EP0127620B1 - Elektrolytischer zusammenniederschlag von zink und graphit und so erhaltener gegenstand - Google Patents

Elektrolytischer zusammenniederschlag von zink und graphit und so erhaltener gegenstand Download PDF

Info

Publication number
EP0127620B1
EP0127620B1 EP19830900525 EP83900525A EP0127620B1 EP 0127620 B1 EP0127620 B1 EP 0127620B1 EP 19830900525 EP19830900525 EP 19830900525 EP 83900525 A EP83900525 A EP 83900525A EP 0127620 B1 EP0127620 B1 EP 0127620B1
Authority
EP
European Patent Office
Prior art keywords
zinc
graphite
electrolyte
codeposit
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830900525
Other languages
English (en)
French (fr)
Other versions
EP0127620A4 (de
EP0127620A1 (de
Inventor
William A. Donakowski
John R. Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Original Assignee
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH, Ford France SA, Ford Motor Co Ltd, Ford Motor Co filed Critical Ford Werke GmbH
Publication of EP0127620A1 publication Critical patent/EP0127620A1/de
Publication of EP0127620A4 publication Critical patent/EP0127620A4/de
Application granted granted Critical
Publication of EP0127620B1 publication Critical patent/EP0127620B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • Automotive metal fasteners are usually coated or plated to enhance various characteristics such as resistance to corrosion, resistance to seizing/galling, low fastening friction, economy, solderability, and resistance to the stick-slip phenomenon (which is a repeated sticking followed by repeated slipping during fastener tightening operations).
  • cadmium has been employed to impart lubricity and good sacrificial corrosion protection, particularly in a marine environment (see Modern Electroplating, by F. A. Lowenheim, published by John Wiley & Sons, 3rd Edition, p. 663, 1974).
  • cadmium is subject to two disadvantages: (a) it has a toxic effect during processing, and (b) it is significantly expensive.
  • codeposited particles can be considered nonconductive and normally would not respond to the normal electrolytic action, but it was found that even graphite would plate or codeposit under very strained and undesirable conditions with nickel.
  • the metal matrix and codeposited particles were viewed as to their antifriction, antiseizing, and dry lubrication properties and found them not lower than zinc or cadmium. No investigation was made of the mode of corrosion of such codeposits. Without exploring proper processing parameters, the author concluded that codeposition was feasible only at conventional metal plating parameters. Similar observations were made by Parker as to electroless nickel deposits, entitled “Hardness and Wear Resistance Tests of Electroless Nickel Deposits", Journal of Plating, Vol. 61, p. 834, September 1974.
  • DE-A-2325559 discloses a coating of Zn and graphite. Zn and graphite are simultaneously electrodeposited.
  • a method of electrodepositing zinc and graphite onto conductive metal substrate by the use of an electrolytic cell having a zinc anode and the metal substrate connected as a cathode comprising the steps of immersing said substrate in a cleansed condition into an acid/zinc plating electrolyte containing at least 40 g/I zinc ions and 30-110 g/I insoluble bulk graphite, said electrolyte having a pH of 5-5.7 and energizing said electrolytic cell at a sufficient current density to plate out zinc onto said surface without burning while continuously agitating said graphite into uniform suspension throughout said electrolyte, said agitation being periodically interrupted to allow said graphite to settle and comingle with said zinc as it is plating out on said cathode, the codeposit of zinc and graphite on said substrate containing uniformly distributed graphite in an amount of 30-48% by weight of the codeposit, a coefficient of friction equal to or less than .130, at a plated thickness of
  • the codeposit may be subject to an additional step of dipping into a chromate passivation solution for a period of 10-30 seconds in order to form a conversion zinc chromate coating on the outer layer of said codeposit.
  • the layer of zinc chromate has a thickness of .00005 cms (.00002") so that optimally the coated combination will exhibit consistent torque performance at a torque load of 40 pounds, a coefficient of friction of about .112 or less, and no red rust in a salt spray environment for at least 120 hours.
  • the fastener When the codeposited coating is applied to a threaded fastener, the fastener will preferably exhibit a consistent torque tension relationship during tightening and have good solderability characteristics using either a resin solder cord or a zinc chloride containing flux.
  • the conductive metal substrate is a metallic threaded fastener which may be comprised of steel, copper, nickel, brass, bronze, zinc and aluminum.
  • the agitation is preferably interrupted for 15-60 seconds at intervals of 15-80 seconds. It is advantageous if the particle size of the graphite employed is of an extremely fine character, and preferably is of a colloidal nature having a particle size of 1-25 microns.
  • the electrolyte is of the acid chloride type, created by either mixing 70-85 g/I zinc chloride with 100­150gII of potassium chloride, or 45-110 g/l of zinc chloride when dissolved with 100-200 g/I of sodium chloride.
  • the acid chloride bath contains also boric acid in an amount of 26 ⁇ 40 g/I.
  • the electrolyte may be improved by incorporating a grain refiner in the form of gelatin in an amount of .4­1 g/I of electrolyte, and a cationic surfactant in the form of cocamine acetate in an amount of .1-.4 g/I of electrolyte.
  • the cleaning of the substrate may include immersion in a caustic cleansing solution to remove oils and other organic materials followed by a clean water rinse, and then immersion in a pickling solution to remove any oxides thereon, again followed by water rinse.
  • a barrel plating process whereby the apparatus is comprised of a mechanically rotated barrel which is perforated and contains a metallic plate bolted to the bottom of the barrel which in turn is connected to a commutator ring on the outside of the barrel.
  • the barrels are made of inert material such as polypropylene.
  • the cathode contact with the fasteners is usually made by metal discs on the bottom of the cylinder. The electrolyte permeates the barrel through the perforations and the anode is suspended just below the level of the solution.
  • This invention has discovered that a codeposit of zinc and graphite with a critically high content of graphite will provide an unusually good combination of physical characteristics, including an ultralow coefficient of friction.
  • the physical characteristics may comprise anticorrosion properties, good solderability, economy of processing and little or no stick slip problem.
  • the codeposit of zinc and graphite has particular utility in the coating of fasteners, pins and gears.
  • a preferred method mode for obtaining the codeposit of this invention is as follows.
  • a processing and electrolytic plating system is prepared.
  • a barrel plating mode may be employed whereby rotatable cylinders 10, constructed of acid resistant, nonabsorbant material (such as polypropylene, resin bonded fiberglass, hard rubber, PVC, lucite, and phenolic laminates) are used to contain the parts to be plated while being tumbled.
  • the cylinders are perforated and are mounted for rotation upon a horizontal axis, the trunions 11 for the axis being supported in a carriage 12 which is moved from tank to tank and is lowered into each tank for treatment therein.
  • the series of tanks that may be employed with this method, and barrel plating apparatus include a series of cleaning and rinsing tanks (not shown, which are interposed between process tanks).
  • One or more of electrolytic plating tanks 13-14-15 are employed, followed by a suitable rinse tank 16. Only the electrolytic plating tanks are energized and contain an electrolyte.
  • the parts, such as metal fasteners, are loaded in a bulk fashion into the cylinder through an access door thereof; the parts are connected as a cathode in the electrolytic plating cell by use of a metal plate bolted to the bottom of the barrel for contact with the batch of parts.
  • the plate is connected by slip ring to an outside electrical supply.
  • the anode can comprise a plurality of zinc elements extending into the bath containing the electrolyte solution and into which the barrels are lowered.
  • the substrate or, in this case, a bulk quantity of metallic fasteners, is loaded into the barrel plating cylinder and carried through a series of cleaning tanks, which may preferably comprise a first bath having a highly alkaline solution effective to remove oil and gum deposits on the metallic substrate.
  • the alkaline cleansed metal substrate is then rinsed by use of conventional tap water and then immersed in a pickling solution containing a concentration of about 30% hydrochloric acid, which is effective to remove oxides, followed by a conventional water rinse.
  • the parts Prior to immersing the cleansed substrate into an acid zinc plating electrolyte for depositing a codeposit, the parts may preferably be preplated with .0005 cms (0.0002") zinc in a conventional acid zinc plating electrolyte.
  • the electrolyte for the codeposit contains 40 g/I zinc ions and 30-110 g/l insoluble bulk graphite.
  • the zinc ions are obtained in the electrolyte by introducing a zinc anode into the bath solution; the bulk graphite is preferably introduced in a fine grade condition, optimally colloidal graphite, having a particle size in the range of 1-25 microns. Crude foundry grade graphite is operable within the scope of this invention, crude graphite having an average particle size of 25-100 microns. Utilizing the finer colloidal graphite will obtain a much smoother codeposit having typically an average particle size of 2 microns.
  • the graphite is added to the electrolyte in amounts less than 30 g/l, a noticeable increase in the coefficient of friction of the codeposit will result and make the coating less effective in performing as a low friction composite. If the graphite is added to the solution and maintained in a suspension quantity of greater than 110 g/I, the graphite will plate out in an amount which will be greater than 50% of the codeposit and thus substantially reduce the ability of the codeposit to have anticorrosion characteristics attributable to the presence of zinc.
  • the acid zinc electrolyte is prepared by adding to an aqueous solution 45-110 g/I zinc chloride and 100-200 g/I sodium chloride.
  • the pH of such acid bath should be maintained in the range of 5-5.7 and optimally about 5.3. This bath has the advantage of plating on difficult metals and will have an almost 100% cathode efficiency.
  • the acid chloride bath may be prepared by using 70-85 g/I zinc chloride and 100-150 g/I of potassium chloride. Boric acid in the range of 26-40 g/I may be added as a buffering agent.
  • .4-1 g/I of unflavored gelatin may be added to the electrolyte. Additionally, .1-4.0 g/I cocamine acetate (having the molecular formula of C 12 H 2 ,NH 3 ) is added, which serves to facilitate the deposition of nonconductive particles.
  • the pH range should be regulated as given. If higher than such range, zinc hydroxide will form which is undesirably insoluble. If lower than 5, the acidity of the electrolyte will affect cohesion.
  • the electrolyte should be maintained in a temperature range of 24-32°C (75­90°F).
  • the electrolytic cell is energized at a sufficient current density to plate the zinc onto the substrate without burning while continuously agitating the graphite into suspension throughout said electrolyte.
  • the agitation is periodically interrupted to allow the graphite to settle and comingle with the zinc as the plating takes place on the cathode.
  • the agitation is carried out by the use of air pulsing and is interrupted for periods of 15 ⁇ 60 seconds at intervals of 15-180 seconds. During all other times the air pulsing is on.
  • the current density is preferably employed in the low range of 1-20 amps per square foot (.1-2.0 amps/dm 2 ). If the current density is lower than this value, insufficient plating zinc will take place.
  • the surface profile of a codeposited material will have a surface roughness which will vary depending upon whether highly conductive particles are entrapped by the metal or whether the particles are substantially nonconductive.
  • cobalt particles are enveloped by the primary plating metal causing a relatively rough surface to be formed.
  • Graphite particles which carry a low level of electrostatic charge, are embedded within the plating metal primarily by a settling action and are not enveloped by the plating metal resulting in a much smoother finish (see Figure 3).
  • the rate of zinc metal deposition affects the entrapment rate of the graphite particles during the coating of the cathode.
  • the graphite deposition rate and graphite particle volume can be optimized (see Figure 5). If a current density of between .8 ⁇ 1.6 amps/dm 2 is employed, the best graphite rate as well as graphite volume deposition is obtained. This is conditioned upon the interruption of the agitation force for 15-60 second periods at intervals of 15-180 seconds to allow for such deposition rate to take place.
  • the electroplated codeposit in a solution containing an acid chromate for a period of 10 ⁇ 45 seconds to form a very thin chromate outer coating on the metal substrate.
  • the chromate should typically have a thickness of 2.54x2- 5 cms (2- S inches) thick.
  • the zinc/graphite plated part is dipped in a chromating solution consisting of 30 g/f chromic acid, 10 cc/I phosphoric acid, 5 cc/I hydrochloric acid, 5 cc/I nitric acid, and 5 cc/I sulfuric acid for a period of about 30 seconds, followed by a warm rinse of about 30 seconds.
  • the chromate conversion coating on the codeposit of this invention renders exceptionally good corrosion resistance because of (a) the corrosion inhibiting effect of hexavalent chromium contained in the chromate film, and (b) to the physical barrier presented by the chromate film itself.
  • the film is formed by the chemical reaction of the hexavalent chromium with the zinc metal surface in the presence of activators in the acid solution.
  • the hexavalent chromium is partially reduced to trivalent chromium during the reaction with a concurrent rise in pH, forming a complex mixture consisting largely of hydrated basic chromium chromate and hydrous oxides of both chromium and the zinc metal.
  • the activators useful in forming the conversion coating include acetate formate, sulphate, chloride, fluoride, nitrate phosphate, and sulphamate ions.
  • the immersion time for a conversion coating herein is relatively short, a period of 20-30 seconds.
  • a series of samples were prepared in conformity with the preferred mode. Each of the samples were iron based nuts; some preplated with 5 microns zinc, and all plated with 8 microns of zinc/graphite.
  • the zinc/graphite plating solution contained 75 g/I of graphite.
  • the zinc/graphite codeposit in some samples was passivated with a chromate film of a thickness of 0.00005 cms (0.00002").
  • the samples were subjected to a chemical content analysis to determine the content of graphite and the corresponding coefficient of friction at a torque load of 40 ft/lbs.
  • the solution was varied with a variety of graphite contents; the results of such analysis are shown in the following Table 1.
  • the codeposit of this invention is dry to the touch, which is often commercially difficult to consistently achieve with fasteners coated with phosphate and oil.
  • the shelf life of the codeposit is excellent, having a life of well over one year, and is economical to finish while presenting no hazards with respect to toxic processing considerations.
  • the raw materials for the system are relatively plentiful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Claims (13)

1. Verfahren zur galvanischen Abscheidung von Zink und Graphit auf ein Leitfähiges Metallsubstrat mittels einer Elektrolysezelle mit einer Zinkanode und dem als Kathode angeschlossenen Metallsubstrat, gekennzeichnet durch die Stufen, dass man dieses Substrat in gereinigtem Zustand in einen mindestens 40 g/I Zinkionen und 30-110 g/I unlöslichen losen Graphit enthaltenden Säure/Zink-Galvanisierelektrolyten bei pH 5-5,7 eintaucht, diese Elektrolysezelle unter ständigem Aufrühren des Graphits zu einer durch den ganzen Elektrolyten gleichförmigen Suspension mit einer solchen Stromdichte beaufschlagt, dass sich Zink ohne Anbrennen auf jener Oberfläche abscheidet, und dieses Aufrühren von Zeit zu Zeit unterbricht, um diesen Graphit such absetzen und mit besagtem, sich auf jener Kathode abscheidenden Zink vermischen zu lassen, wobei der kombinierte Niederschlag aus Zink und Graphit auf diesem Substrat gleichförmig verteilten Graphit in einer Menge von 30-48 Gew.-% des kombinierten Niederschlags enthält und bei einer plattierten Dicke von 0,00127 cm (0,0005 Zoll) einen Reibungsbeiwert von 0,130 oder kleiner, nach mindestens 72 Stunden in einer Salzsprühnebelumgebung keinen roten Rost und nach vier Monaten in einer Schwefeldioxyd enthaltenden industriellen Umgebung keine Zerstörug durch Korrosion zeigt.
2. Verfahren nach Anspruch 1, wobei besagtes Aufrühren von Zeit zu Zeit 15 bis 60 Sekunden Lang in Abständen von 15 bis 180 Sekunden unterbrochen wird.
3. Verfahren nach Anspruch 1 oder 2, worin dieser lose Graphit eine durchschnittliche Teilchengrösse von 1 bis 25 Mikron aufweist.
4. Verfahren nach einem der Ansprüche 1 bis 3, worin als Elektrolyt ein saurer Chloridtyp vorliegt, der entweder durch Zusatz von 70-85 g/I Zinkchlorid zu 100-150 g/I Kaliumchlorid oder 45-110. g/I Zinkchlorid zu 100-200 g/I Natriumchlorid bereitet wird und ferner 26―40 g/I Borsäure enthält.
5. Verfahren nach Anspruch 4, worin dieser Elektrolyt zusätzlich 0,4-1 g/1 Gelatine enthält.
6. Verfahren nach Anspruch 4, worin dieser Elektrolyt zusätzlich 0,1-4,0 g/I Kokosaminacetat enthält.
7. Verfahren nach einem der vorhergehenden Ansprüche, worin diese Elektrolysezelle mit einer Stromdichte von 0,1-2,0 A/dm2 (1-20 A pro Quadratfuss) beaufschlagt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, worin jenes Aufrühren durch pulsierte Einführung von Luft in diesen Elektrolyten erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, worin man diesen Elektrolyten bei einer Temperatur von 24-32°C (75-90°F) hält.
10. Verfahren nach einem der vorhergehenden Ansprüche, worin dieses Metallsubstrat aus der Stahl, Kupfer, Nickel, Messing, Bronze, Zink und Aluminium sowie Leitfähige Kunststoffe umfassenden Gruppe ausgewählt ist.
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei man zusätzlich jenes zusammen abgeschiedene Material für einen Zeitraum von 10-30 Sekunden in eine Chromatlösung eintaucht, um darauf einen aus Zinkchromat bestehenden Umwandlungsüberzug zu bilden.
12. Verfahren nach einem der vorhergehenden Ansprüche, worin als solches Substrat ein Metallverschluss mit Gewinde vorliegt.
13. Verfahren nach Anspruch 12 zum Galvanisieren einer Charge von Metallverschlüssen mit Gewinde unter Verwendung eines Fassgalvanisierapparats mit einem durchlochten Fass, in den der Galvanisierelektrolyt mit den als Kathode .angeschlossenen Verschlüssen eingeführt wird, dadurch gekennzeichnet, dass man diese in dem Fass befindlichen Verschlüsse nacheinander in eine Reihe von Behältern eintaucht, die eine alkalische Reinigungslösung, eine Wasserspülung, eine Beizlösung zur Entfernung von Oxyden, eine Wasserspülung, den Zink/Graphitgalvanisierelektrolyten bzw. eine Wasserspülung enthalten, diesen Zink/Graphitgalvanisierelektrolyten mit Strom beaufschlagt, wenn diese im Fass befindlichen Verschlüsse in jene Lösung eingetaucht sind, wobei eine solche Strommenge zugeführt wird, dass sich Zink auf diesen Verschlüssen ohne Anbrennen abscheidet, wobei während der Abscheidung Druckluftstrahlen eingeführt werden, um den Graphit ständig in diesem Elektrolyten in Suspension zu halten, und wobei besagte Drehung des Fasses und das Aufrühren mit Luft von Zeit zu Zeit unterbrochen werden, um den Graphit wandern und sich mit besagtem Zink auf der Kathode abscheiden zu lassen.
EP19830900525 1982-12-01 1982-12-01 Elektrolytischer zusammenniederschlag von zink und graphit und so erhaltener gegenstand Expired EP0127620B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1982/001689 WO1984002149A1 (en) 1982-12-01 1982-12-01 Electrolytic codeposition of zinc and graphite and resulting product

Publications (3)

Publication Number Publication Date
EP0127620A1 EP0127620A1 (de) 1984-12-12
EP0127620A4 EP0127620A4 (de) 1985-07-01
EP0127620B1 true EP0127620B1 (de) 1987-09-23

Family

ID=22168421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830900525 Expired EP0127620B1 (de) 1982-12-01 1982-12-01 Elektrolytischer zusammenniederschlag von zink und graphit und so erhaltener gegenstand

Country Status (5)

Country Link
EP (1) EP0127620B1 (de)
JP (1) JPS59502108A (de)
BR (1) BR8208101A (de)
DE (1) DE3277378D1 (de)
WO (1) WO1984002149A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8818069D0 (en) * 1988-07-29 1988-09-28 Baj Ltd Improvements relating to electrodeposited coatings
US20110305919A1 (en) 2010-06-10 2011-12-15 Authentix, Inc. Metallic materials with embedded luminescent particles
CN114597482B (zh) * 2022-03-14 2023-04-28 浙江大学温州研究院 一种用于锌电池负极的固态电解质界面的原位制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061525A (en) * 1959-06-22 1962-10-30 Platecraft Of America Inc Method for electroforming and coating
FR1579266A (de) * 1967-09-09 1969-08-22
DE2325559A1 (de) * 1973-05-19 1974-11-28 Dietmar Loeffler Verfahren zur galvanischen herstellung von graphit enthaltenden metallueberzuegen
JPS533446B2 (de) * 1973-11-01 1978-02-07
US3922208A (en) * 1973-11-05 1975-11-25 Ford Motor Co Method of improving the surface finish of as-plated elnisil coatings
JPS51143534A (en) * 1975-06-05 1976-12-09 Kawasaki Steel Co Steel plate coated with aluminummdispersed zinc by composite plating
JPS5224941A (en) * 1975-08-21 1977-02-24 Kawasaki Steel Co Surface treated steel plate for molding and its production method

Also Published As

Publication number Publication date
EP0127620A4 (de) 1985-07-01
BR8208101A (pt) 1984-10-02
JPS59502108A (ja) 1984-12-20
EP0127620A1 (de) 1984-12-12
WO1984002149A1 (en) 1984-06-07
DE3277378D1 (en) 1987-10-29

Similar Documents

Publication Publication Date Title
US4411742A (en) Electrolytic codeposition of zinc and graphite and resulting product
Baldwin et al. Advances in replacements for cadmium plating in aerospace applications
CN101243211B (zh) 用于电镀的镁基材的预处理
US4975337A (en) Multi-layer corrosion resistant coating for fasteners and method of making
US3787294A (en) Process for producing a solid lubricant self-supplying-type co-deposited metal film
CA1063966A (en) Electroplating method
KR910002103B1 (ko) 아연계 복합도금 금속재료와 그 도금방법
GB2032961A (en) Multi-layer corrosion resistant plating utilizing alloys hving micro-throwing powr
WO2006017259A2 (en) Multilayer, corrosion-resistant finish and method
CN100487168C (zh) 沉积锡合金的电解质介质和沉积锡合金的方法
US4537837A (en) Corrosion resistant metal composite with metallic undercoat and chromium topcoat
EP0340257A1 (de) Mechanisch aufgebrachte beschichtungen, die schmiermittel enthalten
WO1998023444A1 (en) Lead-free deposits for bearing surfaces
EP0592946A1 (de) Mit Eisen plattierte Teile aus einer Aluminiumlegierung und Methode zum Plattieren solcher Teile
US4672007A (en) Electrodeposition composition and process for providing a Zn/Si/P coating on metal substrates
US4533606A (en) Electrodeposition composition, process for providing a Zn/Si/P coating on metal substrates and articles so coated
EP0127620B1 (de) Elektrolytischer zusammenniederschlag von zink und graphit und so erhaltener gegenstand
EP1451392B1 (de) Vorbehandlungsprozess für das beschichten von aluminiumwerkstoffen
KR910007951B1 (ko) Zn-Ni계 복합전기도금강판 및 복층복합도금강판
EP0298476B1 (de) Stahlband mit einem galvanisch abgeschiedenen Dispersionsüberzug
CN113089058B (zh) 一种纳米复合镀层体系及其制备方法
JPH09228092A (ja) 耐腐食性鉄メッキ膜およびメッキ方法
DE102018127345A1 (de) Verfahren zum beschichten einer rohkarosseriestruktur mit mindestens einer oberfläche, die eine aluminiumlegierung umfasst
EP0086600A1 (de) Stahlblech mit mehrschichtiger Elektroplattierung und Verfahren zu seiner Herstellung
Soderberg et al. Cadmium Plating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840815

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 19860808

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 3277378

Country of ref document: DE

Date of ref document: 19871029

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19891129

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901202

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921127

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921223

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83900525.3

Effective date: 19910910