EP0125962B1 - Intensificateur d'images radiologiques et application à un système de radiologie numérique - Google Patents

Intensificateur d'images radiologiques et application à un système de radiologie numérique Download PDF

Info

Publication number
EP0125962B1
EP0125962B1 EP84400799A EP84400799A EP0125962B1 EP 0125962 B1 EP0125962 B1 EP 0125962B1 EP 84400799 A EP84400799 A EP 84400799A EP 84400799 A EP84400799 A EP 84400799A EP 0125962 B1 EP0125962 B1 EP 0125962B1
Authority
EP
European Patent Office
Prior art keywords
screen
intensifier
thickness
center
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400799A
Other languages
German (de)
English (en)
Other versions
EP0125962A1 (fr
Inventor
Jean Ricodeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0125962A1 publication Critical patent/EP0125962A1/fr
Application granted granted Critical
Publication of EP0125962B1 publication Critical patent/EP0125962B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • H01J29/385Photocathodes comprising a layer which modified the wave length of impinging radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50057Imaging and conversion tubes characterised by form of output stage
    • H01J2231/50063Optical

Definitions

  • the present invention relates to an intensifier of radiological images. It also relates to the application of this intensifier to a digital radiology system.
  • Radiological image intensifiers or I.I.R. are well known in the prior art. For example, see the article published in the technical journal THOMSON-CSF, volume 8, number 4, December 1976, entitled “Image intensification in medical and industrial radiology •.
  • the present invention relates more particularly to luminescent entry screens for I.I.R.
  • these screens are generally produced by vacuum deposition, on a concave substrate, of a luminescent material with a high atomic number, such as cesium iodide.
  • Known screens have either more often a greater thickness of luminescent material on the edges than in the center, or a substantially constant thickness, but rather greater on the edges than in the center.
  • Figure 1 shows a sectional view of a luminescent screen 1 whose thickness h b on the edges is greater than the thickness h c in the center.
  • the dotted curves a and b in FIG. 2 show that, for known screens, the variation in thickness, from the center towards the edges, of the layer of luminescent material as a percentage of its thickness at the center of the screen is either increasing - curve a - is substantially horizontal but rather increasing - curve b -.
  • the Applicant wishes to use I.I.R. for systems such as digital radiology systems in which the same image must be taken several times, using different energies of X-rays.
  • the various images thus obtained are converted to digital and processed on a computer, for example by weighted subtraction, which ultimately gives an image where certain organs stand out in relation to others.
  • the difference in thickness between the center and the edges of the luminescent layer of the I.I.R. results in a difference in X-ray absorption.
  • their probability of absorption decreases faster in the center than at the edges, because the edges are thicker than the center, and the sensitivity of the edges increases. compared to that of the center.
  • the Applicant has concluded that the I.I.R. known for a given X-ray energy, a substantially uniform edge-center sensitivity, but that when the X-ray energy varies, the sensitivity of the I.I.R. in the center of the screen and their sensitivity on the edges evolve very differently.
  • the I.I.R. known therefore are not very suitable for digital radiology systems.
  • the present invention proposes to solve the problem of designing a luminescent IIR screen, usable in particular in a digital radiology system, and the sensitivity of which on all points of the screen varies substantially in the same way, when the x-ray energy varies.
  • the luminescent input screen identical in all points for the X-rays, that is to say that it is sought to have a constant "apparent screen thickness for all incident X-rays. It is necessary to reduce the thickness of the edges of the screen relative to the center so that the length of the path in the luminescent material is substantially the same for all X-rays regardless of their angle of incidence on the screen. So when the energy of the X-rays varies, the length of the path in the incident material being the same for all the X-rays, the sensitivity at all points of the screen varies substantially in the same way.
  • the screen according to the invention is completely different from the known screens. It can be considered that, given the known screens, there was a technical prejudice dissuading those skilled in the art from designing luminescent screens of greater thickness in the center than at the edges. Calculation and experience have shown the advantage of these screens according to the invention.
  • the curve c is decreasing.
  • ⁇ e is substantially equal to - 20%.
  • the edge of the image control as follows. The projection of a screen, such as that shown in Figure 1, on a surface gives a circle of radius r. The edge of the image control consists of a ring of width r / 10 or r / 16 approximately which occupies the periphery of this circle.
  • Figure 3 is a sectional view of an embodiment of a screen according to the invention whose thickness h b on the edges is smaller than the thickness at the center h c .
  • the variation in screen thickness is radial.
  • Luminescent screens are generally produced by vacuum deposition, on a concave substrate, which is required for the proper functioning of electronic optics, of a luminescent material with a high atomic number such as cesium iodide.
  • This substrate can either be the entrance window of the I.I.R., or an attached part inside the I.I.R.
  • the thickness of the luminescent material layer must be as large as possible, but this is to the detriment of the resolution. A compromise must be found. When using cesium iodide deposited under vacuum, this compromise is currently between 200 and 500 micrometers thick.
  • FIG 4 there is shown schematically an intensifier of radiological images 2.
  • the luminescent screen 1 is located on the right side of the I.I.R. This screen receives the impact of X-rays produced by a source 3 placed on the axis 00 'of the I.I.R. at a distance F.
  • the luminescent screen is concave. It is assumed that in the example of FIG. 4 this screen is constituted by a spherical cap with a radius of curvature R.
  • the curvature of the screen can take various other forms; you can use concave luminescent screens, hyperbolic, parabolic ... etc.
  • the screen therefore consists of a quasi-spherical cap.
  • the screen arrow can take various values which are involved in the characteristics of electronic optics.
  • a and ⁇ denote the angles at which the point of impact P on the screen is viewed respectively from the center C of the sphere whose screen is a cap and from the source 3 of X-rays.
  • FIG. 5 is an enlargement of the region of the screen comprising the point of impact P.
  • d Denote by d the path in the luminescent material of the X-rays crossing the screen obliquely at the point P.
  • this path d must be equal to the thickness h c of the screen at its center, on the axis 00 ', which corresponds to the path in the luminescent material of the X-rays moving along the axis 00 '.
  • B 100 mm
  • P the point P defined by this distance B is located on the edges of the screen, at approximately 1/10 ° from the edge of the image control.
  • This means that the thickness of the luminescent layer is approximately 21% thinner at the edges, i.e. at 1/16 th or 1/10 th of the edge of the image field, than at the center of the screen.
  • Curve c in FIG. 2 can therefore have various shapes, while remaining decreasing from the center towards the edges. It can be noted that satisfactory results are obtained with a curve in which ⁇ e varies as the square of the distance from the center.
  • the screens according to the invention are particularly suitable for use in digital radiology systems using a computer to obtain a radiological image, for example by weighted subtraction of images obtained with different energies of X-rays.
  • X-rays are used, the average energy varies from approximately 20 to 30 KeV to 100 KeV.
  • the screens according to the invention can however be used in systems other than digital radiology systems, such as for example conventional radiology systems.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Description

  • La présente invention concerne un intensificateur d'images radiologiques. Elle concerne également l'application de cet intensificateur à un système de radiologie numérique.
  • Les intensificateurs d'images radiologiques ou I.I.R. sont bien connus de l'art antérieur. On se reportera par exemple à l'article paru dans la revue technique THOMSON-CSF, volume 8, numéro 4, décembre 1976, intitulé « L'intensification d'image en radiologie médicale et industrielle •.
  • Les intensificateurs d'images radiologiques convertissent une image radiologique formée de rayons X en une image observable sur un écran. Ils comportent :
    • - un écran luminescent d'entrée assurant la conversion des rayons X incidents en photons lumineux ;
    • - une photocathode en contact optique avec l'écran luminescent qui assure la conversion des photons lumineux en photo-électrons ;
    • - une optique électronique assurant la focalisa- tion des trajectoires électroniques et le gain en énergie des photo-électrons ;
    • - un écran d'observation assurant la conversion des photoélectrons en photons lumineux.
  • La présente invention concerne plus particulièrement les écrans luminescents d'entrée des I.I.R.
  • Actuellement ces écrans sont généralement réalisés par dépôt sous vide, sur un substrat concave, d'un matériau luminescent à numéro atomique élevé, tel que l'iodure de césium.
  • Les écrans connus ont soit le plus souvent une plus grande épaisseur de matériau luminescent sur les bords qu'au centre, soit une épaisseur sensiblement constante, mais plutôt plus forte sur les bords qu'au centre.
  • La figure 1 montre une vue en coupe d'un écran luminescent 1 dont l'épaisseur hb sur les bords est plus forte que l'épaisseur hc au centre. Les courbes a et b en pointillés de la figure 2 montrent que, pour les écrans connus, la variation d'épaisseur, du centre vers les bords, de la couche de matériau luminescent en pourcentage de son épaisseur au centre de l'écran est soit croissante - courbe a - soit sensiblement horizontale mais plutôt croissante - courbe b -.
  • On va exposer ci-après les différents éléments du problème que la Demanderesse se propose de résoudre.
  • La Demanderesse désire utiliser des I.I.R. pour des systèmes tels que les systèmes de radiologie numérique dans lesquels on doit prendre plusieurs fois une même image, en utilisant des énergies différentes de rayons X. Les diverses images ainsi obtenues sont converties en numérique et traitées sur ordinateur, par exemple par soustraction pondérée, ce qui permet d'obtenir finalement une image où certains organes ressortent par rapport à d'autres.
  • Les I.I.R. connus conviennent mal à cette utilisation pour les raisons suivantes.
  • On a vu que dans les I.I.R. connus l'épaisseur de l'écran luminescent est plus forte sur les bords qu'au centre. On augmente ainsi le nombre de rayons X absorbés sur les bords de l'écran ce qui corrige la faiblesse de sensibilité qui existe généralement aux bords du champ d'observation. Cette faiblesse de sensibilité est due, notamment, à la divergence géométrique des rayons X utilisés pour former l'image, à la distorsion en coussin des optiques électroniques des I.I.R. ... etc.
  • La différence d'épaisseur entre le centre et les bords de la couche luminescente des écrans d'entrée d'I.I.R. entraîne une différence d'absorption des rayons X. Lorsque l'énergie des rayons X augmente, leur probabilité d'absorption décroît plus vite au centre que sur les bords, car les bords sont plus épais que le centre, et la sensibilité des bords augmente par rapport à celle du centre.
  • La Demanderesse en a conclu que les I.I.R. connus présentent pour une énergie de rayons X donnée, une sensibilité bords-centre sensiblement uniforme, mais que lorsque l'énergie des rayons X varie, la sensibilité des I.I.R. au centre de l'écran et leur sensibilité sur les bords évoluent de façon très différente. Les I.I.R. connus ne conviennent donc pas très bien pour les systèmes de radiologie numériques.
  • La présente invention se propose de résoudre le problème de la conception d'un écran luminescent d'I.I.R., utilisable notamment dans un système de radiologie numérique, et dont la sensibilité en tous points de l'écran varie sensiblement de la même façon, lorsque l'énergie des rayons X varie.
  • La présente invention concerne un intensificateur d'images radiologiques, comportant un écran luminescent, courbe, présentant une face concave tournée vers l'intérieur de l'intensificateur, assurant la conversion des rayons X incidents en photons lumineux, cet intensificateur étant utilisé dans un système de radiologie numérique dans lequel on prend plusieurs fois une même image en utilisant des énergie différentes de rayons X, caractérisé en ce que l'épaisseur de l'écran est plus faible sur les bords de l'écran qu'au centre et en ce que l'épaisseur de l'écran h est sensiblement liée à son épaisseur au centre hc par la relation : h = hc · cos 6, avec 6 = a + β, α et p étant respectivement les angles sous lesquels les points d'impacts des rayons X sur l'écran sont vus à partir du centre de courbure de l'écran et à partir de la source de rayons X.
  • Selon l'invention, on cherche à rendre l'écran luminescent d'entrée identique en tous points pour les rayons X, c'est-à-dire que l'on cherche à avoir une épaisseur « apparente de l'écran constante pour tous les rayons X incidents. On est amené à diminuer l'épaisseur des bords de l'écran par rapport au centre pour que la longueur du trajet dans le matériau luminescent soit sensiblement la même pour tous les rayons X quel que soit leur angle d'incidence sur l'écran. Ainsi lorsque l'énergie des rayons X varie, la longueur du trajet dans le matériau incident étant la même pour tous les rayons X, la sensibilité en tous points de l'écran varie sensiblement de la même façon.
  • On constate donc que l'écran selon l'invention est totalement différent des écrans connus. On peut considérer, qu'étant donné les écrans connus, il existait un préjugé technique dissuadant l'homme de métier de concevoir des écrans luminescents d'épaisseur plus grande au centre que sur les bords. Le calcul et l'expérience ont montré l'intérêt de ces écrans selon l'invention.
  • D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées qui représentent :
    • - les figures 1 et 3, des vues en coupe d'un écran luminescent d'I.I.R. selon l'art antérieur et selon un mode de réalisation de l'invention ;
    • - la figure 2, des courbes montrant différents profils de variation de l'épaisseur de la couche de matériau luminescent du centre vers les bords de l'écran ;
    • - les figures 4 et 5, des schémas expliquant le fonctionnement de l'écran selon l'invention.
  • Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais, pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées.
  • La figure 1 a été décrite dans l'introduction à la description. Il en est de même des courbes a et b de la figure 2.
  • Sur la figure 2, la courbe c, en trait plein, montre les variations, en pourcentage, de la grandeur Ae = (h - hc)/hc lorsque l'on se déplace du centre vers les bords d'un écran luminescent selon un mode de réalisation de l'invention, avec h l'épaisseur de l'écran en un point quelconque de l'écran et hc l'épaisseur au centre de l'écran.
  • La courbe c est décroissante. Sur les bords du champ image, Δe égale sensiblement - 20 %. On définit le bord du champ image de la façon suivante. La projection d'un écran, tel que celui représenté sur la figure 1, sur une surface donne un cercle de rayon r. Le bord du champ image est constitué par une couronne de largeur r/10 ou r/16 environ qui occupe la périphérie de ce cercle.
  • La figure 3 est une vue en coupe d'un mode de réalisation d'un écran selon l'invention dont l'épaisseur hb sur les bords est plus faible que l'épaisseur au centre hc. La variation d'épaisseur de l'écran est radiale.
  • Les écrans luminescents sont généralement réalisés par dépôt sous vide, sur un substrat concave, ce qui est imposé pour le bon fonctionnement de l'optique électronique, d'un matériau luminescent à numéro atomique élevé tel que l'iodure de césium. Ce substrat peut être soit la fenêtre d'entrée de l'I.I.R., soit une pièce rapportée à l'intérieur de l'I.I.R.
  • Pour absorber le maximum de rayons X, l'épaisseur de la couche de matériau luminescent doit être la plus grande possible mais cela se fait au détriment de la résolution. Un compromis doit être trouvé. Lorsqu'on utilise de l'iodure de césium déposé sous vide, ce compromis se situe actuellement entre 200 et 500 micromètres d'épaisseur.
  • Pour fabriquer un écran luminescent dont l'épaisseur est plus faible sur les bords qu'au centre, on est conduit à modifier les conditions géométriques de l'évaporation qui sont habituellement employées pour fabriquer des écrans dont l'épaisseur est plus grande sur les bords qu'au centre.
  • L'invention va être expliquée en se référant aux figures 4 et 5.
  • Sur la figure 4, on a représenté de façon schématique un intensificateur d'images radiologiques 2. L'écran luminescent 1 se trouve sur la partie droite de l'I.I.R. Cet écran reçoit l'impact de rayons X produits par une source 3 placée sur l'axe 00' de l'I.I.R. à une distance F.
  • L'écran luminescent est concave. On suppose que dans l'exemple de la figure 4 cet écran est constitué par une calotte sphérique de rayon de courbure R. La courbure de l'écran peut prendre diverses autres formes ; on peut utiliser des écrans luminescents concaves, de forme hyperbolique, parabolique... etc. L'écran est donc constitué par une calotte quasi-sphérique. La flèche de l'écran peut prendre diverses valeurs qui interviennent dans les caractéristiques de l'optique électronique.
  • On considère sur la figure 4 l'impact sur l'écran des rayons X émis par la source 3 qui arrivent sur l'écran en un point P situé à une distance B de l'axe 00'.
  • On désigne par a et β les angles sous lesquels le point d'impact P sur l'écran est vu respectivement à partir du centre C de la sphère dont l'écran est une calotte et à partir de la source 3 de rayons X.
  • La figure 5 est un agrandissement de la région de l'écran comportant le point d'impact P.
  • On désigne par d le trajet dans le matériau luminescent des rayons X traversant l'écran obliquement au point P.
  • Selon l'invention, ce trajet d doit être égal à l'épaisseur hc de l'écran en son centre, sur l'axe 00', qui correspond au trajet dans le matériau luminescent des rayons X se déplaçant selon l'axe 00'.
  • L'égalité suivante doit donc être vérifiée :
    • d = hc = hp/cos 9, avec hp, l'épaisseur de l'écran au point P et 9 = α + β.
  • On en déduit donc que l'épaisseur hp de l'écran au point P égale hc · cos 9 et est donc inférieure à l'épaisseur hc au centre de l'écran.
  • En conclusion, - qu'il s'agisse d'un écran concave en forme de calotte sphérique ou d'un écran concave de forme quelconque - pour que le trajet des rayons X dans le matériau luminescent de l'écran ait sensiblement la même longueur quel que soit le point d'impact des rayons X sur l'écran il faut que l'épaisseur de l'écran h, en tous ses points, soit liée à son épaisseur au centre hc . par la relation : h = hc · cos 6, avec 6 = a + p, a et β étant respectivement les angles sous lesquels les points d'impacts des rayons X sur l'écran sont vus à partir du centre de courbure de l'écran concave et à partir de la source de rayons X. Ces angles s'expriment de la façon suivante :
    • a = Arc sin (B/R) et β = Arc tg (B/F), avec B la distance entre l'axe de l'I.I.R et le point d'impact sur l'écran, F la distance entre l'écran et la source de rayons X et R le rayon de courbure de l'écran au point d'impact.
  • On donne à titre d'exemple les valeurs numériques suivantes pour l'exemple des figures 4 et 5 : B = 100 mm, le point P défini par cette distance B est situé sur les bords de l'écran, à environ 1/10° du bord du champ image.
    Figure imgb0001
    Figure imgb0002
  • On calcule les angles a et p:
    • a = Arc sin (B/R) et β = Arc tg (B/F), ce qui donne a = 30°, β = 8° et 6 = 38°.
  • On obtient donc :
    • hp = hc · cos θ = hc x cos 38° = 0,79 x hc.
  • La grandeur Δe = (h - hc)/hc = -1 + cos θ est donc égale à - 0,21. Cela signifie que l'épaisseur de la couche luminescente est environ 21 % plus faible sur les bords, c'est-à-dire à 1/16e ou 1/10e du bord du champ image, qu'au centre de l'écran.
  • Il faut signaler qu'on approche de façon satisfaisante le résultat recherché en fabriquant un écran dont l'épaisseur sur les bords, à 1/10e ou à environ 1/16e environ du bord du champ image, est environ 15 à 25 % plus faible que l'épaisseur au centre de l'écran, selon la forme de la courbure de l'écran et la valeur de la flèohe. Cela signifie que la relation h = hc . cos 6 n'est pas nécessairement appliquée en tous points de l'écran de façon rigoureuse et que l'on obtient des résultats satisfaisants en appliquant cette relation sur les bords de l'écran, par exemple à environ 1/10e ou 1/16e du bord du champ image et en ne l'appliquant qu'approximativement sur le reste de l'écran.
  • La courbe c de la figure 2 peut donc présenter diverses formes, tout en restant décroissante du centre vers les bords. On peut noter que l'on obtient des résultats satisfaisants avec une courbe dans laquelle Δe varie comme le carré de la distance au centre.
  • Qu'elle soit appliquée en tous points de l'écran ou seulement sur ses bords, la relation h = hc · cos 6 fait intervenir la distance F entre l'écran et la source de rayons X. On peut choisir une valeur moyenne pour cette distance F qui est généralement comprise entre 700 et 1 500 mm. Dans cette plage de variation de F, la valeur de cos 6 ne dépend que très faiblement de la valeur de F.
  • Dans les écrans selon l'invention, dont l'épaisseur est plus faible sur les bords qu'au centre, pour une énergie donnée des rayons X, la sensibilité des bords peut être plus faible que celle du centre si rien n'est fait pour y remédier.
  • On préfère souvent compenser ce manque de sensibilité des bords en modifiant les paramètres de construction des écrans luminescents, selon un ou plusieurs des procédés exposés ci-après dont la liste n'est pas limitative :
    • - on peut modifier sur les bords le dopage du matériau luminescent ;
    • - on peut accroître sur les bords, ou diminuer au centre, le couplage optique de la photocathode avec l'écran, par exemple en modifiant l'état de surface de la couche luminescente ou/et en modifiant l'état du support sur lequel cette couche est déposée ;
    • - on peut jouer sur les caractéristiques des électrodes faisant partie de l'optique électronique de l'I.I.R. pour diminuer la distorsion en coussin ;
    • - on peut modifier la texture de la couche luminescente pour que le rendement de conversion des rayons X en lumière, soit plus important sur les bords qu'au centre de l'écran.
  • Les écrans selon l'invention sont particulièrement adaptés pour être utilisés dans des systèmes de radiologie numérique utilisant un ordinateur pour obtenir une image radiologique, par exemple par soustraction pondérée d'images obtenues avec des énergies différentes de rayons X. On utilise des rayons X dont l'énergie moyenne varie approximativement de 20 à 30 KeV à 100 KeV. Les écrans selon l'invention peuvent cependant être utilisés dans d'autres systèmes que les systèmes de radiologie numérique, tels que par exemple les systèmes de radiologie classiques.

Claims (6)

1. Intensificateur d'images radiologiques, comportant un écran luminescent (1), courbe, présentant une face concave tournée vers l'intérieur de l'intensificateur, assurant la conversion des rayons X incidents en photons lumineux, cet intensificateur étant utilisé dans un système de radiologie numérique dans lequel on prend plusieurs fois une même image en utilisant des énergies différentes de rayons X, caractérisé en ce que l'épaisseur de l'écran est plus faible sur les bords (hb) de l'écran qu'au centre (hc) et en ce que l'épaisseur de l'écran h est sensiblement liée · à son épaisseur au centre hc par la relation : h = hc · cos θ, avec θ = a + β, α et β étant respectivement les angles sous lesquels les points d'impacts des rayons X sur l'écran (1) sont vus à partir du centre de courbure de l'écran (C) et à partir de la source de rayons X (3).
2. Intensificateur selon la revendication 1, caractérisé en ce que l'épaisseur (hb) sur les bords de l'écran (1) est environ 15 à 25 % plus faible que l'épaisseur (hc) au centre de l'écran, selon ta forme de la courbure de l'écran et la valeur de sa flèche.
3. Intensificateur selon la revendication 1 caractérisé en ce que la relation h = hc - cos 0 est appliquée en tous points de l'écran.
4. Intensificateur selon la revendication 1, caractérisé en ce que la relation h = hc x cos 6 est appliquée essentiellement sur les bords de l'écran.
5. Intensificateur selon l'une des revendications 1, 3 ou 4, caractérisé en ce que la relation h = hc . cos θ est calculée en prenant une valeur moyenne dans la plage de variation de la distance (F) entre l'écran et la source (3) de rayons X.
6. Intensificateur selon l'une des revendications 1 à 5, caractérisé en ce que le manque de sensibilité des bords de l'écran est compensé en modifiant l'un ou plusieurs des paramètres suivants des écrans luminescents dont la liste n'est pas limitative :
- le dopage du matériau luminescent ;
- le couplage optique de la photocathode de l'intensificateur avec l'écran, en agissant sur l'état de surface de la couche luminescente ou/et sur l'état du support sur lequel cette couche est déposée ;
- les caractéristiques des électrodes faisant partie de l'optique électronique de l'intensificateur pour diminuer la distorsion en coussin.
EP84400799A 1983-04-29 1984-04-19 Intensificateur d'images radiologiques et application à un système de radiologie numérique Expired EP0125962B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8307183 1983-04-29
FR8307183A FR2545270B1 (fr) 1983-04-29 1983-04-29 Intensificateur d'images radiologiques et application a un systeme de radiologie numerique

Publications (2)

Publication Number Publication Date
EP0125962A1 EP0125962A1 (fr) 1984-11-21
EP0125962B1 true EP0125962B1 (fr) 1988-11-09

Family

ID=9288419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400799A Expired EP0125962B1 (fr) 1983-04-29 1984-04-19 Intensificateur d'images radiologiques et application à un système de radiologie numérique

Country Status (5)

Country Link
US (1) US4645971A (fr)
EP (1) EP0125962B1 (fr)
JP (1) JPS59207551A (fr)
DE (1) DE3475141D1 (fr)
FR (1) FR2545270B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754675B2 (ja) * 1986-03-31 1995-06-07 株式会社東芝 X線イメ−ジインテンシフアイア
JP2514952B2 (ja) * 1987-03-13 1996-07-10 株式会社東芝 X線イメ−ジ管
JPH079796B2 (ja) * 1987-03-28 1995-02-01 東芝ライテック株式会社 放電ランプ
JP2758206B2 (ja) * 1989-05-23 1998-05-28 株式会社東芝 X線イメージ管
NL8901711A (nl) * 1989-07-05 1991-02-01 Philips Nv Stralingsdetector voor elementaire deeltjes.
JP3492777B2 (ja) * 1993-10-29 2004-02-03 株式会社東芝 放射線イメージ増強管及びその製造方法
US9066704B2 (en) * 2011-03-14 2015-06-30 Canon Kabushiki Kaisha X-ray imaging apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820146A (en) * 1955-02-18 1958-01-14 Du Pont Intensifying screens
US2955219A (en) * 1959-02-16 1960-10-04 Rauland Corp Electron discharge device
US3716713A (en) * 1969-01-09 1973-02-13 Varian Associates Input screen for image devices having reduced sensitivity in the cental region
US3697795A (en) * 1970-11-20 1972-10-10 Machlett Lab Inc Image intensifier tube having a multi-radius photocathode
DE2134110B2 (de) * 1971-07-08 1978-09-14 Siemens Ag, 1000 Berlin Und 8000 Muenchen Eingangsschirm für elektronenoptischen Bildverstärker und Verfahren zur Herstellung einer verlaufenden Schicht des Eingangsschirms
FR2195841B1 (fr) * 1972-08-11 1975-03-07 Thomson Csf
JPS5636541B2 (fr) * 1973-10-22 1981-08-25

Also Published As

Publication number Publication date
FR2545270B1 (fr) 1985-12-27
US4645971A (en) 1987-02-24
FR2545270A1 (fr) 1984-11-02
DE3475141D1 (en) 1988-12-15
EP0125962A1 (fr) 1984-11-21
JPH0564413B2 (fr) 1993-09-14
JPS59207551A (ja) 1984-11-24

Similar Documents

Publication Publication Date Title
KR102239767B1 (ko) 광전 증배관, 이미지 센서, 및 pmt 또는 이미지 센서를 사용하는 검사 시스템
EP0554145B1 (fr) Tube intensificateur d'image, notamment du type à focalisation de proximité
EP0125962B1 (fr) Intensificateur d'images radiologiques et application à un système de radiologie numérique
EP0403802B1 (fr) Intensificateur d'images de rayons X et procédé pour la fabrication d'un écran d'entrée
EP3198625A1 (fr) Dispositif d'acquisition d'images bimode a photocathode
WO1990015432A1 (fr) Ecran d'entree de tube intensificateur d'image radiologique
EP0553578B1 (fr) Tube intensificateur d'image avec compensation de courbe de brillance
US5166512A (en) X-ray imaging tube and method of manufacturing the same with columnar crystals and opaque light blocking means
JP3384840B2 (ja) 撮像管およびその動作方法
EP4189373A1 (fr) Dispositif d'imagerie par photons x retrodiffuses
FR2545271A1 (fr) Dispositif de production d'images presentant un rendement quantique ameliore et son procede de fabrication
EP0412887B1 (fr) Ecran cathodoluminescent à haute efficacité pour tubes à rayons cathodiques haute luminance
EP0155890B1 (fr) Tube convertisseur d'image à balayage de fente
FR2683639A1 (fr) Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif.
EP0399378B1 (fr) Intensificateur d'images de rayons X
FR2658361A1 (fr) Dispositif de detection et d'amplification de faibles courants ioniques positifs et negatifs.
WO1986001937A1 (fr) Tube a image a sortie video, systeme de prise de vue utilisant un tel tube et procede de fonctionnement d'un tel tube
EP0143714B1 (fr) Ecran luminescent et procédé de fabrication d'un tel écran
FR2596200A1 (fr) Tube de generation d'image
FR2997549A1 (fr) Dispositif et procede de capture de particules retrodiffusees
FR2491677A1 (fr) Multiplicateur d'electrons, procede de fabrication et tubes images comportant ledit multiplicateur
FR2686731A1 (fr) Convertisseur de rayonnement ionisant et appareil de diagnostic utilisant un tel convertisseur.
FR2822294A1 (fr) Ecran de conversion de rayonnement x en photons lumineux
FR2955427A1 (fr) Tube photomultiplicateur multivoie a moindres ecarts de temps de transit et a structure simplifiee
JPH0322325A (ja) X線イメージ管

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19841129

17Q First examination report despatched

Effective date: 19860415

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3475141

Country of ref document: DE

Date of ref document: 19881215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THOMSON-CSF

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960319

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020322

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020408

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101