respective displacements of cylinders 0, 1 and 2
  • t A is the suction time
  • t R the delivery time with the indices 0, 1, 2 corresponding to the cylinders
  • the sections of the cylinders 0, 1 are respectively proportional to t R1 , t A , + t R , and t A , and their diameters to ⁇ t R1 Vt A , + t R , and Vt A ,.
  • FIG. 2 there is shown schematically a double bore cylinder system with a single piston 20 with two diameters corresponding to the two bores and delimiting three chambers 0, 1 and 2 between piston and bottom of the double cylinder and between change planes double cylinder and piston section. These chambers 0, 1 and 2 correspond to those of FIG. 1. It can be seen that the stroke of the piston is the same for the three chambers, but opposite for 0, 2 on the one hand and 1 on the other hand. If the movement of the piston actuated by any device not shown is linear in one direction during t A , and in the other during t R , and if the sections of 0, 1 and 2 correspond to the above defined equation, we finds a system equivalent to that of FIG. 1. These same indices designate equivalent elements there. Note that the section of 0 and the section of 2 necessarily have a sum equal to that of 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

La présente invention a pour objet divers perfectionnements aux systèmes de pompage de liquides à débit constant et précis dans le temps, c'est-à-dire dans lesquels le débit instantané de liquide est maintenu avec précision à des valeurs prédéterminées. Ce type de systèmes de pompage trouve de nombreuses applications industrielles, notamment dans le domaine de l'instrumentation de précision et, en particulier, en chromatographie en phase liquide.The subject of the present invention is various improvements to liquid pumping systems with constant and precise flow over time, that is to say in which the instantaneous flow of liquid is precisely maintained at predetermined values. This type of pumping system finds many industrial applications, in particular in the field of precision instrumentation and, in particular, in liquid chromatography.

On a proposé dans l'art antérieur de monter deux cylindres munis de pistons montés en T sur la canalisation d'alimentation, la canalisation étant équipée, de part et d'autre des T et entre eux, de clapets ou équivalents évitant un reflux du liquide vers la source. Le rôle du premier cylindre est d'alimenter en liquide pendant l'aller du piston, tandis que le second cylindre assure l'intérim de l'action du premier pendant la phase d'aspiration de ce premier cylindre. Si le cylindre amont (le premier cylindre) a une capacité de 300 cm3, une phase d'aspiration de 10 secondes et une phase de refoulement linéaire (à débit constant) de 30 secondes, le cylindre aval (le second) va prélever sur les 300 cm3 passant à hauteur de son T une quantité qui va ensuite compenser l'absence de débit du cylindre amont pendant sa période d'aspiration. Un tel dispositif est décrit dans la demande de brevet DE-A-3 203 722.It has been proposed in the prior art to mount two cylinders fitted with pistons mounted in a T on the supply pipe, the pipe being equipped, on either side of the T and between them, with valves or the like preventing a backflow of the liquid to the source. The role of the first cylinder is to supply liquid during the going of the piston, while the second cylinder ensures the acting of the first during the suction phase of this first cylinder. If the upstream cylinder (the first cylinder) has a capacity of 300 cm 3 , a suction phase of 10 seconds and a linear delivery phase (at constant flow) of 30 seconds, the downstream cylinder (the second) will draw on the 300 cm 3 passing up to its T a quantity which will then compensate for the lack of flow from the upstream cylinder during its suction period. Such a device is described in patent application DE-A-3 203 722.

On conçoit donc que le débit total doit être de 300 cm3 en 40 secondes, soit 75 cm3 par 10 secondes. Lorsque pendant 10 secondes, le cylindre amont aspire 300 cm3, le cylindre aval doit refouler 75 cm3, ce qui définit sa capacité. Lorsque pendant 30 secondes, le cylindre amont refoule 300 cm3, le cylindre aval prélève 75 cm3, le reste 225 cm3 étant refoulé vers l'aval à raison de 75 cm3 par 10 secondes. On revient ensuite au début du cycle. Du côté aval, on a donc 75 cm3 provenant du cylindre aval pendant 10 secondes, puis 225 cm3 provenant du cylindre amont pendant 30 secondes. Si les pistons se déplacent linéairement, le débit est maintenu constant. Si leurs courses sont égales, les sections droites des cylindres sont proportionnelles aux capacités, 300 cm3 pour le cylindre amont et 75 cm3 pour le cylindre aval. Les pistons se déplacent alors à l'inverse, l'un refoulant pendant le temps d'aspiration de l'autre et réciproquement. Ceci peut être obtenu par montage en opposition, par arbre à cames ou tout autre moyen adéquat.It is therefore understandable that the total flow must be 300 cm 3 in 40 seconds, or 75 cm 3 in 10 seconds. When for 10 seconds, the upstream cylinder sucks 300 cm 3 , the downstream cylinder must discharge 75 cm 3 , which defines its capacity. When for 30 seconds the upstream cylinder delivers 300 cm 3 , the downstream cylinder draws 75 cm 3 , the rest 225 cm 3 being driven downstream at the rate of 75 cm 3 per 10 seconds. We then return to the beginning of the cycle. On the downstream side, there is therefore 75 cm 3 coming from the downstream cylinder for 10 seconds, then 225 cm 3 coming from the upstream cylinder for 30 seconds. If the pistons move linearly, the flow is kept constant. If their strokes are equal, the cross sections of the cylinders are proportional to the capacities, 300 cm 3 for the upstream cylinder and 75 cm 3 for the downstream cylinder. The pistons then move in reverse, one driving back during the suction time of the other and vice versa. This can be obtained by mounting in opposition, by camshaft or any other suitable means.

Plus généralement, si V, est le volume du cylindre amont, V2 celui du cylindre aval, tAt le temps d'aspiration du cylindre amont tR,, son temps de refoulement, on déduit de ce principe que :

Figure imgb0001
tA, + tR, représentent la période du cycle de fonctionnement.More generally, if V, is the volume of the upstream cylinder, V 2 that of the downstream cylinder, t At the suction time of the upstream cylinder t R ,, its delivery time, we deduce from this principle that:
Figure imgb0001
t A , + t R , represent the period of the operating cycle.

En fait, du côté amont, les temps d'aspiration du cylindre amont sont suivis de temps de non aspiration puisque le second cylindre s'alimente sur le refoùlement du premier. Si donc, le débit total est faible, soit du fait de petits volumes, soit du fait d'une période longue pour le cycle on ne se heurte pas à de trop graves difficultés, mais dès que l'on augmente les débits, c'est-à-dire soit les volumes, soit les fréquences, soit les deux, on peut assister à divers phénomènes tels que la cavitation ou les coups de bélier.In fact, on the upstream side, the suction times of the upstream cylinder are followed by non-suction times since the second cylinder feeds on the re-flow of the first. If therefore, the total flow is low, either because of small volumes, or because of a long period for the cycle, we do not encounter too serious difficulties, but as soon as we increase the flows, it that is to say either the volumes, or the frequencies, or both, we can witness various phenomena such as cavitation or water hammer.

La présente invention a pour but de porter remède à ces inconvénients en assurant une constance du débit tant à l'aspiration qu'au refoulement.The object of the present invention is to remedy these drawbacks by ensuring constant flow both at suction and at delivery.

D'autre part, la demande de brevet DE-A-2 725 464 décrit un système de pompage pour chromatographie en phase liquide qui comprend une canalisation principale dans laquelle débouchent trois cylindres et sur laquelle sont montés des dispositifs anti-retour, le piston de chacun de ces cylindres étant commandé par un système d'entraînement définissant son mouvement dans le temps de telle manière que l'un des pistons fonctionne en opposition de phase avec les deux autres, en aspirant alors que les deux autres refoulent, et inversement. Les cylindres de ce dispositif connu sont tous identiques entre eux, et leurs pistons sont entraînés par l'intermédiaire de cames dont le profil est défini par des équations extrêmement compliquées, ce qui rend difficile et coûteuse la réalisation d'un tel système de pompage.On the other hand, patent application DE-A-2 725 464 describes a pumping system for liquid chromatography which comprises a main pipe into which open three cylinders and on which are mounted non-return devices, the piston of each of these cylinders being controlled by a drive system defining its movement over time so that one of the pistons operates in phase opposition with the other two, sucking while the other two push back, and vice versa. The cylinders of this known device are all identical to each other, and their pistons are driven by means of cams whose profile is defined by extremely complicated equations, which makes it difficult and expensive to produce such a pumping system.

La présente invention a pour but de porter remède aux inconvénients de ces dispositifs connus en assurant une constance parfaite du débit, tant à l'aspiration qu'au refoulement, et ce, au moyen d'un système de pompage plus simple et moins coûteux que ceux des dispositifs connus.The object of the present invention is to remedy the drawbacks of these known devices by ensuring perfect constancy of the flow rate, both at suction and at discharge, by means of a pumping system which is simpler and less expensive than those of known devices.

Selon l'invention, ce but est atteint grâce à un système de pompage selon la revendication 1.According to the invention, this object is achieved thanks to a pumping system according to claim 1.

D'autres particularités de l'invention sont contenues dans les sous-revendications.Other features of the invention are contained in the subclaims.

Pour mieux faire comprendre les caractéristiques techniques et les avantages de la présente invention, on va en décrire deux exemples de réalisation étant bien entendu que ceux-ci ne sont pas limitatifs quant à leur mode de mise en oeuvre et aux applications qu'on peut en faire.To better understand the technical characteristics and advantages of the present invention, two examples of embodiments will be described, it being understood that these are not limiting as to their mode of implementation and to the applications that can be made of them. to do.

On se reportera aux figures 1 et 2 qui représentent chacune schématiquement en coupe deux variantes de dispositifs conformes à l'invention.Reference will be made to FIGS. 1 and 2 which each schematically represent in section two variants of devices according to the invention.

A la figure 1, trois cylindres 0, 1 et 2, sont montés en T sur une canalisation 3 prélevant en 4 du liquide dans une source amont non représentée pour le refouler en 5 ; les raccords en T, 6, 7 et 8 sont précédés, séparés et suivis par des clapets de non retour ou équivalents symbolisés par les flèches 9,10.11 et 12, de sorte que le liquide ne peut passer que de 4 en 6, de 6 en 7, de 7 en 8 et de 8 en 5, aux déviations vers les cylindres près.In FIG. 1, three cylinders 0, 1 and 2, are mounted at T on a pipe 3 taking at 4 the liquid from an upstream source not shown to discharge it at 5; the T fittings, 6, 7 and 8 are preceded, separated and followed by non-return valves or equivalent symbolized by the arrows 9,10.11 and 12, so that the liquid can only pass from 4 to 6, from 6 in 7, 7 in 8 and 8 in 5, to the deviations towards the cylinders close.

Les cylindres 0, 1 et 2 sont munis de pistons 13, 14 et 15 commandés par des cames 16, 17 et 18 portées par un arbre commun. Un système de rappel ou autre adéquat non représenté fait suivre, aux pistons, les mouvements des cames correspondantes aussi bien dans un sens de déplacement que dans l'autre.The cylinders 0, 1 and 2 are provided with pistons 13, 14 and 15 controlled by cams 16, 17 and 18 carried by a common shaft. A return system or other suitable device, not shown, makes the pistons follow the movements of the corresponding cams both in one direction of movement and in the other.

Ces cames sont ici identiques mais montées pour 16 et 18 dans la même position et pour 17 en position décalée de π (180°), leur profil engendre un mouvement linéaire des pistons dans un sens et dans l'autre d'où un profil de came en spirales arithmétiques, l'une pour l'aller des pistons et l'autre pour le retour.These cams are identical here but mounted for 16 and 18 in the same position and for 17 in position shifted by π (180 °), their profile generates a linear movement of the pistons in one direction and in the other hence a profile of cam in arithmetic spirals, one for the going of the pistons and the other for the return.

Si Vo, V1 et V2 sont les cylindrées respectives des cylindres 0, 1 et 2, si tA est le temps d'aspiration, tR le temps de refoulement avec les indices 0, 1, 2 correspondant aux cylindres, on a :

Figure imgb0002
Figure imgb0003
et l'on impose :
Figure imgb0004
If V o , V 1 and V 2 are the respective displacements of cylinders 0, 1 and 2, if t A is the suction time, t R the delivery time with the indices 0, 1, 2 corresponding to the cylinders, we at :
Figure imgb0002
Figure imgb0003
and we impose:
Figure imgb0004

Dans ces conditions, le débit en 4 et le débit en 5 sont constants. On déduit de l'égalité précédente que V0 + V2 = V1.Under these conditions, the flow in 4 and the flow in 5 are constant. We deduce from the previous equality that V 0 + V 2 = V 1 .

Si les courses des pistons 13, 14, 15 sont égales, les sections des cylindres 0, 1 et sont respectivement proportionnelles à tR1, tA, + tR, et tA, et leurs diamètres à √tR1 VtA, + tR, et VtA,.If the strokes of the pistons 13, 14, 15 are equal, the sections of the cylinders 0, 1 and are respectively proportional to t R1 , t A , + t R , and t A , and their diameters to √t R1 Vt A , + t R , and Vt A ,.

On peut imaginer de remplacer chaque cylindre par un ou plusieurs, par exemple identiques, le nombre sera alors proportionnel aux temps tR,, tA, + tR, et tA1.One can imagine replacing each cylinder with one or more, for example identical, the number will then be proportional to the times t R ,, t A , + t R , and t A1 .

A la figure 2, on a représenté schématiquement un système à cylindre à double alésage et à piston unique 20 à deux diamètres correspondant aux deux alésages et délimitant trois chambres 0, 1 et 2 entre piston et fonds du double cylindre et entre plans de changement de section du double cylindre et du piston. Ces chambres 0, 1 et 2 correspondent à celles de la figure 1. On constate que la course du piston est la même pour les trois chambres, mais opposée pour 0, 2 d'une part et 1 d'autre part. Si le mouvement du piston actionné par tout dispositif non représenté est linéaire dans un sens pendant tA, et dans l'autre pendant tR, et si les sections de 0, 1 et 2 répondent à l'équation ci-dessus définie, on retrouve un système équivalent à celui de la figure 1. Ces mêmes indices y désignent des éléments équivalents. On remarquera que nécessairement la section de 0 et la section de 2 ont une somme égale à celle de 1.In Figure 2, there is shown schematically a double bore cylinder system with a single piston 20 with two diameters corresponding to the two bores and delimiting three chambers 0, 1 and 2 between piston and bottom of the double cylinder and between change planes double cylinder and piston section. These chambers 0, 1 and 2 correspond to those of FIG. 1. It can be seen that the stroke of the piston is the same for the three chambers, but opposite for 0, 2 on the one hand and 1 on the other hand. If the movement of the piston actuated by any device not shown is linear in one direction during t A , and in the other during t R , and if the sections of 0, 1 and 2 correspond to the above defined equation, we finds a system equivalent to that of FIG. 1. These same indices designate equivalent elements there. Note that the section of 0 and the section of 2 necessarily have a sum equal to that of 1.

On remarquera également qu'aux figures 1 et 2, les dispositifs anti-retour portent les mêmes repères et que, en pratique, les dispositifs 9 et 12 ne sont pas indispensables.It will also be noted that in FIGS. 1 and 2, the non-return devices have the same references and that, in practice, the devices 9 and 12 are not essential.

On remarquera que le double cylindre de la figure 2 peut être monté différemment, la cylindrée de gauche pouvant devenir la première (0), la cylindrée médiane la troisième (2) et la cylindrée de droite (1) restant la seconde. Il suffit, pour cela, d'inverser les dispositifs anti-retour 9, 10, 11 et 12.Note that the double cylinder of Figure 2 can be mounted differently, the left displacement may become the first (0), the middle displacement the third (2) and the right displacement (1) remaining the second. For this, it suffices to reverse the non-return devices 9, 10, 11 and 12.

On peut également imaginer sans sortir du cadre de la présente invention des dispositifs dans lesquels on peut faire varier cylindrées et temps d'aspiration et de refoulement.It is also possible to imagine, without departing from the scope of the present invention, devices in which the displacement and the suction and delivery times can be varied.

Ceci peut se faire, par exemple, en modifiant la course des pistons, notamment en changeant ou en modifiant les cames.This can be done, for example, by modifying the stroke of the pistons, in particular by changing or modifying the cams.

Ceci peut également se faire par exemple par des séries de cylindres montés en T sur une ou plusieurs canalisations parallèles, les T étant séparés par des clapets anti-retour. On peut alors considérer des séries de cylindres successifs, par exemple identiques dont la cylindrée totàle de chaque sérje correspond aux cylindrées 0, 1 et 2 des exemples des figures 1 et 2 : par exemple un ensemble de douze cylindres peut être divisé en 3 + 6 + 3 ou 4 + 6 + 2 ou en 5 + 6 + 1 les proportions des temps étant 3/3, 2/4 ou 1/5, respectivement, il suffit dans ce cas de changer les cames ou l'arbre pour passer d'un régime à l'autre.This can also be done for example by series of cylinders mounted in a T on one or more parallel pipes, the T being separated by non-return valves. We can then consider series of successive cylinders, for example identical, the total displacement of each serje corresponds to the displacements 0, 1 and 2 of the examples in Figures 1 and 2: for example a set of twelve cylinders can be divided into 3 + 6 + 3 or 4 + 6 + 2 or in 5 + 6 + 1 the proportions of the times being 3/3, 2/4 or 1/5, respectively, it is enough in this case to change the cams or the shaft to pass d from one regime to another.

Claims (5)

1. Pumping system for liquid phase chromatography, of the kind comprising a main duct (3) in which three cylinders open and on which are mounted check-valves (9 to 12) located on both sides of the opening of the cylinders (0,1.2) and allowing the liquid to flow downstream only, the piston (13, 14, 15) of each of these cylinders (0, 1, 2) being controlled by a driving system (16 to 19) defining its movement in course of time in such a way that the first one and the third one (2) of the pistons work substantially in phase and the second one (1) in opposite phase, so that the first one (0) and the third one (2) deliver while the second one (1) sucks and reciprocally, characterized by the fact that the movements of said pistons (13, 14, 15) are linear in course of time along a substantial part of their stroke ; that the volumes (Vo, V1, V2) of said cylinders (0, 1, 2, respectively), which are not all identical with one another, are related by the formula :
Figure imgb0007
and that these volumes are related to the sucking time (tA,) and to the delivery time (tR,) of one (1) of the cylinders (0, 1, 2) by the formula :
Figure imgb0008
2. Pumping system according to claim 1, characterized by the fact that said driving system is formed by cams (16, 17, 18) which are mounted on a common shaft (19) and the profile of which is a spiral of Archimedes.
3. Pumping system according to claim 2, characterized by the fact that said cams (16, 17, 18) are all identical with one another.
4. Pumping system according to claim 1, characterized by the fact that said cylinders are formed in a single device with two bored sections in which moves a single piston (20) with two sections corresponding to said bores and delimiting two opposite cylindrical volumes, the volume located towards the large bore forming the second cylinder (1), the volume located towards the small bore forming the first cylinder (0) or the third one (2), and the space between the plane where the section of the piston changes and the plane where the section of the double cylinder changes forming respectively the third cylinder (2) or the first cylinder (0), whereby the triple-action piston (20) is driven linearly in both directions with sucking times and delivery times corresponding to the proportions defined in claim 1.
5. Pumping system according to claim 4, characterized by the fact that, on at least one duct, are mounted series of T-shaped cylinders with check-valves separating the T-shaped connections, whereby the cams can be changed and/or modified in order to decompose said cylindrical volumes, respectively, in three series of elementary cylindrical volumes.
EP84401725A 1983-08-31 1984-08-28 Pump system for chromatography in the liquid phase Expired EP0136220B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8313995 1983-08-31
FR8313995A FR2551505B1 (en) 1983-08-31 1983-08-31 PUMPING SYSTEM FOR LIQUID PHASE CHROMATOGRAPHY

Publications (2)

Publication Number Publication Date
EP0136220A1 EP0136220A1 (en) 1985-04-03
EP0136220B1 true EP0136220B1 (en) 1988-01-20

Family

ID=9291925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401725A Expired EP0136220B1 (en) 1983-08-31 1984-08-28 Pump system for chromatography in the liquid phase

Country Status (7)

Country Link
US (1) US4643651A (en)
EP (1) EP0136220B1 (en)
JP (1) JPS6073068A (en)
BE (1) BE900437A (en)
DE (1) DE3468917D1 (en)
FR (1) FR2551505B1 (en)
IT (1) IT1180812B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837325A1 (en) * 1988-11-03 1990-05-10 Bruker Franzen Analytik Gmbh LIQUID PISTON PUMP FOR CHROMATOGRAPHIC ANALYZER

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754114B2 (en) * 1985-02-01 1995-06-07 日本電子株式会社 Control method of liquid delivery pump
SE8504362D0 (en) * 1985-09-20 1985-09-20 Astra Tech Ab PUMP WITH CONTINUOUS INFLUENCE AND PULSATIVE OUTflow
EP0340374A1 (en) * 1988-05-02 1989-11-08 Herbert Dr. Knauer Pump installation for low-pressure gradients
DE4211015A1 (en) * 1992-04-02 1993-10-07 Webasto Thermosysteme Gmbh Piston pump or membrane pump for delivery of fuel to burner for heater - uses balancing system of cylinder chamber and piston to ensure pulsation-free output.
US5988165A (en) 1997-10-01 1999-11-23 Invacare Corporation Apparatus and method for forming oxygen-enriched gas and compression thereof for high-pressure mobile storage utilization
FR2802577B1 (en) * 1999-12-17 2002-03-08 Peugeot Citroen Automobiles Sa MULTIPLE PISTON PUMP AND IMPROVED VIBRATORY BEHAVIOR
FI110960B (en) * 2000-04-27 2003-04-30 Matti Vilenius Connection and method for smoothing volumetric flow variations in a hydraulic machine
DE102004061813A1 (en) * 2004-12-22 2006-07-06 Robert Bosch Gmbh Piston pump with at least one piston element
US8062003B2 (en) * 2005-09-21 2011-11-22 Invacare Corporation System and method for providing oxygen
JP4148425B1 (en) * 2007-03-12 2008-09-10 光治 馬上 High pressure generator
DE102009017918A1 (en) 2009-04-17 2010-12-16 Fachhochschule Jena Method and device for pulsation-free volumetric delivery of fluids and suspensions
DE102009027312A1 (en) * 2009-06-30 2011-01-05 Robert Bosch Gmbh Multi-piston pump
CA2772244A1 (en) * 2009-08-17 2011-02-24 Invacare Corporation Compressor
US9624918B2 (en) 2012-02-03 2017-04-18 Invacare Corporation Pumping device
ES2644737T3 (en) * 2012-05-23 2017-11-30 Fruit Tech Natural, S.A. Apparatus and method for ohmic heating of a liquid with particles
JP5524285B2 (en) * 2012-07-10 2014-06-18 株式会社東芝 Pumping unit
JP2014066197A (en) * 2012-09-26 2014-04-17 Hitachi Koki Co Ltd Washing machine
AU2018204487B1 (en) * 2017-11-10 2019-05-30 Quantum Servo Pumping Technologies Pty Ltd Pumping systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US370376A (en) * 1887-09-27 chichester
US7302A (en) * 1850-04-23 Subivlebged bogkee e ob
GB817872A (en) * 1956-06-09 1959-08-06 Atomic Energy Authority Uk Improvements in or relating to pumps
CH106875A (en) * 1923-12-20 1925-01-16 Escher Wyss Maschf Ag Multi-cylinder two-stage piston compressor for refrigeration machines.
US1889640A (en) * 1931-05-25 1932-11-29 Jan P Clary Compressor apparatus
GB451110A (en) * 1934-03-17 1936-07-27 Kali Forschungsanstalt Gmbh An improved process for the transport of solid or solid and liquid substances mixed with vapours and/or gases
DE1102787B (en) * 1959-12-11 1961-03-23 Linde Eismasch Ag Process and device for the prevention of roaches in multi-stage oxygen compressors
AT294586B (en) * 1968-01-30 1971-11-25 Ceskoslovenska Akademie Ved Piston pump with a main pump cylinder and a compensation cylinder
GB1258333A (en) * 1968-04-08 1971-12-30
US3809507A (en) * 1972-03-01 1974-05-07 B Baglai Nonpulsating fluid-flow pump
FR2294343A1 (en) * 1974-12-13 1976-07-09 Sigma Hranice Np Non-pulsating multiple piston pmump - has compensatory cam actuated pistons to prevent pressure fluctuations in pipeline
FR2383330A1 (en) * 1977-03-08 1978-10-06 Smirnov Igor Reciprocating high pressure hydraulic pump - has double acting cylinders with outlets of each connected to single inlet of following cylinder
DE2725464A1 (en) * 1977-06-04 1978-12-14 Mueszeripari Muevek Lab Pulsation-free feed pump for liq. chromatography analyser - has piston operated by cam having profile determined by given formula
GB1534650A (en) * 1977-06-14 1978-12-06 Mueszeripari Muevek Lab Pulsation-free feeding pump
DE3203722C2 (en) * 1982-02-04 1985-08-01 Gynkotek Gesellschaft für den Bau wissenschaftlich-technischer Geräte mbH, 8000 München Thrust piston pump for low-pulsation pumping of a liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837325A1 (en) * 1988-11-03 1990-05-10 Bruker Franzen Analytik Gmbh LIQUID PISTON PUMP FOR CHROMATOGRAPHIC ANALYZER

Also Published As

Publication number Publication date
IT8412591A0 (en) 1984-08-30
EP0136220A1 (en) 1985-04-03
JPS6073068A (en) 1985-04-25
DE3468917D1 (en) 1988-02-25
US4643651A (en) 1987-02-17
FR2551505A1 (en) 1985-03-08
IT1180812B (en) 1987-09-23
BE900437A (en) 1985-02-27
FR2551505B1 (en) 1988-02-26

Similar Documents

Publication Publication Date Title
EP0136220B1 (en) Pump system for chromatography in the liquid phase
EP1876353B1 (en) Transfer pump with several pistons
US7645127B2 (en) Pulseless peristaltic pump
CA1325358C (en) Pumping process of two liquids of equal quantities for artificial kidney, and pumping means used therewith
FR2528123A1 (en) HYDRAULIC PUMP FOR LIQUIDS
JPH10231778A (en) Device for reducing pulsation in hydraulic volumetric type fluid unit
FR2492008A1 (en) METERING PUMP
FR2490742A1 (en) MULTICORPS PISTON PUMP WITH CONSTANT FLOW
FR2786225A1 (en) Pressure fluctuation damping for IC engine direct fuel injection system, comprises series or teed tubes, and/or absorbent inserts, added to injector delivery pipes, or to common rail
FR2783021A1 (en) METHOD AND SYSTEM FOR FLUID PUMPING USING A PUMP WITH CONSTANT FLOW AT SUCTION OR DELIVERY
EP1773479B1 (en) Dosing device for introducing an additive into a liquid flow
FR2627552A1 (en) HYDRAULIC CIRCUIT ARRANGEMENT COMPRISING A VARIABLE DISCHARGE VOLUME PUMP APPLICABLE IN PARTICULAR TO CONSTRUCTION EXCAVATORS OR THE LIKE
FR2546981A1 (en) HYDRAULIC MACHINE COMPRISING TWO GEAR PUMPS OR MOTORS
EP0017552A1 (en) Pump with pistons and cylinders in axial arrangement
FR2611816A1 (en) PRESSURIZED FLUID MECHANISM, ENGINE OR PUMP, MULTIPLE CYLINDER
DE10016071B4 (en) Lubricating arrangement for a four-stroke engine
FR2677429A1 (en) DEVICE FOR A LUBRICANT DISPENSER.
FR2580833A1 (en) Regulation device for metering pumps with several bodies and application of these devices to chromatography
DE2725464A1 (en) Pulsation-free feed pump for liq. chromatography analyser - has piston operated by cam having profile determined by given formula
FR2475629A1 (en) INTERNAL COMBUSTION ENGINE COMPRISING A CLUTCH DEVICE FOR COUPLING AND DISCHARGING A FIRST CRANKSHAFT AND AT LEAST ONE SECOND CRANKSHAFT
FR2492902A1 (en) Finger-operated peristaltic perfusion pump - has drive camshaft to deform flexible pipe over greater length in first half turn
EP1240429B1 (en) Multi-piston engine, such as a pump or compressor, with improved vibrational behaviour
FR2878911A1 (en) Viscous product e.g. adhesive, and thick liquid e.g. hardener, mixture e.g. paint, applying device, has mechanism transforming piston pump`s translation movement to rotary movement sent by speed regulator to gear-type oil pumps
FR2475643A1 (en) Single piston pump for solvent feed - has cam causing rapid suction and slow regular discharge stroke
EP1312779A1 (en) Fuel injection system for turbomachines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

TCNL Nl: translation of patent claims filed
17P Request for examination filed

Effective date: 19850720

17Q First examination report despatched

Effective date: 19860507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3468917

Country of ref document: DE

Date of ref document: 19880225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910802

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910803

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910831

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930501