EP0134951B1 - Procédé et dispositif pour dispenser et répandre sur grandes surfaces des liquides électriquement conducteurs - Google Patents

Procédé et dispositif pour dispenser et répandre sur grandes surfaces des liquides électriquement conducteurs Download PDF

Info

Publication number
EP0134951B1
EP0134951B1 EP84107625A EP84107625A EP0134951B1 EP 0134951 B1 EP0134951 B1 EP 0134951B1 EP 84107625 A EP84107625 A EP 84107625A EP 84107625 A EP84107625 A EP 84107625A EP 0134951 B1 EP0134951 B1 EP 0134951B1
Authority
EP
European Patent Office
Prior art keywords
liquid
capillary
nozzle
drops
capillaries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107625A
Other languages
German (de)
English (en)
Other versions
EP0134951A1 (fr
Inventor
Walter Dipl.-Phys. Simm
Jürgen Dr. Langeheine
Heinz-Josef Dr. Niessen
Hans-Jürgen Dr. Rosslenbroich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT84107625T priority Critical patent/ATE25597T1/de
Publication of EP0134951A1 publication Critical patent/EP0134951A1/fr
Application granted granted Critical
Publication of EP0134951B1 publication Critical patent/EP0134951B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only

Definitions

  • the invention is based on a method and a device for dispensing and distributing electrically conductive liquids according to the preamble of claims 1 and 6, respectively.
  • Such a method and a device for carrying out the method are known from CH-A-624 589.
  • the method has the disadvantage that only organic liquids whose specific electrical resistance is in a certain range (approx. 104 ⁇ . M to 107 am) can be atomized and separated electrostatically.
  • aqueous solutions cannot be processed due to the surface tension being too high and the specific resistance being too low (p ⁇ 5.7 ⁇ m).
  • the invention has for its object to develop a method for the large-area distribution of aqueous liquids and the necessary device, wherein the above conditions are met.
  • the liquid is discharged from a nozzle or capillary at such a low flow rate that it forms a coherent liquid thread immediately behind the nozzle or capillary, which then disintegrates into individual drops and that due to the high voltage applied the drop size is stabilized with respect to earth and a spray or rain cone is generated, the opening angle of which depends on the magnitude of the voltage.
  • the flow rate is preferably adjusted, taking into account the dimensions of the nozzle or the capillary, via the operating pressure so that the length of the continuous liquid thread behind the outlet opening is 2 to 100 mm, preferably 5-20 mm. This is practically achieved for a capillary a few millimeters long at a liquid pressure of 0.1 to 10 bar, preferably 1 to 3 bar.
  • the method is particularly well suited for sprinkling plants with aqueous plant protection agent solutions or dispersions. It has been found that the depth of penetration of the droplets at can control dense plant populations by changing the fluid pressure.
  • the device for carrying out the spraying process is characterized by a large number of flow elements connected in parallel in terms of flow, which consist of capillaries, each of the capillaries being surrounded by a concentric protective jacket which is at the same electrical potential as the capillaries and by means for generating a Liquid pressure upstream of the nozzle or capillary from 0.1 bar to 10 bar, so that the liquid emerges from the capillary or the capillaries at such a low flow rate that it forms a coherent liquid thread when it emerges, which then only disintegrates into individual drops.
  • the protective jacket surrounding the capillaries is expediently closed on one side by a base plate and forms a pot, the base of which is pierced by the capillary.
  • the liquid to be distributed is supplied from a storage container connected to the capillary.
  • the spray point, i. H. the end of the capillary is inside the pot.
  • the upstream pressure required to maintain the flow is generated by a pump that keeps the reservoir at positive pressure.
  • a carrier is provided, on which the nozzle elements are arranged and the carrier is attached to a rod-shaped holder which has a battery-operated high-voltage generator, an air pump for generating the admission pressure to the capillaries and a storage container for the distributing liquid contains.
  • a water jet emerging from a simple perforated nozzle or capillary at low speed disintegrates in a defined manner into drops of a certain size.
  • the smooth jet part or liquid thread still connected at the exit point shows, after a short initial distance, periodically recurring constrictions, which deepen as the distance from the outlet opening increases, until individual drops are finally separated, the diameter of which is directly related to the diameter of the connected one Beam part stands.
  • This process is shown in Fig. 1.
  • a liquid jet 2 z. B. water
  • the lower range limit for the speed of the outflowing liquid is reached when no more continuous liquid thread forms at the outlet opening, but instead the liquid drips off.
  • the upper limit for the exit velocity of the liquid is given when the laminar flow changes into a turbulent one and the disintegration into drops of the same size is replaced by an atomization process, with a wide spread of the drop sizes occurring.
  • the disintegration of a liquid thread into drops described here is referred to as “natural jet disintegration”.
  • the diameter d of the drops 4 in the case of natural beam decay can be calculated from the beam diameter D and the distance of the constrictions or the decay wavelength using the following formula:
  • h 4.5 D can be set for the wavelength.
  • the capillary 1 consists of an electrically conductive material, e.g. B. metal, and has a ratio of length to diameter of about 50: 1.
  • the liquid pressure at the capillary is set to values of 0.1 to 10 bar, preferably in the range of 1 to 3 bar. Under these conditions, a continuous liquid thread with a length of 2 to 100 mm, preferably 5 to 20 mm, results on the capillary.
  • simple hole nozzles can also be used for the jet generation, the hole diameter of which is in the range from 50 ⁇ m to 500 ⁇ m, preferably between 100 ⁇ m and 200 ⁇ m.
  • the ratio between length and width of the perforated nozzle is z. B. 3: 1.
  • An important role is played by the fact that it is a conductive liquid whose specific resistance is ⁇ 10 4 ⁇ .m. There is no limit to the resistance.
  • the liquid can be of any conductivity.
  • the electrically charged drops according to FIG. 2 show clearly diverging flight paths.
  • the light satellite drops 5 leave the main trajectory immediately after formation and then move towards the next, grounded body in the area.
  • the normal drops formed from the bulk of the outflowing liquid later disengage and increase their mutual distance. This leads to the formation of the above-mentioned rain cone 10 with the opening angle ⁇ .
  • the drops remain in their original size even over flight paths of 1 m length and more.
  • the effect of the electric field is based on two effects, namely the prevention of recombination into larger drops and the formation of a cone due to the electrostatic repulsion.
  • the opening angle of the rain cone can be set small or large. This provides the opportunity for targeted droplet separation.
  • a plant stand can either be sprayed flat, the charged droplets preferably reaching the upper parts of the plant, or it is sprayed on steeply; then the droplets are only separated in the lower parts of the stand. The depth of penetration of the droplets can thus be adapted to the particular requirements of the plant stands will.
  • 3a, b show how the depth of penetration of the drops into dense plant stands can be controlled by changing the liquid pressure in the nozzle and the associated jet exit speed.
  • the beam is at a voltage of -15 kV, which is maintained by the high voltage device 10.
  • Below the nozzle are two plants 11 and 12 of a larger plant population. The height of the plants is 0.5 m. The distance from the plant tip to the nozzle is 0.3 m.
  • the rain cone 13 opens above the plants 11 and 12.
  • the nozzle or the capillary 18 is arranged above the plant stand 19 so that the emerging liquid thread initially runs horizontally.
  • the high voltage generator is omitted here.
  • the rain cone generated is braked by the air resistance and then settles at a lower speed in the upper parts of the plants of the stand 19, so that only a small penetration depth is achieved.
  • the beam direction is rotated through 90 ° relative to the first position; d. H. the capillary 21 is arranged vertically here.
  • the high voltage source, as in FIG. 4 a is not shown.
  • the rain cone falls out of the capillary 21 into the plant stand 22 at a higher speed than in the arrangement according to FIG. 4 a, since gravity acts in the same direction. This results in a greater depth of penetration.
  • Precipitation then occurs preferably in the lower parts of the individual plants. It is obvious that one can vary the penetration depth as desired with other positions of the nozzles between these two extreme positions 18 and 21. It is therefore in your hands to control the depth of penetration of the rain cone into dense plant populations by changing the direction of discharge of the liquid. If you move a series of such nozzles parallel to the ground over a field (arrows drawn), large plantings can be sprayed.
  • FIG. 5 a a space charge cloud 23 with a high charge density is built up in front of the target object 24 by a plurality of nozzles 25 oriented in parallel.
  • FIG. 5b shows another possibility for building up a high space charge density by means of a multiplicity of nozzles 26.
  • the nozzles are oriented here in such a way that the extension of the liquid threads, ie. H. cross the initial directions of the rays at the location of the space charge 27, which creates a strong precipitation field on the target object 28.
  • the nozzles are set up at a greater distance from each other and the jet directions are concentrated in one point of the room.
  • Fig. 6 shows a complete liquid distribution device, which is so compact and handy that it can be operated as a portable device by one person. It consists of a head 29, the liquid filter 30, the liquid valve 31, the reservoir 32 for the liquid to be distributed, a high-voltage generator 33, a battery housing 34 and an air pump 35. All parts are received by a rod-shaped holder 36 made of insulating material. The grounding of the electrical system is given by a grounding cable 37; the free end of which lies on the ground or is in electrical connection with the object to be treated.
  • the distributor head 29 is shown in FIG. 7. In principle, it consists of a plurality of fluidically connected nozzle elements which are connected to the liquid container 32 via the line 44.
  • Short capillary tubes are very suitable for the generation of thin liquid jets, but they are very sensitive to dirt and damage when in direct contact with other objects, e.g. B. plants are. For this reason, the capillary is protected by a concentric jacket. Although the formation of an electric field is suppressed by the shielding effect of the jacket with the same potential of the protective jacket, there is no impairment of the spraying process.
  • the cohesive first section of the liquid thread which projects beyond the edge of the protective jacket, is because of the conductivity of the liquid a replacement for a tip electrode on which the field is located outside the cylinder builds up, which is necessary for the charging of the drops.
  • the capillary 47 is inserted into the base plate of a pot 48 and thus forms a nozzle element 40 which is pressed into corresponding bores in the distributor head 29.
  • the immersion depth is limited by the protruding edge 42 (collar of the pot 48).
  • the free end of the capillaries 47 dips into the liquid channel 43, which in turn is connected to the feed pipe 44.
  • each nozzle element 40 is wrapped in a ring 45 made of elastic material, the circumference of which is larger than the circumference of the carrier 41 for the nozzle elements.
  • the ring 45 is drilled on its upper side (FIG. 7) and screwed to the carrier 41 on the opposite side (46).
  • the nozzle element 40 is now inserted into the carrier 41 in such a way that the collar 42 of the protective jacket 48 projects beyond the bore and thus forms a stop (see FIG. 8).
  • the diameter of the elastic ring 45 is 5 to 50 mm, preferably 10 to 30 mm.
  • the length of the carrier 41 and the packing density of the nozzle elements 40 can be adapted to the needs. The latter is only limited by the mutual contact of the components.
  • the level of the optimal operating voltage depends on the dimensions of the equipment. It must therefore be determined experimentally. For a single nozzle element with a 100 jim capillary width and a distant counter electrode (at least 0.5 m), the optimal operating voltage is approx. 10 kV. The upper limit for the operating voltage is approx. 50 kV.
  • a great advantage of the device described, compared to known devices for generating electrically charged spray mist, is that no counter electrode with earth potential is required in the immediate vicinity of the high-voltage nozzle unit. This fact enables the use of very long insulating distances between the live parts of the arrangement. Malfunctions caused by moist air or contamination of the insulators can thus largely be ruled out. It is also important that only very small currents flow (order of magnitude ⁇ A), so that the battery used for the voltage supply has a long service life and the high-voltage generator can have a high internal resistance. In this way, danger to people from high voltage is avoided.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Catching Or Destruction (AREA)
  • Chemically Coating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Nozzles (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Cultivation Of Plants (AREA)
  • Conductive Materials (AREA)

Claims (10)

1. Procédé pour épandre et distribuer, sur une grande superficie, des liquides électriquement conducteurs ayant une résistance spécifique < 10411. m, dans lequel une haute tension est appliquée au liquide, caractérisé par le fait qu'on fait sortir le liquide, d'une buse ou d'un capillaire, avec une vitesse d'écoulement tellement faible qu'il forme, immédiatement derrière la buse ou le capillaire, un filet cohérent de liquide qui se désintègre ensuite en des gouttes individuelles ; et par le fait que, par suite de la haute tension appliquée au filet de liquide par rapport à la masse, la grosseur des gouttes se stabilise et il est engendré une répartition cunéiforme des gouttes (cône en pluie), dont l'angle d'ouverture dépend de l'ampleur de la tension.
2. Procédé selon la revendication 1, caractérisé par le fait que la vitesse d'écoulement est réglée, sur la base du dimensionnement de la buse ou du capillaire et de la pression de service choisie, de telle sorte que la longueur du filet cohérent de liquide mesure, derrière l'orifice de sortie, de 2 à 100 mm, de préférence de 5 à 20 mm.
3. Procédé selon la revendication 1 à 2, caractérisé par le fait que la pression du liquide, devant la buse ou le capillaire, est réglée à des valeurs comprises entre 0,1 et 10 bars, de préférence entre 1 et 3 bars.
4. Procédé selon la revendication 3, caractérisé par le fait que la profondeur de pénétration du cône en pluie dans des implantations végétales denses est commandée par variation de la pression du liquide.
5. Procédé selon les revendications 1 à 3, caractérisé par le fait qu'on utilise, en tant que liquide, une solution ou une dispersion aqueuse d'un produit phytosanitaire.
6. Dispositif pour la mise en oeuvre du procédé selon les revendications 1 à 5, présentant un grand nombre d'éléments formant buses (40), techniquement raccordés à écoulement parallèle et constitués par des capillaires (47), ainsi qu'un générateur de haute tension dont la sortie située côté haute tension est en liaison conductrice avec le liquide circulant par les capillaires (47), caractérisé par le fait que chaque capillaire (47) est entouré par une enveloppe protectrice concentrique (48) ayant le même potentiel électrique que les capillaires (47) ; et par le fait que des moyens (32, 35) sont prévus pour engendrer, avant la buse (40) ou le capillaire (47), une pression de liquide de 0,1 bar à 10 bars, si bien que le liquide sort du ou des capillaires (47) avec une vitesse d'écoulement tellement faible qu'il forme, à la sortie, un filet cohérent de liquide qui ne se désagrège qu'ensuite en des gouttes individuelles.
7. Dispositif selon la revendication 6, caractérisé par le fait que l'enveloppe protectrice est obturée d'un côté par une plaque de fond, et forme une cuvette dont le fond est traversé par le capillaire (47) relié, d'une part, à un récipient (32) de réserve en liquide et s'achevant, d'autre part, à l'intérieur de ladite cuvette.
8. Dispositif selon les revendications 6 à 7, caractérisé par le fait que la largeur interne des capillaires (47) se situe dans la plage de 50 à 500 fJ.m.
9. Dispositif selon les revendications 6 à 8, caractérisé par le fait que les éléments formant buses (40) sont incorporés avec faculté de remplacement dans un support (41), chaque élément formant buse (40) étant ceinturé par une bague (45) en un matériau élastique qui est fixée d'un côté au support (41) et présente, du côté opposé, un perçage par lequel est engagée l'enveloppe protectrice (48) pourvue d'une collerette (42) dépassant dudit perçage.
10. Dispositif selon les revendications 6 à 9, caractérisé par le fait que le support (41) est installé, avec les éléments formant buses (40), sur une pièce de retenue (36) en forme de barrette, qui renferme un générateur (33) de haute tension alimenté par une batterie, une pompe à air (35) pour engendrer la pression préalable appliquée aux capillaires (47), ainsi qu'un récipient de réserve (32) pour le liquide devant être distribué.
EP84107625A 1983-07-12 1984-07-02 Procédé et dispositif pour dispenser et répandre sur grandes surfaces des liquides électriquement conducteurs Expired EP0134951B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84107625T ATE25597T1 (de) 1983-07-12 1984-07-02 Verfahren und vorrichtung zum grossflaechigen ausbringen und verteilen elektrisch leitfaehiger fluessigkeiten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3325070 1983-07-12
DE19833325070 DE3325070A1 (de) 1983-07-12 1983-07-12 Verfahren und vorrichtung zum verspruehen elektrisch leitfaehiger fluessigkeiten

Publications (2)

Publication Number Publication Date
EP0134951A1 EP0134951A1 (fr) 1985-03-27
EP0134951B1 true EP0134951B1 (fr) 1987-03-04

Family

ID=6203756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107625A Expired EP0134951B1 (fr) 1983-07-12 1984-07-02 Procédé et dispositif pour dispenser et répandre sur grandes surfaces des liquides électriquement conducteurs

Country Status (17)

Country Link
EP (1) EP0134951B1 (fr)
JP (1) JPS6041419A (fr)
KR (1) KR850001031A (fr)
AT (1) ATE25597T1 (fr)
AU (1) AU2950584A (fr)
BR (1) BR8403451A (fr)
CA (1) CA1224982A (fr)
DD (1) DD225350A5 (fr)
DE (2) DE3325070A1 (fr)
DK (1) DK340384A (fr)
ES (1) ES534231A0 (fr)
HU (1) HU190315B (fr)
IE (1) IE55390B1 (fr)
IL (1) IL72346A0 (fr)
NZ (1) NZ208830A (fr)
PT (1) PT78829B (fr)
ZA (1) ZA845344B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522979A1 (de) * 1985-06-27 1987-01-02 Bayer Ag Verfahren zur erzeugung elektrisch geladenen spruehnebels aus leitfaehigen fluessigkeiten
US4748043A (en) * 1986-08-29 1988-05-31 Minnesota Mining And Manufacturing Company Electrospray coating process
DE3707547A1 (de) * 1987-03-10 1988-09-22 Bayer Ag Verfahren und vorrichtung zum verspritzen von pflanzenschutzmittelloesungen oder -dispersionen
GB9115276D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Skin treatment system
GB9115279D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Hair and scalp treatment system
GB9115275D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Colour cosmetic spray system
GB9115277D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Spraying system
GB9115278D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Liquid spraying apparatus and method
US5246166A (en) * 1991-09-30 1993-09-21 Her Majesty The Queen In The Right Of Canada As Represented By The Minister Of Forestry Spraying apparatus
GB9224191D0 (en) * 1992-11-18 1993-01-06 Unilever Plc Cosmetic delivery system
KR100523559B1 (ko) * 2002-10-11 2005-10-25 주식회사 바이오리진 인삼잎에서 식품원료용으로 조사포닌을 제조하는 방법
JP6657505B2 (ja) 2015-11-09 2020-03-04 アネスト岩田株式会社 静電噴霧装置及び静電噴霧方法
DE102020115923B4 (de) 2019-12-23 2022-10-13 crop.zone GmbH Vorrichtung zum Aufbringen von übergangswiderstandreduzierenden Medien und Applizieren von Strom auf Pflanzen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE45426B1 (en) * 1976-07-15 1982-08-25 Ici Ltd Atomisation of liquids
ATE10590T1 (de) * 1979-11-19 1984-12-15 Imperial Chemical Industries Plc Verfahren und apparat zum elektrostatischen spruehen.
US4489894A (en) * 1981-02-27 1984-12-25 National Research Development Corporation Inductively charged spraying apparatus
GB2100147B (en) * 1981-06-17 1985-09-25 Nat Res Dev Electrostatic spraying

Also Published As

Publication number Publication date
JPS6041419A (ja) 1985-03-05
ATE25597T1 (de) 1987-03-15
CA1224982A (fr) 1987-08-04
AU2950584A (en) 1985-06-13
HU190315B (en) 1986-08-28
DE3462440D1 (en) 1987-04-09
KR850001031A (ko) 1985-03-14
ES8504494A1 (es) 1985-04-16
ES534231A0 (es) 1985-04-16
PT78829A (en) 1984-08-01
NZ208830A (en) 1988-02-29
DK340384A (da) 1985-01-13
IL72346A0 (en) 1984-11-30
DD225350A5 (de) 1985-07-31
DE3325070A1 (de) 1985-01-24
PT78829B (en) 1986-07-15
DK340384D0 (da) 1984-07-11
BR8403451A (pt) 1985-06-25
EP0134951A1 (fr) 1985-03-27
IE841785L (en) 1985-01-12
HUT35556A (en) 1985-07-29
ZA845344B (en) 1985-03-27
IE55390B1 (en) 1990-08-29

Similar Documents

Publication Publication Date Title
DE60024992T2 (de) Richtungsverstellbarer ehd- aerosol-zerstäuber
DE2731712C2 (de) Tragbares Zerstäubungsgerät
EP0134951B1 (fr) Procédé et dispositif pour dispenser et répandre sur grandes surfaces des liquides électriquement conducteurs
DE69822885T2 (de) Inhalationsvorrichtung
CH639874A5 (en) Method and appliance for electrostatic atomisation of liquids
DE2630555A1 (de) Vorrichtung und verfahren zum elektrostatischen spruehen
DE2207310A1 (de) Elektrostatische Sprühvorrichtung
DE2422597A1 (de) Spritzvorrichtung
EP0207357A1 (fr) Procédé pour produire un jet pulvérisé électriquement chargé à partir de liquides conductibles
DE3319995A1 (de) Elektrostatisches spritzgeraet
DE3203729C2 (fr)
DE2446022B2 (de) Vorrichtung zum elektrostatischen Beschichten von Gegenständen mit flüssigem oder pulverförmigem Beschichtungsmaterial
DE3110757A1 (de) Vorrichtung zum elektrostatischen zerstaeuben von fluessigkeiten
DE3707547A1 (de) Verfahren und vorrichtung zum verspritzen von pflanzenschutzmittelloesungen oder -dispersionen
DE2159909A1 (de) Verfahren und Luftfahrzeug zum Versprühen von landwirtschaftlichen Nutzstoffen
DE3207002A1 (de) Spritzvorrichtung
DE2121986C3 (de) Elektrostatische Spritzpistole
Western et al. Experimental air-assisted electrohydrodynamic spraying
AT395505B (de) Vorrichtung zum verspruehen von spritzmitteln
DE1097866B (de) Vorrichtung zum elektrostatischen Farbspritzen
DE3317650A1 (de) Elektrostatisches verspritzen bzw. verspruehen von elektrisch leitfaehigen fluessigkeiten, z. b. pflanzenbehandlungsmitteln
DD229046A1 (de) Verfahren und vorrichtung zur applikation von pflanzenschutzmitteln
DE1965667A1 (de) Electrogasdynamischer Energieerzeuger und Verfahren zur elektrogasdynamischen Erzeugung von elektrischer Energie
EP4188559A1 (fr) Module de pulvérisation et dispositif et procédé de lutte contre un feu de végétation
DE1427678A1 (de) Hochspannungsvorrichtung zum elektrostatischen Farbspritzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840702

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 25597

Country of ref document: AT

Date of ref document: 19870315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3462440

Country of ref document: DE

Date of ref document: 19870409

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880702

Ref country code: AT

Effective date: 19880702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

Ref country code: BE

Effective date: 19880731

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19880731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84107625.0

Effective date: 19890510