EP0130215B1 - Cellule a membrane monopolaire, bipolaire et/ou hybride - Google Patents

Cellule a membrane monopolaire, bipolaire et/ou hybride Download PDF

Info

Publication number
EP0130215B1
EP0130215B1 EP84900568A EP84900568A EP0130215B1 EP 0130215 B1 EP0130215 B1 EP 0130215B1 EP 84900568 A EP84900568 A EP 84900568A EP 84900568 A EP84900568 A EP 84900568A EP 0130215 B1 EP0130215 B1 EP 0130215B1
Authority
EP
European Patent Office
Prior art keywords
anode
cathode
back plate
assembly
current distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84900568A
Other languages
German (de)
English (en)
Other versions
EP0130215A1 (fr
Inventor
Donald W. Abrahamson
Marilyn J. Harney
Andrew J. Niksa
James J. Stewart
Elvin M. Vauss, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eltech Systems Corp
Original Assignee
Eltech Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eltech Systems Corp filed Critical Eltech Systems Corp
Priority to AT84900568T priority Critical patent/ATE42580T1/de
Publication of EP0130215A1 publication Critical patent/EP0130215A1/fr
Application granted granted Critical
Publication of EP0130215B1 publication Critical patent/EP0130215B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/26Connections in which at least one of the connecting parts has projections which bite into or engage the other connecting part in order to improve the contact
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B7/00Electrophoretic production of compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type

Definitions

  • Membrane-type electrolyzers are generally of two distinct types, the monopolar type in which the electrodes of each cell are directly connected to a source a power supply, or the bipolar type in which adjoining cells in a cell bank have a common electrode assembly therebetween, said electrode assembly being cathodic on one side and anodic on the other.
  • anode pans were formed from titanium or other valve metals or their alloys in sheet form.
  • cathode pans were formed from ferrous metals such as steel, stainless steel, or nickel.
  • U.S. Patent 4,244,802 An example of such pans in a monopolar cell is described in U.S. Patent 4,244,802.
  • this patent requires expensive lamination of the highly conductive metal outer layer to the pan.
  • a low resistance conductor In order to carry and distribute this current with low ohmic losses (especially in large area electrodes) a low resistance conductor must be used.
  • This conductor may be made of a large cross section of the corrosion-resistant metal or of a smaller cross section of a metal such as copper or aluminum, for example, which has a specific resistance 5 to 50 times lower than the corrosion-resistant metals. Obviously, these low resistance metals must be protected from corrosion by the electrolytes.
  • a second approach was to eliminate the copper and carry the current in the corrosion-resistant metal electrode structure. Since the electrical resistance of the corrosion resistant metal (e.g., titanium, nickel, stainless steel) is high compared to copper and aluminum, the voltage loss is increased and the length of the current path must be kept as short as possible (i.e., small electrode dimension parallel to the current path). This then limits the size of an electrode active area, increases the sealing perimeter to active area ratio, and requires many smaller components to create the same total active area. Thus, a larger active area to sealing perimeter would also - provide the additional benefit of a more efficient use of the membrane area (i.e., active area/purchased area ratio is higher). Current distribution and connection to external buswork is also difficult with this approach.
  • the corrosion resistant metal e.g., titanium, nickel, stainless steel
  • this invention aims to reduce the ohmic loss in monopolar or bipolar electrolyzer structures, by reducing the electrical resistance due to structural components and mechanical connection problems, to improve current distribution, to allowfor greater electrode active areas and to decrease the sealing perimeter to active area ratio.
  • a bipolar electrolyzer of this general type is described in US Patent 4 389 289, the teaching of which is acknowledged as prior art by virtue of the laying open to public inspection of its Italian counterpart.
  • This known bipolar electrolyzer comprises frames of inert plastic material provided with means to introduce and remove anolyte and catholyte and the electrolyzer is assembled under pressure in such a way that resilient mats are elastically compressed between the electrode bipolar elements. Hydraulic sealing is provided by 0-rings in each joint of the plastic frames receiving a membrane or a bipolar element. The plates forming the bipolar elements are located inside the plastic frame and hence inside the electrolyzer.
  • This invention provides a structure for membrane electrolyzers which requires little or no retrofitting. As newer and better electrode elements are developed they may be retrofitted without loss of the novel current distributor member and/or the novel monopolar, bipolar, or hybrid cell to cell low pressure contact feature.
  • Additional advantages of the invention include the ability to change current distributor members without changing other components, the ability to change cell elements without changing other components, the ability to allow for current density changes optimizing power cost versus capital costs, and the ability to obviate any need for conductor bars.
  • the monopolar embodiment of the present invention contemplates having current distributor members situated between adjacent cathode assemblies and between adjacent anode assemblies thereby allowing current to be brought into and removed from said anode and cathode assemblies within said cells via a low pressure, low current density, high area connection.
  • the invention also relates to an electrolyzer having a bipolar filter press electrolytic cell.
  • Cells of this type generally contain bipolar electrode assemblies, and membranes, and are contained within bulkheads connected by tie rods which may or may not be spring loaded.
  • the bipolar embodiment of the present invention contemplates the current distributor member situated between each end plate and a bipolar electrode assembly, with an anode side facing one end plate and a cathode side facing the other end plate, thereby allowing current to be brought into and removed from said cells via the novel low pressure, low current density, high area connection. Further, conducting electrical current from cell to cell is accomplished via a novel low pressure, high surface contact area, low current density mechanical connections between the back plates of the anode and cathode elements of the bipolar electrode assemblies, with an interposed current distributor member.
  • Electrolyzers of this type may be made up of a number of bipolar sections arranged in a monopolar fashion, that is each bipolar section electrically connected in parallel within the end walls of one electrolyzer; or it may be made up of a number of monopolar sections arranged in a bipolar fashion, that is each monopolar section electrically connected in series within the end walls of one electrolyzer; the electrical connections to the electrodes using the low pressure high area, connection between the current distributor members and the back plates of the electrode assemblies.
  • the hybrid embodiment of the present invention contemplates any arrangement of monopoIar and bipolar assemblies within one electrolyzer.
  • the hybrid embodiment contemplates use of the low pressure, high area, low current density connection, with the contact area for said connection substantially the same dimensions of the active area of said electrodes.
  • Anodes suitable for use in the instant invention comprise an anode back plate (integral with the pan) and an active anode surface area.
  • the active anode surface area comprises a foraminous anode of the type comprising a valve metal substrate having an electrocatalytic coating applied thereto of precious metals and/or oxides thereof, transition metal oxides and mixtures of these materials.
  • the anode member is generally planar in form and may be constructed of any foraminous material such as expanded metal mesh, perforated plate or wire screen.
  • This foraminous material has a high surface area and large number of points of contact with the membrane brought about by having a large number of small perforations, for example it may be expanded metal mesh having what is known as "micromesh size" pores.
  • This active anode area is mechanically and electrically attached to the anode back plate preferably by welding, e.g. by resistance welding.
  • anodes and cathodes have been described in their relationship to the preferred embodiment of the instant invention, namely a membrane gap cell (zero gap cell), whether or not the cell has a finite gap between membrane and electrode is not critical to the present invention.
  • the present invention is also suitable for use in finite gap cells.
  • the pans are formed to create an integral frame attached to the back plate which forms a chamber for containing electrolytes and electrode active areas.
  • the back plate is generally planar and preferably flexible to allow it to conform to a current distributor member to provide a good electrical connection.
  • the frames are fabricated integral with the pans of solid corrosion resistant metals (anode: titanium or alloys, cathode: steel, nickel, stainless steel, etc.) fabrication being by pressing, drawing, roll forming, welding, extruding, forging, etc. or a combination.
  • the gasketing may be "0" rings, flat gaskets, extruded gaskets or other well known means (U.S. #4,344,633).
  • One purpose of rigidifying the pans with a grout or filler material is to provide a reinforcement of thin pan metal enabling it to withstand a compressive gasket force without collapse thus allowing economic use of the expensive corrosion resistant metals through the use of thin material, i.e., sheet metal on the order of 0.015 to 0.10 inch (0.038 to 0.254 cm) thick.
  • Other purposes include making handling of the electrodes easier and increasing the internal pressure holding capacity.
  • the second monomer often is selected from a group of monomers usually containing an S0 2 F or sulfonyl fluoride pendant group.
  • R1 in the generic formula is a bifunctional perfluorinated radical comprising generally 1 to 8 carbon atoms but upon occasion as many as 25.
  • One restraint upon the generic formula is a general requirement for the presence of at least one fluorine atom on the carbon atom adjacent the -S0 2 F group, particularly where the functional group exists as the -(-S0 2 NH)mQ form.
  • Q can be hydrogen or an alkali or alkaline earth metal cation and m is the valence of Q.
  • the R 1 generic formula portion can be of any suitable or conventional configuration, but preferably the vinyl radical comonomer joins the R 1 group through an ether linkage.
  • the current distributor member is generally a solid copper planar sheet but may also be any suitable conductor having sufficient cross sectional area to carry the required current with low IR loss and good current distribution.
  • suitable examples of these other conductive metals include, for example, nickel, iron, steel, as well as alloys of these metals and alloys of copper and aluminum.
  • the current distributor members are placed between adjacent anode pans with the back side of each pan facing the current distributor member to form a single monopolar anode element.
  • current distributor members are placed between adjacent cathode pans with the back side of each pan facing the current distributor member to form a single monopolar cathode element.
  • the current distributor members protrude past the side of the electrolyzer on one side only.
  • the members between adjacent anode assemblies extend on one side while the members between adjacent cathode assemblies extend on the opposite side. This extension is then used to connect via a bus system, to the power source or other sections of the electrolyzer.
  • said current distributor members may also be sheets having calendered, dimpled, corrugated or serrated surfaces or having an interface material attached to, or inserted between, said surfaces as well as having conductive compounds, i.e., greases containing particles of conductive metals distributed therein on their surfaces.
  • conductive compounds i.e., greases containing particles of conductive metals distributed therein on their surfaces.
  • the thickness of the current distributor members may vary across the length of the member based on the current and voltage requirements, to reduce cost. It is understood that if tapered members are used the taper of the anode members and the taper of the cathode members are reversed so as to provide a parallel stack of cells to be compressed between the bulkheads. Finally, the current distributor member may also be used to provide structural support for the cell.
  • Increased pressure reduces contact resistance.
  • a low area, high pressure (i.e., 500-5000 psi) (34.48 to 344.8 bar) joint is used to get a low specific joint resistance and current densities across the joint are high (i.e., 200-2000 asi) (31-310 amps/cm 2 ) with the joint contact voltage loss equal to the product of specific resistance times current density.
  • other factors such as "current streamline" effects enter into the total voltage loss across this type of mechanical joint.
  • the joint pressure is lower (1-20 psi) (0.069 to 1.376 bar) yielding a higher specific resistance, but the joint area is very large yielding a low current density (i.e., 0.5 to 10 asi) (0.0775 to 1.55 amps/cm 2 ) and thus a low ohmic loss across the joint.
  • a copper to titanium joint as might be used on the anode, operating at 3 asi (0.465 amps/ cm 2 ) with a pressure of 5 psi (0.3448 bar) (specific resistance of 3.5 x 10- 3 ohm-in 2 ) (22.58 x 10- 3 ohms/cm 2 ) would have a voltage loss of 1.05 x 10- 2 volts
  • a copper to nickel joint as might be used on the cathode, operating at 3 asi (0.465 amps/cm 2 ) with a pressure of 5 psi (0.3448 bar) (specific resistance 7.7 x 10- 5 ohm-in z ) (49.68 x 10- 5 ohms/cm 2 ) would have a voltage loss of 2.33 x 10- 4 volts.
  • the difference between copper to titanium and copper to nickel is due to differences in contact resistance due to different materials and different surface preparations, oxides, etc. Modifications to the metal surfaces or the use of interface materials to take advantage of lower contact resistance of various metals is further discussed hereinbelow.
  • a thin pan is preferred because it is flexible and conforms to the current distributor member in a connection creating a large contact area. Additionally, materials such as conductive reticulates (sponge metal), Multilam (Trademark), conductive wools and the like may be used as an interface in contact with the current distributor member or back plates to increase the contact area. Because contact resistance is also dependent upon the materials in contact, the distributor member and/or the pan may be coated with a material as an interface to make the contact resistance lower. Suitable examples include coatings and plating of metals such as silver, gold, platinum, nickel and copper by methods such as plasma spraying, painting, flame spraying, sputtering, vapor deposition and combinations of the above.
  • sealing means such as a gasket may be placed between the distributor member and pan.
  • This sealing means is located so as to ' be around the perimeter of the current distributor member and anode assembly or cathode assembly pan to prevent entrance of corrosive elements which could oxidize the contact and thereby increase resistance.
  • the sealing means may also employ a conductive and/or anti-oxidation material.
  • the bulkheads, tie rods and associated equipment used to hold the cells in place in the electrolyzer and seal the cells are those generally well known in the art. They are generally the same size as the cells to be pressed between said bulkheads and generally are constructed of heavy gauge steel. The bulkheads and tie rods may or may not be electrically isolated from the cells as is preferable in each particular use.
  • integral manifolding is constructed of titanium metal or nickel metal as the case warrants for particular inputs and outputs, inlets and outlets, and said integral manifolding is electrically isolated from the individual cells preferably by being physically spaced so as not to be in contact with the cells of polarity not desired in that particular manifold line.
  • the bipolar filter press zero gap electrolyzers of the present invention are configured such that an anode assembly pan back plate is in back-to-back facing relationship with a cathode assembly pan back plate. Between the back plates is a current distributor member. On either exposed, opposite active electrode face of said anode assemblies and said cathode assemblies is a membrane which is in physical contact with said exposed active electrode faces. On either side of the exposed surfaces of said membranes are opposite polarity active electrode faces.
  • the monopolar filter press zero gap electrolyzers of the present invention are configured such that two anode pan back plates are in back-to-back facing relationship and are separated by a current distributor member. On each exposed, opposite active anode face of said anodes is a membrane which is in physical contact with the active anode face. On the other side of the membranes are cathode assemblies in pairs back-to-back with current distributor members in between each pair. This stack assembly is repeated until the desired number of cells is reached.
  • Bulkheads are provided for either the monopolar or bipolar electrolyzer on either end with connecting tie rods and associated paraphernalia to contain the so-produced cells. Sealing of the stack is provided by either gaskets or O-rings, the appropriate face or channeling necessary for gaskets and/or O-rings being provided in the respective anode and cathode assembly pans.
  • Figures 1 and 3-7 relate to a monopolar embodiment of the present invention.
  • Figure 1 shows a monopolar electrolyzer (1) consisting of a plurality of vertical anode assemblies (4) and cathode assemblies (5) in physical contact with permselective membranes (6) (zero gap). Also shown are integral discharge and inlet manifolds (100). Additionally bulkheads (2) and tie rods (3) are illustrated.
  • FIG. 3 shows a partial cross sectional plan view of the electrolyzer of Figure 1 in its assembled condition.
  • This view shows anode pans (10) located on either side of current distributor member (30).
  • cathode pans (20) are located on either side of current distributor members (30).
  • the anode pans (10) have active anode areas (11) attached to said pans via springs (12) and also incorporate a sealing means (13).
  • the cathode pans (20) have active cathode areas (21) attached to them, in this particular case reticulate bodies without springs, and also utilize a sealing means (23).
  • These anode and cathode assemblies are alternated and are in contact with and separated by membranes (6). Spacers (40) are utilized as necessary to maintain proper cell dimensions.
  • grouting material (50) for making the pans more rigid is shown.
  • Figure 7 represents a detailed view of an integral manifolding embodiment showing an anode assembly (4), a cathode assembly (5) and an integral manifold (100).
  • the integral manifold (100) is shown as comprising spacer section (101), sealing means (103), coupler (104) and manifold sections (107). Also shown are current distributor member (30) and spacer (40). Obviously, the manifold sections (107) and spacer sections (101) of the cathode manifolding are reversed for the anode manifolding.
  • Figure 8 shows a bipolar electrolyzer (32) consisting of a plurality of vertical anode pan assemblies (35) and cathode pan assemblies (36) which in the assembled condition are in physical contact with permselective membranes (37) (zero gap).
  • a single terminal current distributor member (61) is located on each end of the electrolyzer and further current distributor members, referred to as interface materials (38), are located between and in contact with the backs of adjacent anode and cathode pan assemblies.
  • interface materials also shown are integral discharge and inlet ports (131). Additionally bulkheads (33) and tie rods (34) are illustrated.
  • FIG 9 shows a preferred embodiment of one version of a hybrid electrolyzer of the present invention.
  • the electrolyzer (32) comprises bulkheads (33), tie rods (34), anode assemblies (35), cathode assemblies (36), membranes (37), intermediate current distributors referred to as interface material (38), terminal current distributors (61) and integral discharge and inlet ports (131).
  • FIG 10 shows a partial cross sectional elevation view of Figure 8.
  • This view shows anode pans (35) and cathode pans (36).
  • Located on either end of the electrolyzer is a single terminal current distributor member (61).
  • the anode pans have active anode areas (42) attached to said pans via springs (43) and also incorporate a sealing means (44).
  • the cathode pans (36) have active cathode areas (52) attached to them, in this particular case reticulate bodies without springs, and also utilize a sealing means (54).
  • These anode and cathode assemblies are alternated and are in contact with and separated by membranes (37).
  • Intermediate current distributors referred to as interface materials (38) are,utilized to help maintain proper electrical contact.
  • grouting material (81) for making the pans more rigid is shown. It is understood that as many cells as desired may be placed between the bulkheads, in a variety of monopolar and/or bipolar sections arranged and connected together in an electrolyzer.
  • FIG 11 shows a partial cross sectional elevation view of a monopolar electrolyzer or a monopolar section of a hybrid electrolyzer.
  • This view shows anode pans (35) located on either side of current distributor member (61).
  • cathode pans (36) are located on either side of current distributor members (61).
  • the anode pans have active anode areas (42) attached to said pans via springs (43) and also incorporate a sealing means (44).
  • the cathode pans (36) have active cathode areas (52) attached to them, in this particular case reticulate bodies without springs, and also utilize a sealing means (54).
  • These anode and cathode assemblies are alternated and are in contact with and separated by membranes (37). Spacers (71) are utilized as necessary to maintain proper cell dimensions.
  • grouting material (81) for making the pans more rigid and insulators (91) are shown.
  • Figure 12 shows a partial cross sectional plan view of the electrolyzer of Figure 9 in the assembled condition.
  • This view shows anode pans (35), and cathode pans (36) as well as membranes (37), interface materials (38), current distributor members (61), insulators (91), grouting material (81), cathode active area (52), cathode sealing means (54), anode sealing means (44), anode active areas (42) and anode springs (43).
  • FIG 13 shows a detailed view of a cathode pan assembly (36) with cathode pan (51), cathode active area (52), peripheral sealing means (54) and integral discharge and inlet ports (131).
  • Figure 14 shows a detailed view of an anode pan assembly (35) with anode pan (41), anode active area (42), sealing means (44) and integral discharge and inlet ports (131).
  • the contact resistance between the back plate of the anode pan and the current distributor member was 64 mV without the copper reticulate interface material and 12 mV when the copper reticulate interface material was utilized. The benefit of using this embodiment of the invention to reduce contact resistance is thus clearly demonstrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Secondary Cells (AREA)
  • Silicon Polymers (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Filtration Of Liquid (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Bipolar Transistors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inert Electrodes (AREA)

Claims (21)

1. Un électrolyseur filtre-presse comprenant des éléments d'extrémité (2), au moins une cellule électrolytique (1, 32) ayant un assemblage d'électrode d'anode (4, 35) et un assemblage d'électrode de cathode (5, 36) et une membrane échangeuse d'ions (6, 37) engagée élastiquement entre eux, lesdits assemblages d'électrode ayant des zones d'électrode actives (11,21 ) et des fonds arrières (10, 20) en matériau électriquement conducteur formant au moins une partie d'un compartiment d'électrolyte, ladite cellule comprenant des moyens d'obturation et des moyens pour introduire et retirer les fluides et l'énergie électrique, caractérisée en ce que:
(a) lesdits fonds arrières (10, 20) des assemblages d'électrode sont formés intégralement avec les cuvettes en matériau électriquement conducteur, chacune desdites cuvettes incorporant aussi des moyens d'obturation périphériques (13,23) et, comme lesdits moyens pour introduire et retirer les fluides, des collecteurs intégraux (100) électriquement conducteurs,
(b) l'énergie électrique passe entre deux fonds arrières adjacents (10, 10; 20, 20; 10, 20) des cuvettes de cellules adjacentes et entre le fond arrière d'une cellule d'extrémité et un élément d'extrémité (2) par. un membre distributeur de courant (30, 61) à travers des joints de contact mécaniques n'ayant qu'une connection à pression à une pression entre 0,034 et 6,89 bar, lesdits joints de contact étant substantiellement aussi grands en dimension que les fonds arrières (10, 20), et étant séparés de l'électrolyte de la cellule par les fonds arrières (10, 20) des cuvettes et étant situés hors des cellules adjacentes, et
(c) au moins certains desdits assemblages d'électrode comprennent des organes de compression à ressorts (12), s'étendant entre lesdits fonds arrières des zones actives des électrodes.
2. Electrolyseur selon la revendication 1 caractérisé en ce que ladite cuvette de l'assemblage d'électrode comporte une portion rigidifiée par un mastic (50) ou par un matériau de remplissage.
3. Electrolyseur selon la revendication 1 ou 2 caractérisé en ce que le joint de contact électrique relie un fond arrière de cathode (20) avec un fond arrière d'anode (10).
4. Electrolyseur selon la revendication 1, 2 ou 3 caractérisé en ce que ledit membre distributeur de courant (30, 61) est sous la forme d'une feuille de métal solide plane faite de nickel, de fer, d'acier, d'aluminium, de cuivre ou de leurs alliages.
5. Electrolyseur selon la revendication 1, 2 ou 3 caractérisé en ce que ledit membre distributeur de courant (30, 61) fournit un support structurel pour ladite cellule (32).
6. Electrolyseur selon la revendication 5 caractérisé en ce que chaque membre distributeur de courant (30, 61) dépasse du côté de la cellule sur un côté uniquement.
7. Electrolyseur selon la revendication 4, 5 ou 6, caractérisé en ce que ledit membre distributeur de courant (30, 61) comporte un revêtement de matériel conducteur sur les côtés qui sont en contact avec lesdits fonds arrières.
8. Electrolyseur selon la revendication 4 ou 5 caractérisé en ce que ledit membre distributeur de courant (30, 61) est une feuille plane revêtue de métal.
9. Electrolyseur selon la revendication 4, 5, 6 ou 7, caractérisé en ce que ledit membre distributeur de courant (30, 61) et lesdits fonds arrières ont en contact avec leurs surfaces un matériau d'interface choisi parmi un métal éponge, des laines conductrices, des feuilles de métal conductrices ou des combinaisons de ceux-ci.
10. Electrolyseur selon n'importe quelle revendication précédente, caractérisé en ce que lesdits assemblages d'électrode pourvus d'organes de compression à ressort sont des assemblages comportant un fond arrière (10) en métal d'arrêt et un substrat d'électrode en métal d'arrêt ayant sur lui un revêtement électrocatalytique (11).
11. Electrolyseur selon n'importe laquelle des revendications 1 à 9, caractérisé en ce que lesdits assemblages d'électrode pourvus d'organes de compression à ressorts sont des assemblages de cathode comportant un fond arrière (20) et une surface de cathode (21) faits en nickel, fer, acier ou en acier inoxydable.
12. Electrolyseur selon n'importe quelle revendication précédente, caractérisé en ce que ledit membre distributeur de courant (30, 61) conduit le courant dans et hors des électrodes d'une source extérieure audit électrolyseur ou d'une autre section de l'électrolyseur par un chemin extérieur.
13. Electrolyseur selon la revendication 12, caractérisé en ce qu'il comprend au moins une cellule électrolytique monopolaire dans laquelle les membres distributeurs de courant sont disposés entre les fonds arrières d'assemblages d'électrode adjacents de même polarité.
14. Electrolyseur selon la revendication 12, caractérisé en ce qu'il comprend au moins une cellule électrolytique bipolaire dans laquelle ledit membre distributeur de courant (30, 61) est disposé entre les fonds arrières des assemblages d'anode (35) et de cathode (36) d'au moins un assemblage bipolaire.
15. Electrolyseur selon n'importe quelle revendication précédente, caractérisé en ce qu'il comprend, en combinaison, des cellules monopo- laires et bipolaires agencées entre lesdits éléments d'extrémité.
16. Electrolyseur selon n'importe quelle revendication précédente, caractérisé en ce que lesdits collecteurs contiennent un espaceur (101), un moyen d'obturation (103), un moyen d'obturation du collecteur (106) et des sections de collecteur (107).
17. Assemblage d'anode destiné à être utilisé dans un électrolyseur filtre-presse selon n'importe laquelle des revendications 1-16, dans lequel ledit assemblage d'anode comprend un fond arrière (10) formant au moins une portion d'un compartiment d'anolyte, ledit fond arrière étant intégré à une cuvette ayant un moyen d'obturation périphérique (13) et des collecteurs intégraux (100) électriquement conducteurs comprenant des orifices d'évacuation et d'admission, une zone d'anode active et des membres élastiques de compression par ressorts (12) s'étendant à l'intérieur dudit compartiment d'anolyte entre ledit fond arrière (10) et la zone d'anode active (11), l'assemblage d'anode ayant une face avant faite de la zone d'anode active (11) et le moyen périphérique d'obturation (13) de la cuvette pour faire face à une membrane (6, 37) et un assemblage de cathode opposé comprenant un fond arrière identique intégré à une cuvette pour constituer un compartiment d'électrolyte, la face arrière du fond arrière de l'assemblage d'anode (10) externe au compartiment d'électrolyte étant agencé pour former, avec un membre distributeur de courant (30, 61), et avec la face arrière d'un autre assemblage d'anode ou d'un assemblage de cathode comprenant un fond arrière identique intégré à une cuvette ou à un élément d'extrémité, ledit joint de contact mécanique n'ayant qu'une connection à pression, ledit joint de contact étant substantiellement aussi grand que les dimensions du fond arrière (10).
18. Assemblage d'anode de la revendication 17, dans lequel ledit fond arrière de l'anode est. réalisé en métal d'arrêt alors que la zone active de l'anode comprend un substrat en métal d'arrêt revêtu d'un revêtement électrocatalytique.
19. Assemblage de cathode destiné à être utilisé dans un électrolyseur filtre-presse selon n'importe laquelle des revendications 1-16, dans lequel ledit assemblage de cathode comprend un fond arrière (20) formant au moins. une portion d'un compartiment de catholyte, ledit fond arrière étant intégré à une cuvette ayant un moyen d'obturation périphérique (23) et des collecteurs intégraux (100) électriquement conducteurs comprenant un orifice d'évacuation et d'admission, une zone de cathode active et des membres élastiques de compression par ressorts s'étendant à l'intérieur dudit compartiment de catholyte entre ledit fond arrière et la zone de cathode active, l'assemblage de cathode ayant une face avant constituant la zone de cathode active et le moyen périphérique d'obturation (23) de la cuvette pour faire face à une membrane (6, 37) et un assemblage d'anode opposé comprenant un fond arrière identique intégré à une cuvette pour constituer un compartiment d'électrolyte, la face arrière du fond arrière de l'assemblage de cathode (20) externe au compartiment d'électrolyte étant agencée pour former, avec un membre distributeur de courant (30, 61), et avec la face arrière d'un autre assemblage de cathode ou d'un assemblage d'anode comprenant un fond arrière identique intégré à une cuvette ou à un élément d'extrémité, ledit joint de contact mécanique n'ayant qu'une connection à pression, ledit joint de contact étant substantiellement aussi grand que les dimensions du fond arrière (20).
20. Assemblage de cathode de la revendication 19, dans lequel ladite zone de cathode active comprend une surface de cathode réalisée en nickel, fer, acier ou en acier inoxydable.
21. L'utilisation de l'électrolyseur selon n'importe laquelle des revendications 1-16 pour l'électrolyse de la saumure.
EP84900568A 1982-12-27 1983-12-20 Cellule a membrane monopolaire, bipolaire et/ou hybride Expired EP0130215B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84900568T ATE42580T1 (de) 1982-12-27 1983-12-20 Monopolare-, bipolare und/oder hybride membranzelle.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US45357382A 1982-12-27 1982-12-27
US453573 1982-12-27
US52969183A 1983-09-06 1983-09-06
US529691 1983-09-06
US55885083A 1983-12-07 1983-12-07
US558850 1983-12-07

Publications (2)

Publication Number Publication Date
EP0130215A1 EP0130215A1 (fr) 1985-01-09
EP0130215B1 true EP0130215B1 (fr) 1989-04-26

Family

ID=27412573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84900568A Expired EP0130215B1 (fr) 1982-12-27 1983-12-20 Cellule a membrane monopolaire, bipolaire et/ou hybride

Country Status (18)

Country Link
EP (1) EP0130215B1 (fr)
JP (1) JPS60500454A (fr)
KR (1) KR910003644B1 (fr)
AT (1) ATE42580T1 (fr)
AU (1) AU565760B2 (fr)
BR (1) BR8307663A (fr)
CA (1) CA1225964A (fr)
DE (1) DE3379737D1 (fr)
DK (1) DK406684D0 (fr)
ES (2) ES528412A0 (fr)
FI (1) FI77270C (fr)
GR (1) GR79738B (fr)
IL (1) IL70543A (fr)
IT (1) IT1197764B (fr)
NO (1) NO163575C (fr)
NZ (1) NZ206668A (fr)
PT (1) PT77900B (fr)
WO (1) WO1984002537A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588483A (en) * 1984-07-02 1986-05-13 Olin Corporation High current density cell
IT1200403B (it) * 1985-03-07 1989-01-18 Oronzio De Nora Impianti Celle elettrolitiche mono e bipolari e relative strutture elettrodiche
WO2015026747A1 (fr) * 2013-08-20 2015-02-26 Trish Choudhary Séparation et déminéralisation de solutions de biomolécules par électrodialyse
DE102018209520A1 (de) * 2018-06-14 2019-12-19 Thyssenkrupp Uhde Chlorine Engineers Gmbh Elektrolysezelle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017375A (en) * 1975-12-15 1977-04-12 Diamond Shamrock Corporation Bipolar electrode for an electrolytic cell
US4116807A (en) * 1977-01-21 1978-09-26 Diamond Shamrock Corporation Explosion bonding of bipolar electrode backplates
US4244802A (en) * 1979-06-11 1981-01-13 Diamond Shamrock Corporation Monopolar membrane cell having metal laminate cell body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137144A (en) * 1976-03-19 1979-01-30 Hooker Chemicals & Plastics Corp. Hollow bipolar electrolytic cell anode-cathode connecting device
US4108752A (en) * 1977-05-31 1978-08-22 Diamond Shamrock Corporation Electrolytic cell bank having spring loaded intercell connectors
DE2914869A1 (de) * 1979-04-12 1980-10-30 Hoechst Ag Elektrolyseapparat
IT1140510B (it) * 1980-01-16 1986-10-01 Oronzio De Nora Impianti Elettrolizzatore bipolare e procedimento di elettrolisi di elettrolisi di alogenuri
IN156372B (fr) * 1980-05-15 1985-07-06 Ici Plc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017375A (en) * 1975-12-15 1977-04-12 Diamond Shamrock Corporation Bipolar electrode for an electrolytic cell
US4116807A (en) * 1977-01-21 1978-09-26 Diamond Shamrock Corporation Explosion bonding of bipolar electrode backplates
US4244802A (en) * 1979-06-11 1981-01-13 Diamond Shamrock Corporation Monopolar membrane cell having metal laminate cell body

Also Published As

Publication number Publication date
IL70543A (en) 1987-08-31
AU565760B2 (en) 1987-09-24
FI843345A0 (fi) 1984-08-24
KR910003644B1 (ko) 1991-06-07
BR8307663A (pt) 1984-12-11
IT8349571A0 (it) 1983-12-23
DK406684A (da) 1984-08-24
ATE42580T1 (de) 1989-05-15
FI843345A (fi) 1984-08-24
DK406684D0 (da) 1984-08-24
IT1197764B (it) 1988-12-06
ES534699A0 (es) 1987-06-01
EP0130215A1 (fr) 1985-01-09
AU2438884A (en) 1984-07-17
ES8501453A1 (es) 1984-12-01
NZ206668A (en) 1987-09-30
WO1984002537A1 (fr) 1984-07-05
PT77900A (en) 1984-01-01
PT77900B (en) 1986-04-11
NO163575C (no) 1990-06-20
KR840007608A (ko) 1984-12-08
JPS60500454A (ja) 1985-04-04
IL70543A0 (en) 1984-03-30
NO163575B (no) 1990-03-12
NO843391L (no) 1984-08-24
FI77270C (fi) 1989-02-10
ES8706216A1 (es) 1987-06-01
ES528412A0 (es) 1984-12-01
GR79738B (fr) 1984-10-31
FI77270B (fi) 1988-10-31
CA1225964A (fr) 1987-08-25
DE3379737D1 (en) 1989-06-01

Similar Documents

Publication Publication Date Title
US4923582A (en) Monopolar, bipolar and/or hybrid memberane cell
US4732660A (en) Membrane electrolyzer
EP0137836B1 (fr) Element de cellule centrale unitaire pour structure de cellule d'electrolyse par filtre-presse
US4643818A (en) Multi-cell electrolyzer
US4389289A (en) Bipolar electrolyzer
US4738763A (en) Monopolar, bipolar and/or hybrid membrane cell
CA1094505A (fr) Cellule electrolytique a membrane monopolaire
CA1094017A (fr) Dispositif de connexion anode-cathode bipolaire creux pour cellule electrolytique
US4217199A (en) Electrolytic cell
CA1272694A (fr) Pile electrochimique monopolaire a element inedit pour la transmission du courant
EP0229473B1 (fr) Electrode
GB1595193A (en) Diaphragm cell
US4608144A (en) Electrode and electrolytic cell
US4519888A (en) Electrolytic cell
EP0187273A1 (fr) Unité terminale électrochimique monopolaire ou bipolaire ayant un élément de transmission de courant électrique
EP0130215B1 (fr) Cellule a membrane monopolaire, bipolaire et/ou hybride
JPH0569916B2 (fr)
EP0076386B1 (fr) Cellule d'électrolyse monopolaire à membrane
EP0118973B1 (fr) Cellule électrolytique
WO1986003789A1 (fr) Procede de fabrication d'un element unitaire de transmission de courant electrique pour unites de cuves electrochimiques monopolaires ou bipolaires du type filtre-presse
US4690748A (en) Plastic electrochemical cell terminal unit
US5340457A (en) Electrolytic cell
US3852179A (en) Bipolar diaphragm electrolytic cell having internal anolyte level equalizing means
JP2634373B2 (ja) 複極式電解槽
JP3212318B2 (ja) 単極型イオン交換膜電解槽

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840925

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890426

REF Corresponds to:

Ref document number: 42580

Country of ref document: AT

Date of ref document: 19890515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3379737

Country of ref document: DE

Date of ref document: 19890601

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941111

Year of fee payment: 12

EAL Se: european patent in force in sweden

Ref document number: 84900568.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951120

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951229

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960109

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: ELTECH SYSTEMS CORP.

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 84900568.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970919

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981203

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981230

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST