EP0120168A2 - Système de fabrication de bobines de fil métallique - Google Patents

Système de fabrication de bobines de fil métallique Download PDF

Info

Publication number
EP0120168A2
EP0120168A2 EP83307981A EP83307981A EP0120168A2 EP 0120168 A2 EP0120168 A2 EP 0120168A2 EP 83307981 A EP83307981 A EP 83307981A EP 83307981 A EP83307981 A EP 83307981A EP 0120168 A2 EP0120168 A2 EP 0120168A2
Authority
EP
European Patent Office
Prior art keywords
wire
station
mandrel
winding
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83307981A
Other languages
German (de)
English (en)
Other versions
EP0120168A3 (fr
Inventor
Peter Mihelich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grumman Corp
Original Assignee
Grumman Aerospace Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grumman Aerospace Corp filed Critical Grumman Aerospace Corp
Publication of EP0120168A2 publication Critical patent/EP0120168A2/fr
Publication of EP0120168A3 publication Critical patent/EP0120168A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H67/00Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
    • B65H67/04Arrangements for removing completed take-up packages and or replacing by cores, formers, or empty receptacles at winding or depositing stations; Transferring material between adjacent full and empty take-up elements
    • B65H67/044Continuous winding apparatus for winding on two or more winding heads in succession
    • B65H67/048Continuous winding apparatus for winding on two or more winding heads in succession having winding heads arranged on rotary capstan head

Definitions

  • the present invention relates to equipment and processes for automatical fabrication of coils of wires from wire segments received from for example, a wire processing system, and sorting and delivering the finished coils.
  • wire coiling systems directed at automating one or more phases of the coiling process to increase throughput.
  • One common approach is to use multiple spool or multiple mandrel heads often mounted on a rotatable turret and indexed through various stations for loading, winding, and discharging the coils.
  • these systems coordinate the various station functions so that loading of one mandrel is completed at the winding station before winding of the next coil in the sequence begins.
  • the system is fed from one continuous supply of wire and the severing of the feed from the fully loaded mandrel also plays a role in engaging the severed feed end to the next mandrel or spool to be loaded.
  • a coil production system which includes a set of rotatable mandrels, each having wire sensing means, means for engaging a pre-cut feed wire, means for constraining the wire in a coiled configuration as it is wound and means for discharing the wire after the winding operation is completed; controllable mandrel drive means for rotating each mandreL during certain phases of the coil forming operation; feeding, coiling and discharge stations; indexing means for moving each mandrel successively past the feeding, coiling and discharge stations and a control system for controlling the mandrel drive control, the indexing mechanism and the feeding, coiling and discharge stations such that engaging, coiling and discharging operations are carried out concurrently to provide continuous production of coils.
  • FIG. 1 The embodiment illustrated in Figure 1 employs four identical mandrel assemblies 7, each rotatably mounted on a turret 6. Shaft extensions 5 and 9 of the turret facilitate its rotation relative to the machine frame 2 as will be described subsequently.
  • the entire system including frame, turret and motor drives is mounted in a movable assembly which can be positioned relative to wire processing and coil distribution sites.
  • the mandrels 7 are rotatably driven for coil winding operations by a servo-controlled motor Ml which through a shaft 17 coaxial with axle 5, and a transmission system within turret 6, drives the mandrels during certain phases of operation.
  • a pre-cut wire segment 16 to be coiled is ejected from a wire processing unit, not shown, which may be, for example, a wire marker machine, a stripper etc., and is fed to each mandrel 7 in turn via a guide system which includes a threading die 36 and wire sensing unit 26, 27. After passing through the sensor, the leading end of the wire passes through a cut-out in mandrel housing 34 and engages a wire clamp 15 on a plate 10 of the mandrel.
  • a wire processing unit not shown, which may be, for example, a wire marker machine, a stripper etc.
  • each mandrel being displaced to the adjacent quadrant.
  • the mandrel at position A for example is rotated to a position "B" ( Figure 1) simultaneously carrying its feed wire with it and continuing its winding operation.
  • the mandrel and its coil at position "B” moves to "C” in preparation for discharge.
  • the now-empty reel asembly at position “D” moves into the "A” position in readiness to receive the next feed wire. This is accomplished with an indexing mechanism 25, 28 coupled to axle 9 for rotating turret 6.
  • the reel is rotated to positionCwhere the wire coil is tied. It is then indexed to position D where the coiled and tied wire 55 is discharged to a conveyor 47 which delivers it to one of the discharge bins 56, via a respective deflector gate 57.
  • each die 36 is pivotally mounted on the turret between a pair of flanges 36B and has a wire guide tube 36A at its opposite end.
  • a cam 90 at the feed station rocks the die arriving at that station causing tube 36A to pass through the sensor 26, 27, and the mandrel housing 34 to provide a conduit for guiding the wire into the mandrel rotor assembly.
  • Each of these assemblies includes a circular plate 10 mounted on a spindle 32 having a cap nut 80.
  • Each plate has a serrated periphery, in the notches of which V-shaped rim segments 11 are pivotally mounted. The latter are distributed around the periphery of plate 10 to define a concave wire engaging surface.
  • This surface is located within the associated mandrel housing 34 with the inwardly located leg of each rim bearing against a flange 34B ( Figure 5) fixed to the housing.
  • Each housing is secured to turret 6 with brackets 34C.
  • peripheral rim segments 11 are each secured to a fitting 12 ( Figures 2 and 5) pivotally mounted on a respective pin 12A which bridges each notch in plate 10.
  • each fitting assembly 11, 12 is positioned as shown in Figure 2 and in the upper mandrel of Figure 5. This positioning is controlled by a cam follower 41 on spindle 32 each mandrel and a respective spring 44 which urges the cam in a radially inward direction. Links 43 interconnect the follower and each rim assembly 11, 12 thereby maintaining the latter with their stops 12B against plate 10.
  • This coil engaging position is changed when the mandrel arrives at the discharge station shown at the bottom of Figure 5.
  • a cam 46 is provided on the machine frame 2 to displace the arriving follower 41 outwardly against its associated sprinq 44.
  • actuator links 43 eccentrically rotate their respective rim assemblies 11, 12 to the position shown in Figure 5 (bottom mandrel) and in Figure 6, releasing the wire clamp as described in the next section and permitting the wound and tied coil to slide off the mandrel and on to the conveyor 47.
  • spring 44 causes follower 41 to retract and the rim assemblies 11, 12 to return to the wire engaging position.
  • a wire clamp lever 83 ( Figures 9 and 10) is pivotally mounted on each mandrel plate 10 with pivot assembly 83A.
  • the outer end of level clamp 83 includes a clamping surface 83B which is in facing relationship to a stop 84 ( Figure 10) fixed to plate 10.
  • This tripping is accomplished with a cam and follower arrangement which includes a cam 80 ( Figure 9) mounted on the associated housing 34 below the respective plate 10.
  • the cam is engaged by the cam follower leg 81A of a latch 81.
  • the latch is pivotally mounted to plate 10 with a clevis 82 having a pivot pin 82A.
  • a section 81B of latch 81 extends through an aperture 10B in plate 10 and engages the wire clamp lever 83.
  • a spring 81C urges the latch towards contact with the cam surface 80.
  • a clevis 88 is pivotally mounted on a tab 89 integral with one of the rim assemblies 12 and includes a shank 88A which passes through a hole in a tab 83C on lever clamp 83.
  • a spring 88B on shank 88A resiliently separates the lever clamp and rim assembly.
  • the motor Ml ( Figure 1) supplies drive for the mandrels via a pulley and belt system, the driven pulley 35 of which is fixed to main drive shaft 17 ( Figure 2). As described in a following section, motor Ml is controlled by the tachometer-generator 19.
  • shaft 17 is journaled in axle 5 and drives a master bevel gear 21.
  • the latter drives a set of four planetary bevel gears 22, one for each mandrel.
  • Each gear 22 is connected to a clutch assembly 23, 24, the output of which is connected to the respective spindle 32.
  • Each clutch is controlled in turn by a switching unit 31, which is responsive to the associated wire sensors 26, 27. When the presence of a wire is detected, switch unit 31 causes the clutching system to clutch shaft 32 to driven gear 22 thereby causing rotation of the mandrel to commence.
  • the tieing section at location C includes a pair of diametrically ; opposed tieing mechanisms embodied as hydraulic actuators 50 ( Figure 4 and Figure 8).
  • Each includes an hydraulic cylinder 53 mounted on a bracket 53A secured to the machine frame 2.
  • Each cylinder actuates a piston rod 52, the distal end of which is connected an ; applicator 54.
  • each piston rod 52 moves inwardly toward the coil of wire with its applicator 54 passing through cut-outs 34A in housing 34 to loop a tie or tag around the wire coil.
  • the rim assemblies 11, 12, which are otherwise equally spaced include two pairs with greater spacing to accommodate cut-outs 14 in plate 10. The rods 52 then retract, pulling the applicators 54 outside and clear of the mandrel housing 34.
  • an indexing step occurs which moves the tied coil to the discharge station D and brings a new coil to station C for the tieing operation.
  • the turret 6 is indexed 90°. This operation is initiated by each wire sensing unit when it senses the presence of a new wire segment.
  • a motor M2 responds to this signal via a motor control unit 95, ( Figure 11) driving through a belt and pulley system 98, 99, ( Figure 7) a geneva mechanism which includes a rotor 28 fixed to shaft 99A carrying pulley 99.
  • the rotor includes an eccentric pin 29 which is positioned to engage slots 30 in geneva wheel 25. The latter is fixed to axle 9 of the turret 6.
  • rotor 28 rotates the geneva wheel 25 through 90° to provide the indexing action .
  • a microswitch 97 is tripped after each 90° displacement to provide an appropriate control signal to motor M2.
  • Motor Ml provides drive.to each of the mandrels 7 via respective clutch units 23, 24 and their associated switching units 31. Each time a wire traverses a wire sensor 26, the associated clutch is energized causing motor Ml to drive the mandrel to which it is connected. Control over the speed of motor Ml is provided by feedback tachometer 19, also shown in Figure 2, whose signal is compared with a reference speed signal supplied to motor 93.
  • a wire sensing signal is coupled from the involved wire sensor to motor control 95 which responds by actuating M2 to initiate an indexing operation. Completion of the resultant quadrature displacement momentarily actuates the switch 97. Motor control 95 responds by deenergizing motor M2.
  • the motor control system is embodied as a microprocessor based programmable controller, which in addition to receiving the inputs shown in Figure 11 also receives inputs from sensors which detect whether the mandrels in position B have stopped rotating and whether the coil tieing actuators 50 are retracted. These additional inputs insure that indexing occurs after a wire has been seized for coiling but only provided that the mandrel at station B is stationary and the coil tieing actuators are engaged and clear of the mandrel at station C.

Landscapes

  • Wire Processing (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
EP83307981A 1982-12-29 1983-12-23 Système de fabrication de bobines de fil métallique Withdrawn EP0120168A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45436482A 1982-12-29 1982-12-29
US454364 1982-12-29

Publications (2)

Publication Number Publication Date
EP0120168A2 true EP0120168A2 (fr) 1984-10-03
EP0120168A3 EP0120168A3 (fr) 1986-04-16

Family

ID=23804313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83307981A Withdrawn EP0120168A3 (fr) 1982-12-29 1983-12-23 Système de fabrication de bobines de fil métallique

Country Status (5)

Country Link
EP (1) EP0120168A3 (fr)
JP (1) JPS59150616A (fr)
AU (1) AU2252083A (fr)
CA (1) CA1213192A (fr)
IL (1) IL70482A0 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182119A1 (fr) * 1984-10-26 1986-05-28 TEKMA KINOMAT S.p.A. Bobineuse en ligne et procédé appliqué à celle-ci
EP0228997A2 (fr) * 1985-12-20 1987-07-15 Nokia-Maillefer S.A. Enrouleur automatique d'un produit allongé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115780573B (zh) * 2023-02-09 2023-05-09 四川中天瑞能空调设备有限公司 一种铁板压平装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB958612A (en) * 1961-01-19 1964-05-21 Olof Holger Aestroem Apparatus for continuously winding cable into coils
FR2165606A5 (fr) * 1971-12-22 1973-08-03 Dart Ind Inc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB958612A (en) * 1961-01-19 1964-05-21 Olof Holger Aestroem Apparatus for continuously winding cable into coils
FR2165606A5 (fr) * 1971-12-22 1973-08-03 Dart Ind Inc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182119A1 (fr) * 1984-10-26 1986-05-28 TEKMA KINOMAT S.p.A. Bobineuse en ligne et procédé appliqué à celle-ci
EP0228997A2 (fr) * 1985-12-20 1987-07-15 Nokia-Maillefer S.A. Enrouleur automatique d'un produit allongé
EP0228997A3 (en) * 1985-12-20 1988-07-06 Maillefer S.A. Apparatus for coiling an elongated material

Also Published As

Publication number Publication date
JPS59150616A (ja) 1984-08-28
CA1213192A (fr) 1986-10-28
IL70482A0 (en) 1984-03-30
AU2252083A (en) 1984-07-05
EP0120168A3 (fr) 1986-04-16

Similar Documents

Publication Publication Date Title
DE944884C (de) Verfahren und Vorrichtung zum Zwirnen eines Fadenbuendels und zum Wickeln des gezwirnten Fadenbuendels zu einem Wickel, insbesondere bei Kunstseide-Spinnmaschinen
EP1588787A1 (fr) Procédé et système pour obtenir un faisceau de fils comportant un nombre donné de fils, en particulier, un paquet de fils ondulés.
DE3426655C2 (fr)
EP0057525A1 (fr) Machine à bobiner pour fil textile
US4540029A (en) Wire coil production system
DE2425278A1 (de) Muenzeneinwickelmaschine
US4542635A (en) Apparatus for manufacturing solid tension coil springs having attachment loops at both ends thereof
EP0120168A2 (fr) Système de fabrication de bobines de fil métallique
US2998633A (en) Wire cutting, stripping and terminal attaching machine
US4147310A (en) Apparatus for coiling wire
US4028920A (en) Apparatus for high speed winding of coils
US3580018A (en) Machine for coiling elongated striplike material
US2749837A (en) Bundle packaging and wrapping machine
EP0099606A2 (fr) Machine automatique pour emballer en bobine du câble ou du tuyau
US4408639A (en) Coil Manufacturing apparatus
US4463911A (en) Strap dispenser
US2756941A (en) Reeling mechanism
US4119278A (en) Continuous long ends wire spooling apparatus
US6012670A (en) Multiple dynamo-electric machine parts handling and winding methods and apparatus
US3906701A (en) Apparatus and method for packaging shoelaces
US3380487A (en) Machine for assembling artificial trees, branches and the like
DE102007025583B4 (de) Vorrichtungen mit einer Vielzahl von Stopfrohren und Verfahren zum Herstellen von Ketten von verbundenen Lebensmittelprodukten, wie z.B. Würsten, mit verdrehten Bereichen
DE69720827T2 (de) Vorrichtung zum Zuführen von Zuschnitten in einer Zigarettenverpackungsmaschine
EP0587125B1 (fr) Procédé et appareil pour le bobinage des enroulements toroidaux
US3981333A (en) Variable turn coil winder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19861217

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MIHELICH, PETER