EP0127527A1 - Adjustment method, especially a frequency adjustment method of a printed microstrip filter, and filter obtained by this method - Google Patents

Adjustment method, especially a frequency adjustment method of a printed microstrip filter, and filter obtained by this method Download PDF

Info

Publication number
EP0127527A1
EP0127527A1 EP84401028A EP84401028A EP0127527A1 EP 0127527 A1 EP0127527 A1 EP 0127527A1 EP 84401028 A EP84401028 A EP 84401028A EP 84401028 A EP84401028 A EP 84401028A EP 0127527 A1 EP0127527 A1 EP 0127527A1
Authority
EP
European Patent Office
Prior art keywords
filter
dielectric material
dielectric
deposited
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84401028A
Other languages
German (de)
French (fr)
Other versions
EP0127527B1 (en
Inventor
Marcel Motola
Jean René Jecko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0127527A1 publication Critical patent/EP0127527A1/en
Application granted granted Critical
Publication of EP0127527B1 publication Critical patent/EP0127527B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters

Definitions

  • the present invention relates to filters with elements with distributed constants, such as filters printed in "microstrip" lines.
  • the invention relates more particularly to an adjustment process, in particular in frequency of a filter printed in "microstrip" lines, and the filter obtained by this process.
  • Such filters comprise a dielectric support, on which have been, for example etched, metallizations. These metallizations can have different shapes.
  • a first way is to vary the length of the microstrips, for example by cutting part of these microstrips with a scalpel.
  • This way of adjusting a filter has the serious disadvantage of being irreversible. This is particularly serious in the event that the desired adjustment value has been exceeded.
  • cutting a part of these microstrips with a scalpel risks damaging the support on which they are deposited, which can lead to an immediate change in its electrical characteristics and chemical degradation in the long run.
  • Another way of adjusting the frequency of the filters printed in microstrip lines, illustrated in FIG. 1, consists in soldering capacitors at the ends of the strips. The process which is the subject of the present invention allows filter adjustment, not having these drawbacks.
  • the main object of the invention is a method for adjusting the electrical characteristics of a filter with distributed constants, characterized in that at least one dielectric material of a given geometry is deposited.
  • FIG. 1 we can see a filter with distributed constants with alternating fingers, called interdigitated filter.
  • the filter comprises, etched on a dielectric support 1, microstrips 2, 3 and 4.
  • the microstrips 2 and 3 respectively constitute the electrical input and the output of the filter.
  • the microstrips 4 constitute resonators allowing filtering.
  • the ends of the microstrips 4 are grounded 6.
  • the filter illustrated in FIG. 1 is a bandpass filter. It may be interesting to adjust the center frequency of such a filter. This adjustment can be made necessary by manufacturing tolerances, for example the variation of the dielectric constant of the support 1 or the variation of its thickness.
  • the variations in the central frequency of the filter can also come from the etching of the microstrips 2, 3 and 4.
  • the ends of the microstrips 4 of the capacitors 5 are welded. These capacitors 5 are placed between the ends of the microstrips 4 and the mass 6. This allows the filter to be adjusted in frequency.
  • FIG. 2 an example of a bandpass filter according to the invention can be seen.
  • the filter is called the hairpin type because it has 7 microstrip U-band resonators that propagate the signal, the shape of which resembles that of hairpins.
  • the L-shaped microstrips 2 and 3 respectively constitute the electrical input and output of the filter.
  • On the microstrips is placed a dielectric element 8.
  • the presence of an element 8 has the effect of modifying the behavior of the filter.
  • the invention proposes to use these modifications of the behavior of the filter to carry out an adjustment either to modify the behavior of the same filter during its operation, or to adjust a filter, for example at a predetermined central frequency to overcome d '' a dispersion of the center frequencies due to too large manufacturing tolerances.
  • the element 8 consists of a low loss dielectric, such as for example PTFE (polytetrafuoroethylene).
  • the element 8 has a constant thickness.
  • the element 8 has a constant width in the plane of the resonators 2, 3 and 7.
  • the microstrips which constitute the resonators 2, 3, 4 and 7 will bear the reference 9.
  • the element 8 is a rectangular parallelepiped ribbon.
  • the width of the dielectric element 8 decreases as one moves away from the microstrips 9.
  • the ribbon 8 is arranged perpendicular to the resonators of the filter.
  • the ribbon 8 is deposited on all the resonators of the filter.
  • the ribbon 8 is deposited so as to respect the symmetry of the distribution of the lines of the fields of the filter. In Figure 2, this has was achieved by superimposing the axis of symmetry of the filter with the axis of symmetry of the ribbon 8, which covers all the resonators 7. This facilitates the prediction of the influence of the ribbon 8 on the behavior of the filter. Thus the frequency displacement of the filtering curve is effected without the latter changing shape.
  • the invention is particularly advantageous for filters of this type having for example the bandwidth ratio at 3 decibels on the center frequency less than 0.1. Indeed, the adjustment values are limited by the dielectric materials currently available. For such filters, it is possible to obtain a frequency displacement of the filtering curve without the latter changing shape.
  • the filter is produced from a PTFE substrate 1 loaded with ceramic sold by the company ROGERS under the reference DUROID 6010.
  • the substrate has a 35um copper deposit on both sides. One operates on one of these copper deposits the etching of the microstrips, the other deposit constituting the mass of the filter.
  • the filter of figure 2 has a central frequency of 1000MHz and a bandwidth for an attenuation Je 3 decibels of 50MHz.
  • the filter is covered with a cover, for example made of stainless steel.
  • the cover makes it possible to close to the ground the field lines which are not captive of the dielectric substrate.
  • the cover for example, provides a space of 3mm above the pattern of the filter.
  • this space is filled with the ribbon 8.
  • the filter is adjusted by selecting the width L of the ribbon 8.
  • the ribbon 8 is constituted by a low loss dielectric, for example the PTFE sold by DUPONT DE NEMOURS under the reference dielectric constant TFE 5 teflon close to 2.
  • the adjustment is effected either by reducing the width of the ribbon 8, for example by cutting with a scalpel until the desired value is obtained, or by having a set of ribbon 8 of various widths.
  • the ribbon 8 of desired width is then placed on the filter to be adjusted. The adjustment thus operated is reversible, since it suffices to remove the ribbon 8. If the value of the desired central frequency is exceeded, it is sufficient to replace the ribbon 8 without touching the filter.
  • FIG. 3 an alternative embodiment of the filter according to the invention can be seen.
  • the frequency displacement is obtained by placing on the microstrips 9 a ribbon 8 of fixed width, the thickness of which is varied either by machining or by stacking a certain number of elementary dielectric plates 10, 11, 12.
  • the plates 10, 11, 12 do not have the same dielectric constant. The adjustment then takes place, not only by the thickness and the number of plates, but also by their arrangement in the stack. The influence of the dielectric plates 10, 11, 12 is linked to the distance separating them from the microstrips. Thus, placing the wafers with a large dielectric constant near the microstrips 9 increases the value of the corrections made by the adjustment.
  • Figure 4 is a figure illustrating the result of the adjustments obtained with the device of Figure 2.
  • Curve 16 represents the insertion losses as a function of the frequency of the filter without the ribbon 8.
  • the central frequency (A) of the filter equipped with its cover is 1025 MHz.
  • Curve 17 represents the insertion losses as a function of the frequency of the filter fitted with a PTFE tape with a width of one centimeter.
  • the central frequency (B) of the filter is then 1013 MHz.
  • Curve 18 represents the insertion losses as a function of the frequency of a filter fitted with a 2 cm wide PTFE tape.
  • the central frequency (C) of the filter is then 999MHz.
  • the displacement of the central frequency is proportional to the width of the bar, with a sensitivity in the illustrated example of 13 MHz per cm.
  • the adjustment of the center frequency is possible up to at least 3%. This makes it possible to protect yourself from manufacturing dispersions, mainly due to the substrate and whose influence on the central frequency of the filter for, for example, DUROID 6010 is of the order of ⁇ 1.5%.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

L'invention concerne principalement les filtres à constantes réparties. L'invention consiste dans le réglage de filtres à constantes réparties par dépôt d'un ruban de matière diélectrique. L'invention s'applique à tous les usages des filtres à constantes réparties.The invention relates mainly to filters with distributed constants. The invention consists in adjusting filters with distributed constants by depositing a strip of dielectric material. The invention applies to all uses of filters with distributed constants.

Description

La présente invention concerne les filtres en éléments à constantes réparties, tels que les filtres imprimés en lignes "microbande".The present invention relates to filters with elements with distributed constants, such as filters printed in "microstrip" lines.

L'invention concerne plus particulièrement un procédé d'ajustage, notamment en fréquence d'un filtre imprimé en lignes "microbande", et le filtre obtenu par ce procédé.The invention relates more particularly to an adjustment process, in particular in frequency of a filter printed in "microstrip" lines, and the filter obtained by this process.

De tels filtres, dont un exemple est illustré sur la figure 1, comprennent un support diélectrique, sur lesquels ont été, par exemple gravées, des métallisations. Ces métallisations peuvent avoir différentes formes.Such filters, an example of which is illustrated in FIG. 1, comprise a dielectric support, on which have been, for example etched, metallizations. These metallizations can have different shapes.

Il est important de pouvoir ajuster en fréquence de tels filtres.It is important to be able to adjust the frequency of such filters.

Il est connu d'ajuster en fréquence de tels filtres, de diverses manières. Une première façon consiste à faire varier la longueur des microbandes, par exemple en coupant une partie de ces microbandes avec un scalpel. Cette façon d'ajuster un filtre a le grave inconvénient d'être irréversible. Ceci est particulièrement grave dans le cas où l'on a dépassé la valeur d'ajustage voulue. De plus, en coupant une partie de ces microbandes avec un scalpel on risque d'endommager le support sur lequel elles sont déposées, ce qui peut entraîner une variation immédiate de ses caractéristiques électriques et une dégradation chimique à la longue. Une autre façon d'ajuster en fréquence les filtres imprimés en lignes microbande, illustrés sur la figure 1, consiste à souder des condensateurs aux extrémités des bandes. Le procédé objet de la présente invention permet l'ajustage de filtre, ne présentant pas ces inconvénients.It is known to adjust such filters in frequency in various ways. A first way is to vary the length of the microstrips, for example by cutting part of these microstrips with a scalpel. This way of adjusting a filter has the serious disadvantage of being irreversible. This is particularly serious in the event that the desired adjustment value has been exceeded. In addition, cutting a part of these microstrips with a scalpel risks damaging the support on which they are deposited, which can lead to an immediate change in its electrical characteristics and chemical degradation in the long run. Another way of adjusting the frequency of the filters printed in microstrip lines, illustrated in FIG. 1, consists in soldering capacitors at the ends of the strips. The process which is the subject of the present invention allows filter adjustment, not having these drawbacks.

L'invention a principalement pour objet un procédé d'ajustage des caractéristiques électriques d'un filtre à constantes réparties caractérisé par le fait que l'on dépose au moins un matériau diélectrique d'une géométrie donnée.The main object of the invention is a method for adjusting the electrical characteristics of a filter with distributed constants, characterized in that at least one dielectric material of a given geometry is deposited.

L'invention sera mieux comprise au moyen de la description ci-après et des figures annexées, données comme des exemples non limitatifs, parmi lesquels :

  • - la figure 1, est une vue de dessus d'un filtre à constantes réparties, équipé d'un dispositif d'ajustage en fréquence de type connu ;
  • - la figure 2, est une vue de dessus et en coupe d'un filtre à constantes réparties comportant un dispositif d'ajustage selon l'invention ;
  • - la figure 3, est une vue d'une autre réalisation du dispositif d'ajustage en fréquence selon l'invention ;
  • - la figure 4, est une figure explicative.
The invention will be better understood by means of the description below and the appended figures, given as nonlimiting examples, among which:
  • - Figure 1, is a top view of a filter with distributed constants, equipped with a frequency adjustment device of known type;
  • - Figure 2, is a top view in section of a filter with distributed constants comprising an adjustment device according to the invention;
  • - Figure 3 is a view of another embodiment of the frequency adjustment device according to the invention;
  • - Figure 4 is an explanatory figure.

Sur les figures 1 à 4, les mêmes références désignent les mêmes éléments.In FIGS. 1 to 4, the same references designate the same elements.

Sur la figure 1, on peut voir un filtre à constantes réparties à doigts alternés, appelé filtre interdigité. Le filtre comprend, gravés sur un support diélectrique 1 des microbandes 2, 3 et 4. Les microbandes 2 et 3 constituent respectivement l'entrée et la sortie électrique du filtre. Les microbandes 4 constituent des résonateurs permettant le filtrage. Des extrémités des microbandes 4 sont mises à la masse 6. Le filtre illustré sur la figure 1 est un filtre passe-bande. Il peut être intéressant d'ajuster la fréquence centrale d'un tel filtre. Cet ajustage peut être rendu nécessaire par des tolérances de fabrication, par exemple la variation de la constante diélectrique du support 1 ou la variation de son épaisseur. Les variations de la fréquence centrale du filtre peuvent aussi provenir de la gravure des microbandes 2, 3 et 4. Pour ramener la fréquence centrale f à une valeur désirée f on soude aux extrémités des microbandes 4 des condensateurs 5. Ces condensateurs 5 sont placés entre les extrémités des microbandes 4 et la masse 6. Ceci permet d'ajuster en fréquence le filtre.In Figure 1, we can see a filter with distributed constants with alternating fingers, called interdigitated filter. The filter comprises, etched on a dielectric support 1, microstrips 2, 3 and 4. The microstrips 2 and 3 respectively constitute the electrical input and the output of the filter. The microstrips 4 constitute resonators allowing filtering. The ends of the microstrips 4 are grounded 6. The filter illustrated in FIG. 1 is a bandpass filter. It may be interesting to adjust the center frequency of such a filter. This adjustment can be made necessary by manufacturing tolerances, for example the variation of the dielectric constant of the support 1 or the variation of its thickness. The variations in the central frequency of the filter can also come from the etching of the microstrips 2, 3 and 4. To reduce the central frequency f to a desired value f, the ends of the microstrips 4 of the capacitors 5 are welded. These capacitors 5 are placed between the ends of the microstrips 4 and the mass 6. This allows the filter to be adjusted in frequency.

Ce type d'ajustage présente de nombreux inconvénients. La mise en oeuvre est longue et délicate vu le nombre de condensateurs 5. La technologie mixte comportant des constantes réparties et des constantes localisées présente des problèmes d'adaptation. La fiabilité du filtre est diminuée par la soudure du condensateur 5.This type of adjustment has many drawbacks. The implementation is long and delicate given the number of capacitors 5. Mixed technology comprising distributed constants and localized constants presents adaptation problems. The reliability of the filter is reduced by the soldering of the capacitor 5.

Sur la figure 2, on peut voir un exemple de filtre passe-bande selon l'invention. Le filtre est appelé du type en épingle à cheveux, car il comporte des résonateurs 7 microbande en U propageant le signal, dont la forme rappelle celle des épingles à cheveux. Les microbandes 2 et 3 en forme de L constituent respectivement l'entrée et la sortie électrique du filtre. Sur les microbandes est placé un élément 8 diélectrique. La présence d'un élément 8 a pour conséquence de modifier le comportement du filtre. L'invention se propose d'utiliser ces modifications du comportement du filtre pour effectuer un réglage soit pour modifier le comportement d'un même filtre durant son exploitation, soit pour ajuster un filtre, par exemple à une fréquence centrale prédéterminée pour s'affranchir d'une dispersion des fréquences centrales due à des trop grandes tolérances de fabrication. Ces tolérances de fabrication sont provoquées notamment par la variation des propriétés diélectriques du support 1 sur lequel sont gravés les microbandes. Avantageusement, l'élément 8 est constitué d'un diélectrique à faible perte, comme par exemple le PTFE (polytétrafuoro-éthylène). Avantageusement l'élément 8 a une épaisseur constante. Avantageusement l'élément 8 a une largeur constante dans le plan des résonateurs 2, 3 et 7. Dans la suite du brevet les microbandes qui constituent les résonateurs 2, 3, 4 et 7 porteront la référence 9. Dans une variante de réalisation illustrée par la figure 2b, l'élément 8 est un ruban parallélépipède rectangle. Dans une autre variante de réalisation illustrée par la figure 2c la largeur de l'élément diélectrique 8 diminue à mesure que l'on s'éloigne des microbandes 9. Cette géométrie de l'élément 8 minimise la désadaptation de la propagation des ondes due à la transition air-diélectrique. Avantageusement le ruban 8 est disposé perpendiculairement aux résonateurs du filtre. Avantageusement le ruban 8 est déposé sur tous les résonateurs du filtre. Avantageusement, on dépose le ruban 8 de façon à respecter la symétrie de la distribution des lignes des champs du filtre. Sur la figure 2, ceci a été réalisé en superposant l'axe de symétrie du filtre avec l'axe de symétrie du ruban 8, qui recouvre tous les résonateurs 7. Ceci facilité la prévision de l'influence du ruban 8 sur le comportement du filtre. Ainsi le déplacement en fréquence de la courbe de filtrage s'éffectue sans que celle ci ne change d'allure. Le filtre de la figure 2a est un filtre passe-bande, à bande passante étroite. L'invention est particulièrement intéressante pour les filtres de ce type ayant par exemple le rapport de la bande-passante à 3 décibels sur la fréquence centrale inférieure à 0,1. En effet les valeurs de l'ajustage sont limitées par les matériaux diélectriques actuellement disponibles. Pour de tels filtres, on arrive à obtenir un déplacement en fréquence de la courbe de filtrage sans que celle ci ne change d'allure.In FIG. 2, an example of a bandpass filter according to the invention can be seen. The filter is called the hairpin type because it has 7 microstrip U-band resonators that propagate the signal, the shape of which resembles that of hairpins. The L-shaped microstrips 2 and 3 respectively constitute the electrical input and output of the filter. On the microstrips is placed a dielectric element 8. The presence of an element 8 has the effect of modifying the behavior of the filter. The invention proposes to use these modifications of the behavior of the filter to carry out an adjustment either to modify the behavior of the same filter during its operation, or to adjust a filter, for example at a predetermined central frequency to overcome d '' a dispersion of the center frequencies due to too large manufacturing tolerances. These manufacturing tolerances are caused in particular by the variation in the dielectric properties of the support 1 on which the microstrips are engraved. Advantageously, the element 8 consists of a low loss dielectric, such as for example PTFE (polytetrafuoroethylene). Advantageously, the element 8 has a constant thickness. Advantageously, the element 8 has a constant width in the plane of the resonators 2, 3 and 7. In the remainder of the patent, the microstrips which constitute the resonators 2, 3, 4 and 7 will bear the reference 9. In an alternative embodiment illustrated by Figure 2b, the element 8 is a rectangular parallelepiped ribbon. In another alternative embodiment illustrated in FIG. 2c, the width of the dielectric element 8 decreases as one moves away from the microstrips 9. This geometry of the element 8 minimizes the mismatch of the wave propagation due to the air-dielectric transition. Advantageously, the ribbon 8 is arranged perpendicular to the resonators of the filter. Advantageously, the ribbon 8 is deposited on all the resonators of the filter. Advantageously, the ribbon 8 is deposited so as to respect the symmetry of the distribution of the lines of the fields of the filter. In Figure 2, this has was achieved by superimposing the axis of symmetry of the filter with the axis of symmetry of the ribbon 8, which covers all the resonators 7. This facilitates the prediction of the influence of the ribbon 8 on the behavior of the filter. Thus the frequency displacement of the filtering curve is effected without the latter changing shape. The filter of FIG. 2a is a bandpass filter, with a narrow passband. The invention is particularly advantageous for filters of this type having for example the bandwidth ratio at 3 decibels on the center frequency less than 0.1. Indeed, the adjustment values are limited by the dielectric materials currently available. For such filters, it is possible to obtain a frequency displacement of the filtering curve without the latter changing shape.

Le mode de réalisation du filtre qui suit n'est donné qu'à titre d'exemple.The embodiment of the filter which follows is given by way of example only.

Le filtre est réalisé à partir d'un substrat 1 en PTFE chargé de céramique vendue par la Société ROGERS sous la référence DUROID 6010. La constante diélectrique est de 10,5 + 0,25 et l'épaisseur = 1,27 ± 0,05 mm. Le substrat comporte sur ses deux faces un dépôt de cuivre de 35um. On opère sur un de ces dépôts de cuivre la gravure des microbandes, l'autre dépôt constituant la masse du filtre. Le filtre de la figure 2 a une fréquence centrale de 1000MHz et une bande passante pour une atténuation Je 3 décibels de 50MHz. Avantageusement le filtre est recouvert d'un capot, par exemple en acier inoxydable. Le capot permet de refermer à la masse les lignes de champ qui ne sont pas captives du substrat diélectrique. Le capot ménage par exemple un espace de 3mm au dessus du motif du filtre. Ainsi il améliore le rejet des fréquences hors bande, tout en ayant une influence négligeable sur la position de la fréquence centrale. Avantageusement on remplit cet espace avec le ruban 8. L'ajustage du filtre s'opère en sélectionnant la largeur L du ruban 8. Le ruban 8 est constitué par un diélectrique à faible perte par exemple les PTFE vendus par DUPONT DE NEMOURS sous la référence téflon TFE 5 de constante diélectrique voisine de 2. L'ajustage s'opère soit en diminuant la largeur du ruban 8, par exemple par des découpes au scalpel jusqu'à obtenir la valeur désirée, soit en ayant un jeu de ruban 8 des diverses largeurs. Le ruban 8 de largeur désirée est ensuite placé sur le filtre à ajuster. Le réglage ainsi opéré est réversible, car il suffit d'enlever le ruban 8. En cas de dépassement de la valeur de la fréquence centrale désirée, il suffit de remplacer le ruban 8 sans toucher au filtre.The filter is produced from a PTFE substrate 1 loaded with ceramic sold by the company ROGERS under the reference DUROID 6010. The dielectric constant is 10.5 + 0.25 and the thickness = 1.27 ± 0, 05 mm. The substrate has a 35um copper deposit on both sides. One operates on one of these copper deposits the etching of the microstrips, the other deposit constituting the mass of the filter. The filter of figure 2 has a central frequency of 1000MHz and a bandwidth for an attenuation Je 3 decibels of 50MHz. Advantageously, the filter is covered with a cover, for example made of stainless steel. The cover makes it possible to close to the ground the field lines which are not captive of the dielectric substrate. The cover, for example, provides a space of 3mm above the pattern of the filter. Thus it improves the rejection of out-of-band frequencies, while having a negligible influence on the position of the central frequency. Advantageously, this space is filled with the ribbon 8. The filter is adjusted by selecting the width L of the ribbon 8. The ribbon 8 is constituted by a low loss dielectric, for example the PTFE sold by DUPONT DE NEMOURS under the reference dielectric constant TFE 5 teflon close to 2. The adjustment is effected either by reducing the width of the ribbon 8, for example by cutting with a scalpel until the desired value is obtained, or by having a set of ribbon 8 of various widths. The ribbon 8 of desired width is then placed on the filter to be adjusted. The adjustment thus operated is reversible, since it suffices to remove the ribbon 8. If the value of the desired central frequency is exceeded, it is sufficient to replace the ribbon 8 without touching the filter.

Sur la figure 3, on peut voir une variante de réalisation de filtre selon l'invention. Dans le dispositif de la figure 3 le déplacement de fréquence est obtenu par la mise en place sur les microbandes 9 d'un ruban 8 de largeur fixe, dont on fait varier l'épaisseur soit par usinage, soit par empilement d'un certain nombre de plaquettes élémentaires diélectriques 10, 11, 12. Dans une variante de réalisation les plaquettes 10, 11, 12 n'ont pas la même constante diélectrique. L'ajustage s'opère alors, non seulement par l'épaisseur et le nombre des plaquettes, mais aussi par leur disposition dans l'empilement. L'influence des plaquettes diélectriques 10, 11, 12 est liée à la distance les séparant des microbandes. Ainsi, le fait de placer les plaquettes à grande constante diélectrique près des microbandes 9 augmente la valeur des corrections apportées par l'ajustage.In FIG. 3, an alternative embodiment of the filter according to the invention can be seen. In the device of FIG. 3, the frequency displacement is obtained by placing on the microstrips 9 a ribbon 8 of fixed width, the thickness of which is varied either by machining or by stacking a certain number of elementary dielectric plates 10, 11, 12. In an alternative embodiment, the plates 10, 11, 12 do not have the same dielectric constant. The adjustment then takes place, not only by the thickness and the number of plates, but also by their arrangement in the stack. The influence of the dielectric plates 10, 11, 12 is linked to the distance separating them from the microstrips. Thus, placing the wafers with a large dielectric constant near the microstrips 9 increases the value of the corrections made by the adjustment.

La figure 4 est, une figure illustrant le résultat des ajustages obtenus avec le dispositif dé la figure 2. En abscisse 13 on a porté des fréquences en MHz. En ordonnée 14 on a porté les pertes d'insertion en décibels. La courbe 16 représente les pertes d'insertion en fonction de la fréquence du filtre sans le ruban 8. La fréquence centrale (A) du filtre équipé de son couvercle est de 1025MHz. La courbe 17 représente les pertes d'insertion en fonction de la fréquence du filtre équipé d'un ruban PTFE d'une largeur d'un centimètre. La fréquence centrale (B) du filtre est alors de 1013 MHz. La courbe 18 représente les pertes d'insertion en fonction de la fréquence d'un filtre équipé d'un ruban PTFE d'une largeur de 2cm. La fréquence centrale (C) du filtre est alors de 999MHz. Pour les corrections faibles, illustrées dans cet exemple le déplacement de la fréquence centrale est proportionnel à la largeur de la barrette, avec une sensibilité dans l'exemple illustré de 13MHz par cm. Dans l'exemple illustré l'ajustage de la fréquence centrale est possible jusqu'à au moins 3%. Ceci permet de se mettre à l'abri des dispersions de fabrication, dues principalement au substrat et dont l'influence sur la fréquence centrale du filtre pour par exemple le DUROID 6010 est de l'ordre de ± 1,5%.Figure 4 is a figure illustrating the result of the adjustments obtained with the device of Figure 2. On the abscissa 13 we have plotted frequencies in MHz. On ordinate 14, the insertion losses were reported in decibels. Curve 16 represents the insertion losses as a function of the frequency of the filter without the ribbon 8. The central frequency (A) of the filter equipped with its cover is 1025 MHz. Curve 17 represents the insertion losses as a function of the frequency of the filter fitted with a PTFE tape with a width of one centimeter. The central frequency (B) of the filter is then 1013 MHz. Curve 18 represents the insertion losses as a function of the frequency of a filter fitted with a 2 cm wide PTFE tape. The central frequency (C) of the filter is then 999MHz. For weak corrections, illustrated in this example the displacement of the central frequency is proportional to the width of the bar, with a sensitivity in the illustrated example of 13 MHz per cm. In the example illustrated, the adjustment of the center frequency is possible up to at least 3%. This makes it possible to protect yourself from manufacturing dispersions, mainly due to the substrate and whose influence on the central frequency of the filter for, for example, DUROID 6010 is of the order of ± 1.5%.

Claims (12)

1. Procédé d'ajustage des caractéristiques électriques d'un filtre à constantes réparties caractérisé par le fait que l'on dépose au moins un matériau diélectrique (8, 10, 11, 12) d'une géométrie donnée.1. Method for adjusting the electrical characteristics of a distributed constant filter characterized in that at least one dielectric material (8, 10, 11, 12) of a given geometry is deposited. 2. Procédé selon la revendication 1, caractérisé par le fait que la géométrie désirée est obtenue par découpe des matériaux diélectriques (8, 10, 11, 12.2. Method according to claim 1, characterized in that the desired geometry is obtained by cutting the dielectric materials (8, 10, 11, 12. 3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que la caractéristique électrique ajustée est la fréquence centrale du filtre.3. Method according to claim 1 or 2, characterized in that the adjusted electrical characteristic is the central frequency of the filter. 4. Procédé selon l'une quelconque des revendications précédentes caractérisé par le fait que l'ajustage est obtenu par le choix de l'épaisseur du matériau diélectrique (8, 10, 11, 12).4. Method according to any one of the preceding claims, characterized in that the adjustment is obtained by the choice of the thickness of the dielectric material (8, 10, 11, 12). 5. Procédé selon l'une quelconque des revendications précédentes caractérisé par le fait que l'ajustage est obtenu par le choix de la largeur du matériau diélectrique.5. Method according to any one of the preceding claims, characterized in that the adjustment is obtained by the choice of the width of the dielectric material. 6. Procédé selon l'une quelconque des revendications précédentes caractérisé par le fait que l'ajustage est obtenu par le choix des constantes diélectriques des matériaux diélectriques (8, 10, 11, 12).6. Method according to any one of the preceding claims, characterized in that the adjustment is obtained by the choice of the dielectric constants of the dielectric materials (8, 10, 11, 12). 7. Filtre obtenu par le procédé selon une quelconque des revendications précédentes caractérisé par le fait que le matériau diélectrique déposé a une épaisseur sensiblement constante.7. Filter obtained by the process according to any one of the preceding claims, characterized in that the dielectric material deposited has a substantially constant thickness. 8. Filtre obtenu par le procédé selon l'une quelconque des revendications 1 à 6 caractérisé par le fait que le matériau diélectrique déposé a une largeur sensiblement constante.8. Filter obtained by the method according to any one of claims 1 to 6 characterized in that the dielectric material deposited has a substantially constant width. 9. Filtre obtenu par le procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait que le matériau diélectrique est déposé perpendiculairement aux résonateurs (2, 3, 4, 7).9. Filter obtained by the method according to any one of claims 1 to 6, characterized in that the dielectric material is deposited perpendicular to the resonators (2, 3, 4, 7). 10. Filtre obtenu par le procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait que le matériau diélectrique est déposé sur tous les résonateurs (2, 3, 4, 7).10. Filter obtained by the process according to any one of Claims 1 to 6, characterized in that the dielectric material is deposited on all the resonators (2, 3, 4, 7). 11. Filtre obtenu par le procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait que le dépôt du matériau diélectrique respecte la symétrie de la distribution des lignes de champ du filtre.11. Filter obtained by the method according to any one of claims 1 to 6, characterized in that the deposition of the dielectric material respects the symmetry of the distribution of the field lines of the filter. 12. Filtre obtenu par le procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait que la largeur des matériaux diélectriques (8, 10, 11, 12) déposés sur les résonateurs (2, 3, 4, 7 diminue à mesure que l'on s'éloigne des microbandes (9).12. Filter obtained by the method according to any one of claims 1 to 6, characterized in that the width of the dielectric materials (8, 10, 11, 12) deposited on the resonators (2, 3, 4, 7 decreases as one moves away from the microstrips (9).
EP84401028A 1983-05-31 1984-05-18 Adjustment method, especially a frequency adjustment method of a printed microstrip filter, and filter obtained by this method Expired - Lifetime EP0127527B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8309008A FR2547116B1 (en) 1983-05-31 1983-05-31 METHOD FOR ADJUSTING IN PARTICULAR A FREQUENCY OF A "MICROBAND" ONLINE PRINTED FILTER, AND FILTER OBTAINED BY THIS PROCESS
FR8309008 1983-05-31

Publications (2)

Publication Number Publication Date
EP0127527A1 true EP0127527A1 (en) 1984-12-05
EP0127527B1 EP0127527B1 (en) 1991-02-27

Family

ID=9289349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401028A Expired - Lifetime EP0127527B1 (en) 1983-05-31 1984-05-18 Adjustment method, especially a frequency adjustment method of a printed microstrip filter, and filter obtained by this method

Country Status (5)

Country Link
US (1) US4638271A (en)
EP (1) EP0127527B1 (en)
JP (1) JPS59230302A (en)
DE (1) DE3484149D1 (en)
FR (1) FR2547116B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164804A (en) * 1984-09-17 1986-03-26 Stc Plc Stripline filters for transmission systems
FR2570884A1 (en) * 1984-09-22 1986-03-28 Smiths Industries Plc METHOD FOR TUNING A MICROLAME DEVICE, IN PARTICULAR ANTENNA
EP0247542A1 (en) * 1986-05-27 1987-12-02 Siemens Aktiengesellschaft Integrated microwave circuit
EP0438149A2 (en) * 1990-01-17 1991-07-24 Fujitsu Limited Dielectric filter with attenuation poles
GB2240432A (en) * 1990-01-08 1991-07-31 Ngk Spark Plug Co Stripline filter
EP0532330A1 (en) * 1991-09-10 1993-03-17 Fujitsu Limited Ring resonator device
WO1997048146A1 (en) * 1996-06-12 1997-12-18 Philips Electronics N.V. Ceramic stripline filter
CN111463528A (en) * 2020-04-09 2020-07-28 上海迈铸半导体科技有限公司 Microstrip line filter and preparation method thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025201U (en) * 1983-07-25 1985-02-20 株式会社村田製作所 striped line filter
JPH01273402A (en) * 1988-04-26 1989-11-01 Hitachi Chem Co Ltd Microstrip line
CA1264073A (en) * 1989-02-09 1989-12-27 Protap Pramanick Microstripline interdigital planar filter
GB2246670B (en) * 1990-08-03 1995-04-12 Mohammad Reza Moazzam Microstrip coupled lines filters with improved performance
US5357229A (en) * 1993-11-01 1994-10-18 Pacific Monolithics, Inc. Method for tuning a microstrip device using a plastic dielectric substance
JPH09238002A (en) * 1996-02-29 1997-09-09 Nec Corp Microstrip filter and its center frequency adjustment method
US5781110A (en) * 1996-05-01 1998-07-14 James River Paper Company, Inc. Electronic article surveillance tag product and method of manufacturing same
JP2002532916A (en) * 1997-10-04 2002-10-02 チョン,スンキル Method for manufacturing ultrahigh frequency filter and microstrip bandpass filter
US6778042B2 (en) * 2000-10-30 2004-08-17 Kabushiki Kaisha Toshiba High-frequency device
JP2003069321A (en) * 2001-08-28 2003-03-07 Nec Corp Method of manufacturing microstrip filter
US6963259B2 (en) * 2002-06-27 2005-11-08 Harris Corporation High efficiency resonant line
US6794952B2 (en) * 2002-06-27 2004-09-21 Harris Corporation High efficiency low pass filter
US6741148B2 (en) 2002-06-27 2004-05-25 Harris Corporation High efficiency coupled line filters
US6982671B2 (en) * 2003-02-25 2006-01-03 Harris Corporation Slot fed microstrip antenna having enhanced slot electromagnetic coupling
US6995711B2 (en) * 2003-03-31 2006-02-07 Harris Corporation High efficiency crossed slot microstrip antenna
US7006052B2 (en) * 2003-05-15 2006-02-28 Harris Corporation Passive magnetic radome
US6975279B2 (en) * 2003-05-30 2005-12-13 Harris Foundation Efficient radome structures of variable geometry
US6985118B2 (en) * 2003-07-07 2006-01-10 Harris Corporation Multi-band horn antenna using frequency selective surfaces
US6992628B2 (en) * 2003-08-25 2006-01-31 Harris Corporation Antenna with dynamically variable operating band
US7030834B2 (en) 2003-09-03 2006-04-18 Harris Corporation Active magnetic radome
US6990729B2 (en) * 2003-09-05 2006-01-31 Harris Corporation Method for forming an inductor
US7088308B2 (en) * 2003-10-08 2006-08-08 Harris Corporation Feedback and control system for radomes
US7196607B2 (en) * 2004-03-26 2007-03-27 Harris Corporation Embedded toroidal transformers in ceramic substrates
US7158005B2 (en) * 2005-02-10 2007-01-02 Harris Corporation Embedded toroidal inductor
US7342468B2 (en) * 2005-03-11 2008-03-11 U.S. Monolithics, L.L.C. RF filter tuning system and method
US8013775B2 (en) * 2007-04-30 2011-09-06 Viasat, Inc. Radio frequency absorber
US7631701B2 (en) * 2007-04-30 2009-12-15 Cnh America Llc Rigid standard bearing shield disk scraper system
WO2011104932A1 (en) * 2010-02-26 2011-09-01 株式会社村田製作所 High-frequency dielectric adhesive material
US10862185B2 (en) * 2017-12-01 2020-12-08 Semiconductor Components Industries, Llc Integrated circuit with capacitor in different layer than transmission line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1228011B (en) * 1963-07-02 1966-11-03 Siemens Ag Tunable band filter for very short electromagnetic waves
FR2016881A1 (en) * 1968-08-07 1970-05-15 Western Electric Co
FR2070656A1 (en) * 1969-04-25 1971-09-17 Western Electric Co
FR2494917A1 (en) * 1980-11-27 1982-05-28 Orega Electro Mecanique Wideband hyperfrequency coupler and associated balanced mixer - has its lines covered by ferromagnetic insulator to increase bandwidth

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617955A (en) * 1969-04-08 1971-11-02 Bell Telephone Labor Inc Temperature compensated stripline filter
US3754198A (en) * 1972-03-20 1973-08-21 Itt Microstrip filter
US4157517A (en) * 1977-12-19 1979-06-05 Motorola, Inc. Adjustable transmission line filter and method of constructing same
JPS5518185A (en) * 1978-07-27 1980-02-08 Alps Electric Co Ltd Thick-film microwave integrated circuit
US4243960A (en) * 1978-08-14 1981-01-06 The United States Of America As Represented By The Secretary Of The Navy Method and materials for tuning the center frequency of narrow-band surface-acoustic-wave (SAW) devices by means of dielectric overlays
US4218664A (en) * 1978-08-22 1980-08-19 Communications Satellite Corporation Temperature-compensated microwave integrated circuit delay line
US4288530A (en) * 1979-10-15 1981-09-08 Motorola, Inc. Method of tuning apparatus by low power laser beam removal
US4488131A (en) * 1983-02-25 1984-12-11 Hughes Aircraft Company MIC Dual mode ring resonator filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1228011B (en) * 1963-07-02 1966-11-03 Siemens Ag Tunable band filter for very short electromagnetic waves
FR2016881A1 (en) * 1968-08-07 1970-05-15 Western Electric Co
FR2070656A1 (en) * 1969-04-25 1971-09-17 Western Electric Co
FR2494917A1 (en) * 1980-11-27 1982-05-28 Orega Electro Mecanique Wideband hyperfrequency coupler and associated balanced mixer - has its lines covered by ferromagnetic insulator to increase bandwidth

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-26, no. 9, septembre 1978, pages 646-649, New York, US; D.D. PAOLINO: "MIC overlay coupler design using spectral domain techniques" *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164804A (en) * 1984-09-17 1986-03-26 Stc Plc Stripline filters for transmission systems
GB2164804B (en) * 1984-09-17 1989-03-15 Stc Plc Filters for transmission systems
FR2570884A1 (en) * 1984-09-22 1986-03-28 Smiths Industries Plc METHOD FOR TUNING A MICROLAME DEVICE, IN PARTICULAR ANTENNA
EP0247542A1 (en) * 1986-05-27 1987-12-02 Siemens Aktiengesellschaft Integrated microwave circuit
GB2240432B (en) * 1990-01-08 1994-07-27 Ngk Spark Plug Co Stripline filter
GB2240432A (en) * 1990-01-08 1991-07-31 Ngk Spark Plug Co Stripline filter
EP0438149A3 (en) * 1990-01-17 1992-07-15 Fujitsu Limited Dielectric filter with attenuation poles
US5192926A (en) * 1990-01-17 1993-03-09 Fujitsu Limited Dielectric filter with attenuation poles
EP0438149A2 (en) * 1990-01-17 1991-07-24 Fujitsu Limited Dielectric filter with attenuation poles
EP0532330A1 (en) * 1991-09-10 1993-03-17 Fujitsu Limited Ring resonator device
US5406238A (en) * 1991-09-10 1995-04-11 Fujitsu Limited Ring resonator device
WO1997048146A1 (en) * 1996-06-12 1997-12-18 Philips Electronics N.V. Ceramic stripline filter
US5963115A (en) * 1996-06-12 1999-10-05 U.S. Philips Corporation Ceramic filter having reduced insertion losses
CN111463528A (en) * 2020-04-09 2020-07-28 上海迈铸半导体科技有限公司 Microstrip line filter and preparation method thereof
CN111463528B (en) * 2020-04-09 2022-05-13 上海迈铸半导体科技有限公司 Microstrip line filter, preparation method thereof and MEMS (micro-electromechanical system) sensor

Also Published As

Publication number Publication date
JPS59230302A (en) 1984-12-24
EP0127527B1 (en) 1991-02-27
FR2547116A1 (en) 1984-12-07
DE3484149D1 (en) 1991-04-04
FR2547116B1 (en) 1985-10-25
US4638271A (en) 1987-01-20

Similar Documents

Publication Publication Date Title
EP0127527B1 (en) Adjustment method, especially a frequency adjustment method of a printed microstrip filter, and filter obtained by this method
EP2203976B1 (en) Lamb wave resonator
EP0047203B1 (en) Microwave filter with a dielectric resonator tunable over a large bandwidth
FR2857755A1 (en) FREQUENCY SELECTIVITY SURFACE AND ELECTROMAGNETIC WINDOW, IN PARTICULAR FOR RADOME
EP0114140B1 (en) Tunable microwave filter with tm010 mode dielectric resonators
EP2875549B1 (en) Passive microelectronic components, capable of allowing a radio-frequency or hyper-frequency signal to travel in a single direction
EP0108003A1 (en) Double strip line resonators and filter using such resonators
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
FR2568414A1 (en) ELECTROMAGNETIC RESONATORS AND FILTERS MADE THEREFROM THESE RESONATORS.
EP3579255A1 (en) Integrated circuit comprising variable inductance
EP2673831B1 (en) Adjustable radiofrequency filter in planar technology and method of adjusting the filter
FR2815774A1 (en) Elementary electrical resonator in field of microelectronics, has portion of bridge displaced with respect to segment of loop to vary capacitance and tuning frequency of resonator under action of control signal
WO1993000718A1 (en) Tunable microwave bandstop filter device
EP0225822A1 (en) Multiple-track capacitor
EP0373028B1 (en) Passive band-pass filter
FR2613538A1 (en) Microwave filter
FR2536211A1 (en) HYPERFREQUENCY DIODE STRUCTURE WHOSE EXTERNAL CONNECTIONS ARE TAKEN BY TWO METAL BEAMS
CA2457009A1 (en) Microwave resonant circuit and tunable microwave filter using same
FR2805085A1 (en) NON-RECIPROCAL CIRCUIT DEVICE AND TELECOMMUNICATIONS DEVICE USING THE SAME
EP0326498B1 (en) Resonant circuit and filter using it
EP2688137A1 (en) Hyperfrequency resonator with impedance jump, in particular for band-stop or band-pass hyperfrequency filters
EP1251581B1 (en) High frequency integrated inductive coil
EP0346806B1 (en) Band-pass-filter with dielectric resonators
JP2001230648A (en) Producing method for surface acoustic wave element
EP0780973B1 (en) Notch filter with passive components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19850429

17Q First examination report despatched

Effective date: 19861219

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3484149

Country of ref document: DE

Date of ref document: 19910404

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910423

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920518

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202