EP0132602B1 - Salt bath for the currentless production of wear-resistant boride layers - Google Patents

Salt bath for the currentless production of wear-resistant boride layers Download PDF

Info

Publication number
EP0132602B1
EP0132602B1 EP84107296A EP84107296A EP0132602B1 EP 0132602 B1 EP0132602 B1 EP 0132602B1 EP 84107296 A EP84107296 A EP 84107296A EP 84107296 A EP84107296 A EP 84107296A EP 0132602 B1 EP0132602 B1 EP 0132602B1
Authority
EP
European Patent Office
Prior art keywords
boron
weight
salt bath
alkaline earth
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107296A
Other languages
German (de)
French (fr)
Other versions
EP0132602A1 (en
Inventor
Hans-Hermann Dr. Dipl.Chem. Beyer
Ulrich Dr. Dipl.Chem. Baudis
Peter Dipl.Ing. Biberbach
Wolfgang Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to AT84107296T priority Critical patent/ATE25267T1/en
Publication of EP0132602A1 publication Critical patent/EP0132602A1/en
Application granted granted Critical
Publication of EP0132602B1 publication Critical patent/EP0132602B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions

Definitions

  • the invention relates to a salt bath based on alkali and / or alkaline earth halides for the currentless production of wear-resistant boride layers on metallic materials at 650 to 1100 ° C. It is used in particular to produce single-phase, hard and adhesive boride layers on steels to increase wear resistance and improve corrosion resistance.
  • the borides have significantly changed properties compared to the pure metals, in particular they are Most borides are very hard, corrosion-resistant and therefore extremely wear-resistant.
  • the boride layers are firmly connected to the base material by diffusion. With regard to their wear resistance, borated steels, for example, are partly superior to steels treated by nitriding or carburizing.
  • boriding in solid boriding agents is used almost exclusively.
  • the parts to be treated are packed in iron boxes in a boron-releasing powder, usually mixtures of boron carbide, aluminum oxide, silicon oxide and the like, with activating additives such as ammonium fluoride or potassium borofluoride (e.g. DE-C-1,796,216).
  • activating additives such as ammonium fluoride or potassium borofluoride (e.g. DE-C-1,796,216).
  • the boxes are tightly sealed and annealed for a while, the desired boride layers being formed in direct solid-to-solid reactions or by transporting the boron over the gas phase.
  • paste processes are only modifications of powder boriding and have the additional disadvantage that large amounts of stubborn residues have to be removed from the parts after treatment and that even application of the paste is extremely difficult, especially in the case of parts of complex shape.
  • a salt bath is known from SU-A-953002, which consists of sodium halide, sodium borate and boron carbide. Because of the high borate content, these melts are highly viscous and poorly water-soluble. In addition, two-phase FeB / Fe 2 B layers are obtained, which are undesirable.
  • Electroless boron salt baths which contain boric acid and fluoroborate in addition to boron carbide (GB-B-959 533) or an alkali or alkaline earth metal halide and fluoroborate (US-A-3634145).
  • boric acid and fluoroborate in addition to boron carbide (GB-B-959 533) or an alkali or alkaline earth metal halide and fluoroborate (US-A-3634145).
  • these salt baths have also not been able to establish themselves in practice.
  • the salt bath contains boron monofluoride or compounds from which boron monofluoride is formed as an intermediate under bath conditions.
  • the boron monofluoride which acts as a borating agent can be added to the melt from the outside or can advantageously be generated in the melt itself.
  • the gaseous boron monofluoride produced in a known manner by heating boron trifluoride with finely divided boron is introduced into the salt melt during the boronization process.
  • Electroless boronation baths that are particularly easy to operate are obtained when the boron monofluoride is generated in the molten salt itself.
  • boroning agent such as boron carbide powder
  • boron carbide powder which is suspended therein is activated by trifluoroboroxal and caused to release boron monofluoride, which in turn is caused on the component surface disintegrates and in this way transfers the boron from the boron carbide to the workpiece.
  • the required trifluoroboroxol (BOF) 3 is also generated in the melt itself. This is based on the knowledge that (BOF) 3 can be produced very well in an inert melt from alkali / alkaline earth chlorides by reacting boron oxide or borates with alkali / alkaline earth fluorides, the presence of barium ions in particular exerting a positive influence.
  • the trifluoroboroxol that is produced in this way in a very slow reaction and in a concentration that is hardly measurable converts with the boron carbide suspended in the melt to form the boronizing agent, the boron monofluoride BF.
  • salt melts which consist of 30 to 60% by weight of barium chloride, 10 to 25% by weight of sodium chloride, 1 to 20% by weight of boron oxide and / or alkali borates and / or alkaline earth borates, 10 to 30% by weight Sodium fluoride and 1 to 15 wt .-% boron carbide.
  • the trifluoroboroxol formed by reacting boron-oxygen compounds with fluorides causes a slow, controlled digestion of the boron carbide, whereby boron-active boron monofluoride is released, which boron can release on the workpiece surface through decay.
  • boron carbide instead of boron carbide, other known borating agents, such as amorphous boron or calcium boride, can also be used.
  • the boriding effect of the melts can be influenced above all by variations in the concentration of boron oxide or borate and in alkali metal / alkaline earth metal fluoride, as well as by changing the temperature and - to a small extent - by changing the concentration of the boron carbide. It has thus been shown that the salt melts according to the invention make it possible to produce layers of Fe 2 B on steel without the undesirable boron-rich phase FeB occurring.
  • Salt melts which are composed of 40-55% by weight BaC1 2 , 5-15% by weight B 2 0 3 , alkali and / or alkaline earth borate, 18-25% by weight NaF, 15-20% are preferably used.
  • -% NaCI and 4-10 wt .-% B 4 C exist.
  • the molten salts according to the invention enable extremely simple work in practice.
  • the salt mixture is melted in a melting crucible made of heat-resistant steel and the B 4 C is kept in suspension by introducing an inert gas stream, for example nitrogen.
  • the workpieces to be borated are attached to a charging frame, preheated to 350 ° C with hot air, for example, and then hung in the melt.
  • Steels produce uniform, very wear-resistant, single-phase layers of Fe 2 B, whereby the layer thickness can be varied depending on the base material and the duration of the treatment.
  • the parts are removed from the melt and quenched, for example in a quenching bath made of sodium and potassium nitrate, which is customary in hardening technology, and then rinsed with water. In this way, no fluoride gets into the waste water.
  • the salt bath according to the invention can thus be easily integrated into the existing infrastructure of a salt bath hardening shop, without significant investments or additional wastewater treatment being required.
  • the method of operation largely corresponds to that of salt bath coal or salt bath nitriding.
  • the melts are composed of relatively cheap components.
  • a boriding process is thus available which can compete with the known industrial processes of salt bath nitriding and salt bath coaling in terms of operation and costs.
  • Particularly good boride layers provide molten salts with the following composition: 50 kg BaC1 2 , 16 kg NaCl, 10 kg B 2 0 3 , 18 kg NaF and 6 kg B 4 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemically Coating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Ceramic Products (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

There is described a salt bath based on an alkali and/or alkaline earth metal halide with which there can be produced without the use of current adherent and wear resistant boride coatings on metallic workpieces. This bath contains gaseous boron monofluoride or a compound from which there is formed intermediately boron monofluoride. Advantageous there is used a salt bath containing 30-60% BaCl2, 10-25% NaCl, 1-20% boron oxide or borate, 10-30% NaF, and 1-15% B4C.

Description

Die Erfindung betrifft ein Salzbad auf der Basis von Alkali-und/oder Erdalkalihalogeniden zur stromlosen Erzeugung verschieissfester Boridschichten auf metallischen Werkstoffen bei 650 bis 1100°C. Es dient insbesondere zur Erzeugung einphasiger, harter und haftfester Boridschichten auf Stählen zur Erhöhung der Verschleissfestigkeit und zur Verbesserung der Korrosionsbeständigkeit.The invention relates to a salt bath based on alkali and / or alkaline earth halides for the currentless production of wear-resistant boride layers on metallic materials at 650 to 1100 ° C. It is used in particular to produce single-phase, hard and adhesive boride layers on steels to increase wear resistance and improve corrosion resistance.

Das Borieren zum: Verschleissschutz von Stahl und Refraktärmetallen ist ein schon lange bekanntes Verfahren. Durch Eindiffusion des Elementes Bor in die Oberfläche des behandelten Werkstückes und Reaktion mit dem Grundwerkstoff entstehen dichte, gleichmässige Schichten des jeweiligen Borides, auf Eisen z.B. die Boride FeB und Fe2B. Die Boride besitzen gegenüber den reinen Metallen erheblich veränderte Eigenschaften, insbesondere sind die meisten Boride sehr hart, korrosionsbeständig und damit überaus verschleissfest. Durch Diffusion sind die Boridschichten mit dem Grundwerkstoff fest verbunden. Hinsichtlich ihrer Verschleissfestigkeit sind z.B. borierte Stähle zum Teil den durch Nitrieren oder Aufkohlen behandelten Stählen überlegen.Boronizing for: Wear protection of steel and refractory metals has been a well-known process. Diffusion of the element boron into the surface of the treated workpiece and reaction with the base material creates dense, uniform layers of the respective boride, on iron, for example, the borides FeB and Fe 2 B. The borides have significantly changed properties compared to the pure metals, in particular they are Most borides are very hard, corrosion-resistant and therefore extremely wear-resistant. The boride layers are firmly connected to the base material by diffusion. With regard to their wear resistance, borated steels, for example, are partly superior to steels treated by nitriding or carburizing.

Es wurden deshalb in der Vergangenheit eine Vielzahl technischer Verfahrensvarianten entwickelt, nach denen man Boridschichten, insbesondere auf Stahl, herstellen kann.A large number of technical process variants have therefore been developed in the past according to which boride layers, in particular on steel, can be produced.

In der Praxis wird fast ausschliesslich das Borieren in festen Boriermitteln angewendet. Dabei werden die zu behandelnden Teile in eisernen Kästen in ein borabgebendes Pulver, meist Mischungen aus Borcarbid, Aluminiumoxid, Siliziumoxid unddgl., mit aktivierenden Zusätzen, wie Ammoniumfluorid oder Kaliumborfluorid, eingepackt (z.B. DE-C-1.796.216). Die Kästen werden dicht verschlossen und eine zeitlang geglüht, wobei in direkten Festkörper-Feststoff-Reaktionen oder durch Transport des Bors über die Gasphase die erwünschten Boridschichten gebildet werden.In practice, boriding in solid boriding agents is used almost exclusively. The parts to be treated are packed in iron boxes in a boron-releasing powder, usually mixtures of boron carbide, aluminum oxide, silicon oxide and the like, with activating additives such as ammonium fluoride or potassium borofluoride (e.g. DE-C-1,796,216). The boxes are tightly sealed and annealed for a while, the desired boride layers being formed in direct solid-to-solid reactions or by transporting the boron over the gas phase.

Diese Pulververfahren besitzen eine Reihe von Nachteilen.These powder processes have a number of disadvantages.

So müssen alle Teile von Hand einzeln sorgfältig in das Pulver eingesetzt werden. Weiterhin sintern die Pulver beim Glühen stark zusammen, so dass die borierten Teile sehr schlecht herauszunehmen sind und zusätzlich nachgereinigt werden müssen. Gleichzeitig werden grosse Mengen an Borierpulver benötigt, was den Prozess ausserordentlich verteuert. Schliesslich muss man beim Borieren in Pulvern mit ungleichmässigen Schichten rechnen. Eine Qualitätskontrolle ist durch Begutachtung eines einzelnen Teils nicht möglich, da dieses nicht repräsentativ für die Charge ist, denn die Qualität der Teile hängt im wesentlichen von der Sorgfalt beim Einlegen in das Borierpulver ab. Kleine Teile, Teile mit dünnen Bohrungen, Hinterschneidungen usw. lassen sich im Pulver überhaupt nicht oder nur mit extremem Aufwand borieren.All parts must be carefully inserted into the powder by hand. Furthermore, the powders sinter together strongly during annealing, so that the borated parts are very difficult to remove and must additionally be cleaned. At the same time, large amounts of boron powder are required, which makes the process extremely expensive. After all, you have to count on uneven layers when boring in powders. A quality control is not possible by examining a single part, since this is not representative of the batch, because the quality of the parts essentially depends on the care taken when inserting them into the boron powder. Small parts, parts with thin holes, undercuts etc. cannot be borated in the powder at all or only with extreme effort.

Es hat daher nicht an Versuchen gefehlt, diese Nachteile durch andere Verfahren auszugleichen. So wurde versucht, das Borierpulver in Form einer Aufschlämmung oder Paste auf die Teile zu bringen, das Lösungsmittel zu verdampfen und die Teile in der so entstehenden Kruste aus borierenden Rückständen zu glühen (z.B. H. Kunst, O. Schaaber, Härtereitechn. Mitt. 22 [1967], 275-284).There has been no shortage of attempts to compensate for these disadvantages by other methods. Attempts were made to apply the boron powder to the parts in the form of a slurry or paste, to evaporate the solvent and to anneal the parts in the resulting crust from boroning residues (eg H. Kunst, O. Schaaber, Härtereitechn. Mitt. 22 [1967], 275-284).

Diese als Pastenverfahren bekannten Methoden sind aber nur Modifikationen des Pulverborierens und weisen den zusätzlichen Nachteil auf, dass nach der Behandlung grosse Mengen hartnäckiger Rückstände von den Teilen ablöst werden müssen und dass ein gleichmässiges Aufbringen der Paste besonders bei kompliziert geformten Teilen überaus schwierig ist.However, these methods, known as paste processes, are only modifications of powder boriding and have the additional disadvantage that large amounts of stubborn residues have to be removed from the parts after treatment and that even application of the paste is extremely difficult, especially in the case of parts of complex shape.

Ebenso schwierig ist es, Blasenbildung beim Pastenauftrag oder Abbröckeln der Kruste beim Glühen zu vermeiden.It is equally difficult to avoid blistering when applying paste or crumbling off when annealing.

Es wurde daher auch versucht, in gasförmigen Medien zu borieren, beispielsweise mit Borhalogenid/ Wasserstoffgemischen (EP-A-76488). Man erhält so zwar Boridschichten, diese sind aber technisch unbrauchbar oder nur auf sehr aufwendige Weise herstellbar. Beim Borieren mit Borhalogeniden tritt immer eine unkontrollierbare Korrosion des Grundwerkstoffs auf, da dieser mit dem Borhalogenid unter Bildung von Metallhalogenid und Borid reagiert. Dadurch entstehen löchrige, unterfressene Boridschichten. Das Borieren mit Diboran ist technisch wegen der extremen Explosibilität und hohen Giftigkeit dieses Gases nahezu unmöglich. Daneben ist ein Borieren mit den genannten gasförmigen Medien wegen der hohen Preise der Borverbindungen auch unwirtschaftlich. Aus diesen Gründen hat man versucht, durch Borieren in flüssigen Medien, besonders in geschmolzenen Salzen, die angeführten Nachteile zu vermeiden. So wurden Schmelzen auf der Basis von Alkali- und Erdalkalichloriden mit B203, Borax oder KBF4 beschrieben. In solchen Schmelzen kann ein Werkstoff jedoch nur dann boriert werden, wenn gleichzeitig eine Elektrolyse durchgeführt wird. Dabei werden die zu borierenden Werkstücke kathodisch geschaltet, der Tiegel oder ein Graphitstab dient als Anode. Diese Verfahren weisen den Nachteil auf, dass unterschiedliche Stromdichten an kom- plizierten Teilen ungleichmässige Schichtdicken erzeugen. Ausserdem entsteht Sauerstoff, Chlor oder Fluor an der Anode, wodurch starke Korrosion hervorgerufen wird. Weiterhin ist die Chargierung schwierig, da eine elektrische Kontaktierungder einzelnen Teile erforderlich ist. Aus diesen Gründen haben sich elektrolytische Borierverfahren in Salzschmelzen in der Technik nicht einführen lassen.An attempt was therefore also made to borate in gaseous media, for example using boron halide / hydrogen mixtures (EP-A-76488). Although boride layers are obtained in this way, they are technically unusable or can only be produced in a very complex manner. When boronizing with boron halides, there is always uncontrollable corrosion of the base material, since it reacts with the boron halide to form metal halide and boride. This creates perforated, undernourished boride layers. Boronizing with diborane is technically almost impossible due to the extreme explosiveness and high toxicity of this gas. In addition, boronizing with the gaseous media mentioned is also uneconomical because of the high prices of the boron compounds. For these reasons, attempts have been made to avoid the disadvantages mentioned by boriding in liquid media, especially in molten salts. For example, melts based on alkali and alkaline earth chlorides with B 2 0 3 , borax or KBF 4 have been described. In such melts, however, a material can only be borated if electrolysis is carried out at the same time. The workpieces to be borated are connected cathodically, the crucible or a graphite rod serves as an anode. These methods have the disadvantage that different current densities at com - plicated produce uneven layer thickness parts. In addition, oxygen, chlorine or fluorine is generated on the anode, which causes severe corrosion. Furthermore, charging is difficult because electrical contacting of the individual parts is required. For these reasons, electrolytic boriding processes in molten salts have not been able to be introduced in industry.

Demgegenüber ist über das Borieren in Salzschmelzen ohne Elektrolyse nur sehr wenig bekannt. In den Härtereitechn. Mitt. 17 (1962) 131-140wird eine Schmelze aus 80% NaCI, 15% NaBF4 und 5% B4C beschrieben, wobei aber gleichzeitig darauf hingewiesen wird, dass das in der Schmelze gelöste NaBF4 sehr rasch zu NaF und BF3 zerfällt, welches entweicht. Durch diese Instabilität der Schmelze lässt sich keine zeitlich konstante Borierwirkung erhalten, die Schmelze wird sehr rasch inaktiv. Die DE-OS 3118585 gibt ein Verfahren zum Borieren in Salzschmelzen ohne Elektrolyse an, bei dem das zur Borierung erforderliche Bor durch Umsetzung von Borax mit Siliziumcarbid freigesetzt wird. Wegen der Oxidation von SiC zu Si02 durch Luftsauerstoff bzw. durch Aufschluss von SiC mit Borat bildet sich in solchen Schmelzen aber sehr bald eine undurchdringliche Silikatdecke an der Badoberfläche aus.On the other hand, very little is known about boriding in molten salts without electrolysis. In the hardening techn. Mitt. 17 (1962) 131-140 describes a melt of 80% NaCl, 15% NaBF 4 and 5% B 4 C, but at the same time it is pointed out that the NaBF 4 dissolved in the melt very quickly becomes NaF and BF 3 disintegrates, which escapes. Due to this instability of the melt, no boroning effect can be obtained that is constant over time; the melt becomes inactive very quickly. DE-OS 3118585 specifies a process for boronization in molten salts without electrolysis, in which the boron required for the boronization is released by reacting borax with silicon carbide. Because of the oxidation of SiC to Si0 2 by atmospheric oxygen or by digestion of SiC with borate, it forms in such melts, however, an impenetrable silicate blanket will soon appear on the surface of the bath.

Aus der SU-A-953002 ist ein Salzbad bekannt, das aus Natriumhalogenid, Natriumborat und Borcarbid besteht. Wegen des hohen Boratgehaltes sind diese Schmelzen hochviskos und schlecht wasserlöslich. Ausserdem werden zweiphasige FeB/Fe2B-Schichten erhalten, die unerwünscht sind.A salt bath is known from SU-A-953002, which consists of sodium halide, sodium borate and boron carbide. Because of the high borate content, these melts are highly viscous and poorly water-soluble. In addition, two-phase FeB / Fe 2 B layers are obtained, which are undesirable.

Weiterhin sind stromlose Boriersalzbäder bekannt, die neben Borcarbid Borsäure und Fluorborate enthalten (GB-B-959 533) bzw. ein Alkali oder Erdalkalihalogenid und Fluorborate (US-A-3634145). Doch auch diese Salzbäder haben sich in der Praxis nicht durchsetzen können.Electroless boron salt baths are also known which contain boric acid and fluoroborate in addition to boron carbide (GB-B-959 533) or an alkali or alkaline earth metal halide and fluoroborate (US-A-3634145). However, these salt baths have also not been able to establish themselves in practice.

Es war daher Aufgabe der vorliegenden Erfindung, ein Salzbad auf der Basis von Alkali- und/oder Erdalkalihalogeniden zur stromlosen Erzeugung verschleissfester Boridschichten auf metallischen Werkstoffen bei Temperaturen von 650 bis 1100°C zu entwickeln, das einfach und preisgünstig zu betreiben ist, keine Krusten auf der Badoberfläche bildet und haftfeste Boridschichten liefert, die insbesondere bei Stählen aus einphasigen Fe2B-schichten bestehen.It was therefore an object of the present invention to develop a salt bath based on alkali and / or alkaline earth halides for the electroless generation of wear-resistant boride layers on metallic materials at temperatures of 650 to 1100 ° C., which is simple and inexpensive to operate, without crusts forms the bath surface and provides adherent boride layers that consist of single-phase Fe 2 B layers, particularly in the case of steels.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass das Salzbad Bormonofluorid oder Verbindungen enthält, aus denen unter Badbedingungen Bormonofluorid intermediär entsteht.This object is achieved according to the invention in that the salt bath contains boron monofluoride or compounds from which boron monofluoride is formed as an intermediate under bath conditions.

Das als Boriermittel wirkende Bormonofluorid kann der Schmelze von aussen zugesetzt oder vorteilhafterweise in der Schmelze selbst erzeugt werden. Im ersteren Fall leitet man das auf bekannte Weise durch Erhitzen von Bortrifluorid mit feinverteiltem Bor hergestellte gasförmige Bormonofluorid während des Borierungsprozesses in die Salzschmelze ein.The boron monofluoride which acts as a borating agent can be added to the melt from the outside or can advantageously be generated in the melt itself. In the former case, the gaseous boron monofluoride produced in a known manner by heating boron trifluoride with finely divided boron is introduced into the salt melt during the boronization process.

Besonders einfach zu betreibende stromlose Borierungsbäder erhält man, wenn das Bormonofluorid in der Salzschmelze selbst erzeugt wird. Überraschend wurde gefunden, dass man in einer inerten, gut wasserlöslichen und geringviskosen Schmelze aus Alkali- und Erdalkalichloriden borieren kann, wenn darin suspendiertes Boriermittel, wie zum Beispiel Borcarbid-Pulver durch Trifluorboroxal aktiviert und zur Abgabe von Bormonofluorid veranlasst wird, welches seinerseits an der Bauteiloberfläche zerfällt und auf diese Weise das Bor vom Borcarbid auf das Werkstück überträgt.Electroless boronation baths that are particularly easy to operate are obtained when the boron monofluoride is generated in the molten salt itself. Surprisingly, it was found that one can borate in an inert, readily water-soluble and low-viscosity melt from alkali and alkaline earth chlorides if boroning agent, such as boron carbide powder, which is suspended therein is activated by trifluoroboroxal and caused to release boron monofluoride, which in turn is caused on the component surface disintegrates and in this way transfers the boron from the boron carbide to the workpiece.

Das erforderliche Trifluorboroxol (BOF)3 wird ebenfalls in der Schmelze selbst erzeugt. Dem liegt die Erkenntnis zugrunde, dass man (BOF)3 durch Umsetzung von Boroxid oder Boraten mit Alkali-/ Erdalkalifluoriden sehr gut in einer inerten Schmelze aus Alkali-/Erdalkalichloriden erzeugen kann, wobei besonders die Anwesenheit von Bariumionen positiven Einfluss ausübt. Das auf diese Weise in sehr langsamer Reaktion und in kaum messbarer Konzentration entstehende Trifluorboroxol setzt sich mit dem in der Schmelze suspendierten Borcarbid zu dem eigentlich borierenden Agens, dem Bormonofluorid BF um.The required trifluoroboroxol (BOF) 3 is also generated in the melt itself. This is based on the knowledge that (BOF) 3 can be produced very well in an inert melt from alkali / alkaline earth chlorides by reacting boron oxide or borates with alkali / alkaline earth fluorides, the presence of barium ions in particular exerting a positive influence. The trifluoroboroxol that is produced in this way in a very slow reaction and in a concentration that is hardly measurable converts with the boron carbide suspended in the melt to form the boronizing agent, the boron monofluoride BF.

Vorzugsweise verwendet man daher Salzschmelzen, die aus 30 bis 60 Gew.-% Bariumchlorid, 10 bis 25 Gew.-% Natriumchlorid, 1 bis 20 Gew.-% Boroxid und/oder Alkaliboraten und/oder Erdalkaliboraten, 10 bis 30 Gew.-% Natriumfluorid und 1 bis 15 Gew.-% Borcarbid besteht.It is therefore preferable to use salt melts which consist of 30 to 60% by weight of barium chloride, 10 to 25% by weight of sodium chloride, 1 to 20% by weight of boron oxide and / or alkali borates and / or alkaline earth borates, 10 to 30% by weight Sodium fluoride and 1 to 15 wt .-% boron carbide.

Das durch Umsetzen von Bor-Sauerstoff-Verbindungen mit Fluoriden entstehende Trifluorboroxol bewirkt einen langsamen, kontrollierten Aufschluss des Borcarbids, wobei borieraktives Bormonofluorid freigesetzt wird, das Bor durch Zerfall an der Werkstückoberfläche abgeben kann. Anstelle von Borcarbid können auch andere bekannte Borierungsmittel, wie amorphes Bor oder Kalziumborid, verwendet werden.The trifluoroboroxol formed by reacting boron-oxygen compounds with fluorides causes a slow, controlled digestion of the boron carbide, whereby boron-active boron monofluoride is released, which boron can release on the workpiece surface through decay. Instead of boron carbide, other known borating agents, such as amorphous boron or calcium boride, can also be used.

Die Borierwirkung der Schmelzen kann vor allem durch Variationen der Konzentration von Boroxid bzw. Borat und von Alkali-/Erdalkalifluorid sowie durch Änderung der Temperatur und - in geringem Mass - durch Änderung der Konzentration des Borcarbids beeinflusst werden. So hat sich gezeigt, dass es mit den erfindungsgemässen Salzschmelzen möglich ist, auf Stahl Schichten aus Fe2B zu erzeugen, ohne dass die unerwünschte borreiche Phase FeB auftritt.The boriding effect of the melts can be influenced above all by variations in the concentration of boron oxide or borate and in alkali metal / alkaline earth metal fluoride, as well as by changing the temperature and - to a small extent - by changing the concentration of the boron carbide. It has thus been shown that the salt melts according to the invention make it possible to produce layers of Fe 2 B on steel without the undesirable boron-rich phase FeB occurring.

Vorzugsweise verwendet man Salzschmelzen, die aus 40-55 Gew.-% BaC12, 5-15 Gew.-% B203, Alkali- und/oder Erdalkaliborat, 18-25 Gew.-% NaF, 15-20 Gew.-% NaCI und 4-10 Gew.-% B4C bestehen.Salt melts which are composed of 40-55% by weight BaC1 2 , 5-15% by weight B 2 0 3 , alkali and / or alkaline earth borate, 18-25% by weight NaF, 15-20% are preferably used. -% NaCI and 4-10 wt .-% B 4 C exist.

Die erfindungsgemässen Salzschmelzen ermöglichen ein äusserst einfaches Arbeiten in der Praxis. Das Salzgemisch wird in einem Schmelztiegel aus warmfesten Stahl aufgeschmolzen und das B4C durch Einleiten eines Inertgasstromes, z.B. Stickstoff, in Schwebe gehalten. Die zu borierenden Werkstücke werden an einem Chargiergestell befestigt, z.B. mit Heissluft auf 350°C vorgewärmt und danach in die Schmelze eingehängt. Bei Stählen werden gleichmässige, sehr verschleissfeste, einphasige Schichten von Fe2B erzeugt, wobei die Schichtdicke je nach Grundwerkstoff und Behandlungsdauer variiert werden kann. Die Teile werden der Schmelze entnommen und z.B. in einem in der Härtereitechnik üblichen Abschreckbad aus Natrium- und Kaliumnitrat bei ca. 200°C abgeschreckt und danach mit Wasser gespült. Auf diese Weise gelangt kein Fluorid in die Abwässer.The molten salts according to the invention enable extremely simple work in practice. The salt mixture is melted in a melting crucible made of heat-resistant steel and the B 4 C is kept in suspension by introducing an inert gas stream, for example nitrogen. The workpieces to be borated are attached to a charging frame, preheated to 350 ° C with hot air, for example, and then hung in the melt. Steels produce uniform, very wear-resistant, single-phase layers of Fe 2 B, whereby the layer thickness can be varied depending on the base material and the duration of the treatment. The parts are removed from the melt and quenched, for example in a quenching bath made of sodium and potassium nitrate, which is customary in hardening technology, and then rinsed with water. In this way, no fluoride gets into the waste water.

Das erfindungsgemässe Salzbad kann somit problemlos in die bestehende Infrastruktur einer Salzbadhärterei integriert werden, ohne dass nennenswerte Investitionen oder eine zusätzliche Abwasserbehandlung erforderlich sind. Die Arbeitsweise entspricht weitgehend der des Salzbadkohlens oder Salzbadnitrierens. Die Schmelzen sind aus relativ billigen Komponenten zusammengesetzt. Damit ist ein Borierverfahren vorhanden, das hinsichtlich der Arbeitsweise und der Kosten mit den bekannten grosstechnischen Verfahren des Salzbadnitrierens und Salzbadkohlens konkurrieren kann.The salt bath according to the invention can thus be easily integrated into the existing infrastructure of a salt bath hardening shop, without significant investments or additional wastewater treatment being required. The method of operation largely corresponds to that of salt bath coal or salt bath nitriding. The melts are composed of relatively cheap components. A boriding process is thus available which can compete with the known industrial processes of salt bath nitriding and salt bath coaling in terms of operation and costs.

Die folgenden Beispiele geben Salzbadzusammensetzungen zur Durchführung von Borierungen an.The following examples show salt bath compositions for carrying out boronations.

Beispiel 1example 1

In einem Tiegelofen der Grösse 30/80 werden 100 kg eines Salzgemisches aus 50 kg BaC12, 15 kg NaF, 20 kg NaCI, 5 kg B203 und 10 kg B4C-Pulver eingeschmolzen und das Borcarbid durch Einleiten eines Inertgasstromes suspendiert. Bei einer Behandlungstemperatur von 900°C wird auf CK 15-Stahl bei einer Behandlungsdauer von 2 Stunden eine FeB-freie Boridschicht aus Fe2B von 60 µm Dicke erhalten.100 kg of a salt mixture of 50 kg BaC1 2 , 15 kg NaF, 20 kg NaCl, 5 kg B 2 0 3 and 10 kg B 4 C powder are melted in a crucible furnace of size 30/80 and the boron carbide is suspended by introducing an inert gas stream . With a treatment at a treatment time of 2 hours, an FeB-free boride layer of Fe 2 B with a thickness of 60 μm is obtained on CK 15 steel.

Beispiel 2Example 2

In einem Tiegelofen der Grösse 30/80 werden 100 kg eines Salzgemisches aus 50 kg BaC12, 25 kg KF, 15 kg NaCI, 5 kg B4C-Pulver eingeschmolzen und das Borcarbid durch Einleiten eines Inertgasstromes, z.B. Stickstoff, in Schwebe gehalten. Bei einer Behandlungstemperatur von 850°C und einer Borierdauer von 2 Stunden wird auf CK-15-Stahl eine FeB-freie Boridschicht aus Fe2B von 30 µm Dicke erhalten.100 kg of a salt mixture of 50 kg BaC1 2 , 25 kg KF, 15 kg NaCl, 5 kg B 4 C powder are melted in a crucible furnace of size 30/80 and the boron carbide is kept in suspension by introducing an inert gas stream, for example nitrogen. At a treatment temperature of 850 ° C. and a boriding time of 2 hours, an FeB-free Fe 2 B boride layer of 30 μm thick is obtained on CK-15 steel.

Beispiel 3Example 3

Besonders gute Boridschichten liefern Salzschmelzen folgender Zusammensetzung: 50 kg BaC12, 16 kg NaCI, 10 kg B203, 18 kg NaF und 6 kg B4C.Particularly good boride layers provide molten salts with the following composition: 50 kg BaC1 2 , 16 kg NaCl, 10 kg B 2 0 3 , 18 kg NaF and 6 kg B 4 C.

Claims (3)

1. A salt bath based on alkali and/or alkaline earth halides for the currentless production of wear- resistant boride coatings on metallic materials at temperatures of from 650 to 1,100°C, characterised in that it contains boron monofluoride or compounds from which boronmonofluoride can be obtained indirectly under bath conditions.
2. A salt bath according to Claim 1, characterised in that it is composed of from 30 to 60% by weight of barium chloride, from 10 to 25% by weight of sodium chloride, from 1 to 20% by weight of boron oxide and/or alkali borates and/or alkaline earth borates, from 10 to 30% by weight of sodium fluoride and from 1 to 15% by weight of boron carbide.
3. A salt bath according to Claims 1 and 2, characterised in that it is composed of from 40 to 55% by weight of barium chloride, from 15to 20% by weight of sodium chloride, from 5 to 15% by weight of boron oxide and/or alkali borates and/or alkaline earth borates, from 18 to 25% by weight of sodium fluoride and from 4 to 10% by weight of boron carbide.
EP84107296A 1983-07-26 1984-06-26 Salt bath for the currentless production of wear-resistant boride layers Expired EP0132602B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84107296T ATE25267T1 (en) 1983-07-26 1984-06-26 SALT BATH FOR ELECTRICAL PRODUCTION OF WEAR-RESISTANT BORIDE COATINGS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833326863 DE3326863A1 (en) 1983-07-26 1983-07-26 SALT BATH FOR ELECTRICITY-FREE PRODUCTION OF WEAR-RESISTANT BORIDE LAYERS
DE3326863 1983-07-26

Publications (2)

Publication Number Publication Date
EP0132602A1 EP0132602A1 (en) 1985-02-13
EP0132602B1 true EP0132602B1 (en) 1987-01-28

Family

ID=6204920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107296A Expired EP0132602B1 (en) 1983-07-26 1984-06-26 Salt bath for the currentless production of wear-resistant boride layers

Country Status (9)

Country Link
US (1) US4536224A (en)
EP (1) EP0132602B1 (en)
JP (1) JPS6070169A (en)
AT (1) ATE25267T1 (en)
BR (1) BR8403695A (en)
CA (1) CA1224389A (en)
DE (2) DE3326863A1 (en)
ES (1) ES8600421A1 (en)
ZA (1) ZA845139B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046262A2 (en) * 2002-11-15 2004-06-03 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
US7459105B2 (en) * 2005-05-10 2008-12-02 University Of Utah Research Foundation Nanostructured titanium monoboride monolithic material and associated methods
US20100176339A1 (en) * 2009-01-12 2010-07-15 Chandran K S Ravi Jewelry having titanium boride compounds and methods of making the same
ES2542241T3 (en) 2011-07-15 2015-08-03 Flexngate Automotive Iberica, S.A. Government pedal for a motor vehicle
US8894770B2 (en) * 2012-03-14 2014-11-25 Andritz Iggesund Tools Inc. Process and apparatus to treat metal surfaces

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB959533A (en) * 1961-10-26 1964-06-03 Gen Motors Corp Process of boronizing metal or alloy surfaces
US3634145A (en) * 1968-12-09 1972-01-11 Triangle Ind Inc Case-hardened metals
US3936327A (en) * 1972-09-07 1976-02-03 Elektroschmelzwerk Kempten Gmbh Boriding composition
SU535374A1 (en) * 1975-01-13 1976-11-15 Воронежский Ордена Ленина Государственный Университет Имени Ленинского Комсомола Electrolyte for Boronization
SU676639A1 (en) * 1977-06-06 1979-07-30 Предприятие П/Я В-8857 Composition for liquid borating
SU953002A1 (en) * 1980-11-17 1982-08-23 Институт Электрохимии Уральского Научного-Центра Ан Ссср Composition for liquid boronizing of products from ferrous metals and alloys

Also Published As

Publication number Publication date
ES534584A0 (en) 1985-10-01
ATE25267T1 (en) 1987-02-15
JPS6070169A (en) 1985-04-20
EP0132602A1 (en) 1985-02-13
DE3462272D1 (en) 1987-03-05
ES8600421A1 (en) 1985-10-01
BR8403695A (en) 1985-07-09
CA1224389A (en) 1987-07-21
ZA845139B (en) 1985-02-27
US4536224A (en) 1985-08-20
DE3326863A1 (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US4126488A (en) Boriding agent for boriding mass produced parts of ferrous and non-ferrous metals
DE19830654C2 (en) Borating agent, its use and method for producing single-phase, Fe¶2¶B-containing boride layers
DE3431044A1 (en) METHOD FOR BORING METAL AND METAL ALLOYS USING SOLID BORING AGENTS
DE69838575T2 (en) Method of surface treatment of iron material and salt bath oven used therefor
EP0132602B1 (en) Salt bath for the currentless production of wear-resistant boride layers
EP0077926B1 (en) Process to suppress surface deposits during salt bath nitriding of structural parts
DE2163203A1 (en) Method of making steel in an electric furnace
DE19904629C2 (en) Paste-shaped borating agent, its use and method for producing low-pore Fe¶2¶B-containing boride layers
DE2322159C3 (en) Process for producing a molten treatment bath for producing a layer of vanadium, niobium or tantalum carbide on the surface of workpieces made of iron, iron alloys or cemented carbide and containing at least 0.05 percent by weight of carbon
CA1128378A (en) Process for producing vanadium carbide layers on iron
DE816018C (en) Process for removing magnesium from aluminum scrap or aluminum alloys
DE830787C (en) Process for the production of volatile chlorides
DE2353850A1 (en) ELECTROLYTIC PROCESS AND DEVICE FOR CURING A LIMITED AREA ON THE SURFACE OF AN OBJECT MADE OF A METAL OR A METAL ALLOY
DE3716367A1 (en) METHOD FOR PRODUCING CARBIDIC DIFFUSION COATINGS ON PRODUCTS OF IRON-CARBON ALLOYS
DE1796215C (en) Powdered boning agent for steel or iron materials
DE892845C (en) Method for cladding metal objects, especially those made of iron or steel, with tin bronze
DE2145912C3 (en) Process for the production of aluminum
AT233613B (en) Process for inerting a molten salt bath
DE2053063C3 (en) Process for the deposition of metal carbide layers
DE3626849C1 (en) Salt baths for the heat treatment of steels
EP0103717B1 (en) Inert salt bath for heating steel
EP0147011A2 (en) A non-cyanide salt bath and process for carburization of ferrous metals and alloys
DE1771727C3 (en) Carburization process of steels in cyanide-free molten salts
DE2146472A1 (en) Boriding by partly replacing boron cpds with refractory - materials - to give a single phase boride layer
DE19832404C1 (en) Production of cyanide from nitrocarburised melts containing cyanate by electrolysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840626

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 25267

Country of ref document: AT

Date of ref document: 19870215

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3462272

Country of ref document: DE

Date of ref document: 19870305

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890511

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890517

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890609

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890612

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890629

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 6

Ref country code: GB

Payment date: 19890630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900626

Ref country code: AT

Effective date: 19900626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84107296.0

Effective date: 19910206