EP0119685B1 - Procédé hydrométallurgique pour traiter des arsénopyrites - Google Patents

Procédé hydrométallurgique pour traiter des arsénopyrites Download PDF

Info

Publication number
EP0119685B1
EP0119685B1 EP84300292A EP84300292A EP0119685B1 EP 0119685 B1 EP0119685 B1 EP 0119685B1 EP 84300292 A EP84300292 A EP 84300292A EP 84300292 A EP84300292 A EP 84300292A EP 0119685 B1 EP0119685 B1 EP 0119685B1
Authority
EP
European Patent Office
Prior art keywords
concentrate
species
solution
oxidized
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84300292A
Other languages
German (de)
English (en)
Other versions
EP0119685A1 (fr
Inventor
Morris John Vreugde Beattie
Rein Raudsepp
Ernest Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEATTIE, MORRIS JOHN VREUGDE
Peters Ernest
Raudsepp Rein
Original Assignee
Peters Ernest
Raudsepp Rein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peters Ernest, Raudsepp Rein filed Critical Peters Ernest
Publication of EP0119685A1 publication Critical patent/EP0119685A1/fr
Application granted granted Critical
Publication of EP0119685B1 publication Critical patent/EP0119685B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding

Definitions

  • This invention is directed to a novel environmentally amicable hydrometallurgical process for the recovery of gold from arsenical pyrite concentrate.
  • the mineral arsenopyrite is known to contain gold which is in solution in the mineral matrix or is present as fine inclusions. This gold is not available for extraction by hydrometallurgical processes which treat only the mineral surfaces, for example, cyanidation.
  • the mineral pyrite is often associated with arsenopyrite and may contain in its matrix finely dispersed gold which is difficult to extract.
  • Arsenopyrite and pyrite are the main constituents of arsenical pyrite concentrates.
  • the conventional means of liberating gold from arsenical pyrite concentrates is to roast the material and then treat the calcine by cyanidation. This process generates environmental pollution problems due to the airborne emission of sulphur and arsenic oxides.
  • the tailings from the calcine cyanidation contain arsenic which is also a potential environmental contaminant.
  • Arsenical pyrite concentrates may also be treated for gold recovery through conventional pyrometallurgical processes which include copper smelting, lead smelting and zinc roasting. These processes also produce potentially harmful airborne arsenic emissions from the treatment of these concentrates. Problems associated with the added arsenic burden in the process flows also arise.
  • U.S. 3,793,429 discloses a nitric acid leaching process for extracting gold, iron and copper sulphide ores.
  • U.S. 2,805,936 discloses a hydrometallurgical process for the recovery of valuable metals as Cu, Ni, Co, As, Au or the like from an arsenical sulphide concentrate, said process comprising the steps:
  • An object of the present invention is to provide an environmentally amicable process for decomposing gold-bearing arsenical pyrite concentrates.
  • the invention is characterised in that the arsenical sulphide concentrate is arsenical pyrite concentrate containing gold, the acidity of said acidic solution is sufficient to cause arsenic in said concentrate to be oxidized to the +5 oxidation state and to cause nitrogen of said oxidized nitrogen species to be reduced essentially to nitric oxide, gold is extracted from a solid residue formed in step a), arsenic in the precipitated arsenic species of step b) is in the +5 oxidation state and the liquid fraction treated in step b) is separated from the precipitated arsenic species and re-used in step a).
  • step a) iron in said concentrate is oxidized to the +3 oxidation state and sulphide in said concentrate is oxidized to sulphate.
  • said solid residue formed in step a) is separated from said acidic solution before said dissolved arsenic species is precipitated in step b).
  • Arsenopyrite and pyrite are decomposed in acid solutions where the pH is less than 2 by the action of oxidized nitrogen species where the nitrogen has an oxidation state of +3 or greater. These species include nitric acid, nitrous acid and nitrogen dioxide.
  • the main products from the decomposition are soluble ferric iron species, soluble arsenate species, soluble sulphate species, elemental sulphur and nitric oxide, as well as nitrogen dioxide.
  • Nitrogen dioxide becomes increasingly abundant as a product in the gas phase as the nitric acid concentration increases: see Canadian Patent No. 995,468, Paul B. Queneau et al., August 24, 1976.
  • the minor products are arsenic trioxide and nitrous acid.
  • the gold contained in the concentrate remains in the solid residue which is composed of elemental sulphur and insoluble gangue minerals. Any silver present in the concentrate would also report to the residue.
  • Figure 1 illustrates arsenic concentration as a function of time for three similar experiments with solution composition as a variable.
  • the gold in the decomposition residue may be readily extracted by conventional techniques such as cyanidation, following leaching of the residue with sodium hydroxide to dissolve sulfur prior to cyanidation, or treatment with oxidizing chloride lixiviants, such as aqua regia. Silver may also be extracted by these techniques.
  • the decomposition solution does not contain significant quantities of species which complex gold, for example, chloride ions. These would put the gold into solution and a separate additional process step would have to be included to extract it.
  • the active nitrogen oxides are required only to decompose the minerals in the concentrate.
  • the oxidizing nitrogen species should be present in sufficient concentration in the solution to provide an adequate rate of dissolution. Any suitable acid may be used to form the soluble ferric iron species. An adequate rate of dissolution is about 10 to 30 minutes.
  • nitrogen dioxide is the decomposition agent for arsenopyrite with sulphuric acid present.
  • the sulphuric acid is formed from the decomposition of pyrite.
  • the active nitrogen oxides are reduced to nitric oxide which may then be regenerated by an oxidant.
  • a useful oxidant is oxygen which reacts with nitric oxide in the presence of water to form nitrogen dioxide, nitrous acid and nitric acid as shown in the reactions set forth below.
  • the regeneration of nitric oxide to the higher valence states may be done concurrently with the decomposition or as a separate operation.
  • Nitrous oxide is formed by the decomposition of nitric oxide according to the side reaction shown below.
  • the active nitrogen oxides can be regenerated during the decomposition step, the quantity of these oxides present at any time may be quite small.
  • the criterion is that there must be sufficient acid present in solution to form the soluble ferric iron species. It must be emphasized that it is the oxidized nitrogen species rather than oxygen that are the active decomposition agent. The presence of oxidized nitrogen species with sulphuric acid differentiates the decomposition step described above from the Calera process.
  • Figure 1 shows the arsenic concentration as a function of time for three similar experiments in which the only variable is the composition of the solution.
  • the three compositions are 3 M acid as HN0 3 ; 2.5 M acid as H 2 SO 4 ; 0.5 M acid as HN0 3 ; and 3.0 M acid as H 2 SO 4 .
  • the other conditions are given on Figure 1. It is apparent from the data that the presence of nitric acid greatly speeds the rate of reaction.
  • the decomposition and regeneration steps are both exothermic.
  • a solution which is three molar in nitric acid is reacted with fine arsenical pyrite concentrate at 15% solids without oxygen present for regeneration
  • the temperature increase of the slurry is 40°C.
  • oxygen present for generation the temperature increases is 130°C. Since the rates of the decomposition and regeneration reactions increase with temperature the overall reactions appear to accelerate as they proceed. It is possible that controlled cooling may be required to prevent the melting of elemental sulphur and to prevent the precipitation of salts.
  • the decomposition step proceeds at any temperature above ambient. However, on a practical basis, the reaction is preferably carried out at temperatures of between 80° and 120°C. It is desirable that sufficient acid be present to form the soluble ferric iron species. Without this acid, compounds will precipitate from solution. If oxygen is used for regeneration, any oxygen pressure above ambient is adequate. Agitation increases the speed of the reactions and improves the quality of the final sulphur-bearing residue.
  • the decomposition leach can be carried out over a wide range of solid-liquid ratios. Increasing the ratio of solids to liquids provides economic benefits, but the upper limit of this ratio is reached when the solubility limit of dissolved species is reached.
  • the soluble arsenic, iron and sulphur must be removed from solution.
  • Arsenic in the pentavalent state as ferric arsenate can be removed from solution with ferric iron.
  • the following reaction shows the formation of ferric arsenate from ferric nitrate and arsenate.
  • Ferric arsenate is produced virtually quantitatively from an equimolar solution of ferric nitrate and arsenic acid at all temperatures above ambient.
  • the rate of precipitation can be controlled by temperature. At room temperature, complete precipitation requires several months; at 100°C precipitation requires one to two hours; and at 200°C precipitation occurs in less than one hour.
  • Ferric arsenate can be precipitated rapidly at low temperatures by the neutralization of the acid in the solution. At 25°C the solubility of ferric arsenate between pH 3 and pH 7 is very low. The solids produced at low temperature tend to be colloidal and difficult to filter. The solids can contain ferric hydroxide which also tends to be colloidal,
  • a calcium-bearing neutralizing agent such as calcium oxide or calcium carbonate, can be used to neutralize excess acid in solution and to remove sulphate in order to improve ferric arsenate precipitation.
  • arsenic trioxide can precipitate when the filtered decomposition solution is cooled.
  • arsenate or ferric compounds may be added to the solution.
  • Sulphate is removed from solution by the addition of calcium-bearing materials to form calcium sulphate.
  • the reaction between calcium carbonate and sulphuric acid is as follows.
  • Gypsum CaS0 4 - 2H 2 0
  • Gypsum has a low solubility which is virtually unaffected by temperature.
  • the solubility ofCaS04 - 2H 2 0 is approximately 0.1 M.
  • Anhydrite (CaS0 4 ) forms at temperatures above 60°C (although the crossover point from gypsum may be as high as 110°C due to supersaturation).
  • the solubility of anhydrite drops rapidly with temperature. Solubility data for anhydrite in water gives a solubility of 0.02 M at 60°C and .0015 M at 160°C.
  • Ferric iron can be removed from solution by the formation of insoluble iron compounds.
  • ferric hydroxide Fe(OH) 3
  • Fe(OH) 3 ferric hydroxide
  • This material may be undesirable as it is colloidal and very difficult to filter.
  • the temperature is raised to 100°C, the precipitate is transformed to goethite, a more crystalline ferric iron compound; and as the temperature is raised further to 130°C, hematite (Fe 2 0 3 ) is produced.
  • the exact nature of the precipitate is dependent on neutralization history and the duration at temperature.
  • a residual iron concentration of 5 g/I can be achieved in the presence of 60 g/I H 2 SO 4 at 150°C. At 200°C, the same residual can be achieved in the presence of 90 g/I H 2 SO 4 .
  • hydronium jarosite (H 3 0)Fe 3 (SO Q ) 2 (OH) 6 ) and fibroferrite (Fe(OH)(S0 4 )) are expected to form.
  • Hydronium jarosite is the most significant below 150°C.
  • Fibroferrite is most significant above 150°C.
  • jarosite may be formed by the addition of alkali salts where the alkali metal or radical is NH 4 , Na, K, Ag or Pb. Jarosites are typically formed at 90 to 150°C at a pH of 1.0 to 1.5.
  • ferric-sulphate compounds precipitated is difficult to specify as many different species are possible and the factors which govern their formation are complex.
  • trace elements such as bismuth or tellurium may be present in the concentrate being treated. While some of these trace elements will report to the leach residue or waste precipitation residues, some may build up in solution and have to be bled-off. When trace elements are present in sufficient concentration, their recovery may be warranted.
  • Another possible process for a concentrate that is primarily arsenopyrite is a decomposition step with recycled nitric acid solution containing soluble calcium, using oxygen for regeneration. After leaching, the solution is cooled to precipitate calcium sulphate and a solid-liquid separation is made. The liquid is heated to precipitate ferric arsenate and another solid-liquid separation is made to give a solution to which calcium carbonate is added before reuse.
  • one possible process is a decomposition step with a recycled solution, nitric oxide gas and oxygen being used for regeneration. This is followed by another decomposition step without oxygen to convert all the nitrogen oxides to nitric oxide, which is bled off.
  • a solid-liquid separation produces a residue for gold treatment. Calcium carbonate is added to the liquid which is then heated to a high temperature to precipitate ferric arsenate, calcium sulphate and hematite. Another solids-liquid separation provides liquid for decomposition.
  • the decomposition was rapid and complete.
  • Example 2 A test was conducted to demonstrate the decomposition of a pyrite-rich concentrate (as in Example 2) using a ferric nitrate and sulphuric acid solution. This example simulates a decomposition using the product solution from Example 6.
  • Example 1 A test was performed to demonstrate the decomposition of an arsenopyrite concentrate (as in Example 1) using nitric oxide gas. Oxygen was added to regenerate the active nitrogen oxides. The nitric oxide gas was produced by the reaction of arsenopyrite with nitric acid as in Example 1.
  • a pyrite-rich concentrate can be reacted in a similar manner.
  • the decomposition step was the same as for Example 2 using a nitric acid solution and oxygen for regeneration.
  • the decomposition step was carried out with a nitric acid and calcium nitrate solution. After decomposition, the slurry was cooled to reduce the solubility of calcium sulphate.
  • the decomposition step was as Example 6 using nitric acid solution and oxygen for regeneration.
  • a second decomposition step was conducted as in Example 7 using the filtrate from above. Oxygen was not used.
  • the solution from the precipitation stage could be reused by the addition of nitrogen oxides, for example, the addition of nitric acid or the addition of nitric oxide and oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Claims (22)

1. Un procédé hydrométallurgique de récupération de métaux dans un concentrat de sulfur arsenical, ce procédé comprenant les étapes suivantes:
a) on traite le concentré par une solution acide contenant des dérivés oxydés d'azote pour décomposer par épuisement ce concentré, et
b) on traite la fraction liquide obtenue pour précipiter les dérivés d'arsenic dissous formés dans l'étape a),
ces dérivés oxydés d'azote étant régénérés par réaction avec de l'oxygène ou un gaz contenant de l'oxygène,
caractérisé en ce que ce concentré de sulfure arsenical est un concentré de pyrite arsenical contenant de l'or, en ce que l'acidité de cette solution acide est suffisante pour oxyder l'arsenic contenu dans ce concentré à l'état d'oxydation 5+ et réduire l'azote de ces dérivés oxydés d'azote essentiellement en oxyde nitrique, en ce que l'or est extrait du résidu solide formé dans l'étape a), en ce que l'arsenic contenu dans les dérivés d'arsenic précipités de l'étape b) se trouve à l'état d'oxydation 5+ et en ce que la fraction liquide traitée dans l'étape b est séparée des dérivés précipités d'arsenic et réutilisée dans l'étape a).
2. Un procédé selon la revendication 1 dans lequel, dans l'étape a), le fer contenu dans ce concentré est oxydé à l'état d'oxydation 3+ et le sulfure contenu dans ce concentré est oxydé en sulfate.
3. Un procédé selon la revendication 1 ou la revendication 2 dans lequel, ce résidu solide formé dans l'étape a) est séparé de cette solution acide avant que ces dérivés d'arsenic dissous ne soient précipités dans l'étape b).
4. Un procédé selon l'une quelconque des revendications précédentes, dans lequel ces dérivés d'arsenic précipités sont essentiellement constitués d'arseniate ferrique.
5. Un procédé selon l'une quelconque des revendications précédentes dans lequel la quantité totale de dérivés oxydés d'azote et d'acide nitrique contenue dans le système est sensiblement inférieure à la quantité nécessaire pour la réaction stoechiométrique avec ce concentré dans l'étape a).
6. Un procédé selon l'une quelconque des revendications précédentes, dans lequel les dérivés oxydés d'azote consistent en acide nitrique, acide nitreux ou dioxyde d'azote.
7. Un procédé selon l'une quelconque des revendications précédentes, dans lequel la décomposition par épuisement est mise en oeuvre à une température de la suspension comprise entre 60 et 120°C.
8. Un procédé selon l'une quelconque des revendications précédentes, dans lequel la décomposition par équipement est mise en oeuvre à un pH inférieur à 2.
9. Un procédé selon l'une quelconque des revendications précédentes, dans lequel la régénération des oxydes d'azote se trouvant à la valence supérieure est conduite en même temps que la décomposition par épuisement de l'étape a).
10. Un procédé selon l'une quelconque des revendications précédentes, dans lequel on fait réagir l'oxyde nitrique avec de l'oxygène d'apport fourni au milieu d'épuisement pour procurer les dérivés oxydés d'azote de l'étape a).
11. Un procédé selon l'une quelconque des revendications précédentes, dans lequel les dérivés dissous d'arsenic sont précipités dans la fraction liquide par élévation de la température de celle-ci.
12. Un procédé selon l'une quelconque des revendications précédentes, dans lequel on élimine le fer dans la fraction liquide par formation de dérivés insolubles de fer produits par l'action combinée d'une neutralisation et d'une élévation de température de la fraction.
13. Un procédé selon l'une quelconque des revendications précédentes, dans lequel on élimine le sulfate de la fraction liquide par addition de matières contenant du calcium pour former du sulfate de calcium.
14. Un procédé selon l'une quelconque des revendications précédentes, dans lequel on récupère l'or dans ces résidus solides à l'aide d'un procédé de cyanuration.
15. Un procédé selon l'une quelconque des revendications précédentes, dans lequel on récupère l'or dans ces résidus solides par traitement de résidu à l'aide d'un agent de lixiviation à base de chlorure oxydant.
16. Un procédé selon la revendication 13 dans lequel cette matière contenant du calcium est choisie dans un groupe comprenant l'oxyde de calcium et le carbonate de calcium.
17. Un procédé selon la revendication 11 ou 12 dans lequel on élève la température de la fraction liquide à une température comprise entre 100 et 200°C.
18. Un procédé selon l'une quelconque des revendications précédentes, dans lequel ces dérivés oxydés d'azote sont présents dans cette solution acide en une concentration suffisante pour que la dissolution de l'étape a) se produise en un temps inférieur à 30 min.
19. Un procédé selon la revendication 18, dans lequel ces dérivés oxydés d'azote sont présents en concentration suffisante dans cette solution acide pour que la dissolution se produise en un temps égal ou inférieur à 10 min.
20. Un procédé hydrométallurgique selon l'une quelconque des revendications précédentes, comprenant l'étape supplémentaire, après l'étape a) mais avant l'étape b) de refroidissement de la solution pour précipiter le sulfate de calcium.
21. Un procédé hydrométallurgique selon l'une quelconque des revendications précédentes, comprenant l'étape supplémentaire, après l'étape a) mais avant l'étape b) consistant à soumettre le concentré décomposé à une seconde étape de décomposition par épuisement à l'aide d'une liqueur d'épuisement composée d'oxydes d'azote de valence supérieure présents dans une solution acide, cette solution ayant été régénérée par utilisation d'oxyde nitrique gazeux en l'absence d'oxygène pour convertir ainsi tous les oxydes d'azote en oxydes nitriques et à effectuer une purge d'élimination des oxydes nitriques.
22. Un procédé selon l'une quelconque des revendications précédentes, dans lequel ces dérivés oxydés d'azote sont régénérés par traitement à l'aide d'oxygène à haute pression.
EP84300292A 1983-01-18 1984-01-18 Procédé hydrométallurgique pour traiter des arsénopyrites Expired EP0119685B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45884683A 1983-01-18 1983-01-18
US458846 1983-01-18

Publications (2)

Publication Number Publication Date
EP0119685A1 EP0119685A1 (fr) 1984-09-26
EP0119685B1 true EP0119685B1 (fr) 1988-08-03

Family

ID=23822319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84300292A Expired EP0119685B1 (fr) 1983-01-18 1984-01-18 Procédé hydrométallurgique pour traiter des arsénopyrites

Country Status (5)

Country Link
EP (1) EP0119685B1 (fr)
AU (1) AU566135B2 (fr)
CA (1) CA1219132A (fr)
DE (1) DE3473163D1 (fr)
ZA (1) ZA84153B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915474B2 (en) 2009-04-01 2011-03-29 Earth Renewal Group, Llc Aqueous phase oxidation process
US7951988B2 (en) 2009-04-01 2011-05-31 Earth Renewal Group, Llc Aqueous phase oxidation process
US8115047B2 (en) 2009-04-01 2012-02-14 Earth Renewal Group, Llc Aqueous phase oxidation process
US8168847B2 (en) 2009-04-01 2012-05-01 Earth Renewal Group, Llc Aqueous phase oxidation process
US8481800B2 (en) 2009-04-01 2013-07-09 Earth Renewal Group, Llc Aqueous phase oxidation process
RU2657254C1 (ru) * 2017-07-21 2018-06-09 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ извлечения золота из упорных серебросодержащих сульфидных руд концентратов и вторичного сырья

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3534224A1 (de) * 1985-09-23 1987-04-02 Gock Eberhard Priv Doz Prof Dr Verfahren zur nasschemischen gewinnung von edelmetallen aus kohlenstoffhaltigen arsenopyritkonzentraten
AU582961B2 (en) * 1986-05-29 1989-04-13 Sasox Processing Pty Ltd Improved hydrometallurgical arsenopyriteprocess
EP0272060A3 (fr) * 1986-12-18 1990-08-01 Electrolytic Zinc Company Of Australasia Limited Récupération hydrométallurgique de métaux et de soufre élémentaire à partir de sulfures métalliques
AU650802B2 (en) * 1991-10-25 1994-06-30 Sasox Processing Pty. Limited Extraction or recovery of metal values
ZA928157B (en) * 1991-10-25 1993-06-09 Sasox Processing Pty Ltd Extraction or recovery of metal values.
CA2154560C (fr) * 1993-01-27 2004-11-02 Robert N. O'brien Procede hydrometallurgique d'extraction de metaux de minerais complexes
JPH10504060A (ja) * 1994-08-15 1998-04-14 アール・アンド・オー・マイニング・プロセシング・リミテッド 硫化亜鉛含有鉱石及び精鉱から硫酸塩への硫化亜鉛の湿式製錬転化
RU2114196C1 (ru) * 1995-09-19 1998-06-27 Клиблей Генри Хадыевич Способ гидрометаллургического извлечения редких металлов из технологически упорного сырья
US9272936B2 (en) 2009-04-01 2016-03-01 Earth Renewal Group, Llc Waste treatment process
CN104263963B (zh) * 2014-09-23 2016-08-24 铜仁市万山区盛和矿业有限责任公司 一种从硫砷铁矿中提取金的方法
CN104263961B (zh) * 2014-09-23 2016-03-30 铜仁市万山区盛和矿业有限责任公司 一种从黄铁矿中提取金的方法
CN104263962B (zh) * 2014-09-23 2016-08-17 铜仁市万山区盛和矿业有限责任公司 一种从磁黄铁矿中提取金的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE744120C (de) * 1938-01-25 1944-01-10 Dr Aurel Bognar Verfahren zur Verarbeitung von Erzen oder sonstigen Bergwerks- und Huettenerzeugnissen
FR1058809A (fr) * 1951-01-19 1954-03-19 Chemical Construction Corp Perfectionnements à la récupération de la teneur en métaux precieux des mineraiscontenant de l'arsenic et de leurs concentrats
US2805936A (en) * 1954-08-16 1957-09-10 Felix A Schaufelberger Leaching of arsenide ores
US2805940A (en) * 1954-08-20 1957-09-10 Bennedsen Hans Oluf Process for extracting cobalt and nickel from their ores
US2951741A (en) * 1955-08-05 1960-09-06 Metallurg Resources Inc Process for treating complex ores
US3793429A (en) * 1972-02-18 1974-02-19 Kennecott Copper Corp Nitric acid process for recovering metal values from sulfide ore materials containing iron sulfides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915474B2 (en) 2009-04-01 2011-03-29 Earth Renewal Group, Llc Aqueous phase oxidation process
US7951988B2 (en) 2009-04-01 2011-05-31 Earth Renewal Group, Llc Aqueous phase oxidation process
US8115047B2 (en) 2009-04-01 2012-02-14 Earth Renewal Group, Llc Aqueous phase oxidation process
US8168847B2 (en) 2009-04-01 2012-05-01 Earth Renewal Group, Llc Aqueous phase oxidation process
US8481800B2 (en) 2009-04-01 2013-07-09 Earth Renewal Group, Llc Aqueous phase oxidation process
RU2657254C1 (ru) * 2017-07-21 2018-06-09 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ извлечения золота из упорных серебросодержащих сульфидных руд концентратов и вторичного сырья

Also Published As

Publication number Publication date
CA1219132A (fr) 1987-03-17
DE3473163D1 (en) 1988-09-08
AU566135B2 (en) 1987-10-08
AU2351584A (en) 1984-07-19
ZA84153B (en) 1985-04-24
EP0119685A1 (fr) 1984-09-26

Similar Documents

Publication Publication Date Title
EP0119685B1 (fr) Procédé hydrométallurgique pour traiter des arsénopyrites
US4654078A (en) Method for recovery of precious metals from difficult ores with copper-ammonium thiosulfate
US4647307A (en) Process for recovering gold and silver from refractory ores
US4369061A (en) Recovery of precious metals from difficult ores
US4266972A (en) Process for non-ferrous metals production from complex sulphide ores containing copper, lead, zinc, silver and/or gold
US4378275A (en) Metal sulphide extraction
RU2105824C1 (ru) Способ гидрометаллургического извлечения металлов из комплексных руд
US4097271A (en) Hydrometallurgical process for recovering copper and other metal values from metal sulphides
US4440569A (en) Recovery of zinc from zinc-containing sulphidic material
US5482534A (en) Extraction or recovery of non-ferrous metal values from arsenic-containing materials
US2726934A (en) Hydrometallurgical method of extracting metal values
AU647074B2 (en) Separation process
US6641642B2 (en) High temperature pressure oxidation of ores and ore concentrates containing silver using controlled precipitation of sulfate species
US3967957A (en) Aqueous ammonia oxidative leach and recovery of metal values
US4786323A (en) Process for the recovery of noble metals from ore-concentrates
US5989311A (en) Recovery of copper from its sulfides and other sources using halogen reagents and oxidants
US3529957A (en) Production of elemental sulphur and iron from iron sulphides
US3981962A (en) Decomposition leach of sulfide ores with chlorine and oxygen
JPS5916940A (ja) 亜鉛の回収方法
US4778520A (en) Process for leaching zinc from partially desulfurized zinc concentrates by sulfuric acid
CA1110076A (fr) Lessivage de metaux a partir de concentres a l'aide de bioxyde d'azote dans des acides
US4168969A (en) Recovery of silver, copper, zinc and lead from partially roasted pyrite concentrate by acid chloride leaching
US5279803A (en) Precious metal recovery process from carbonaceous ores
US4166737A (en) Method for dissolving the non-ferrous metals contained in oxygenated compounds
EP1325164B1 (fr) Procede de lixiviation sous pression pour la recuperation de zinc a partir de minerais sulfures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB LU NL SE

17P Request for examination filed

Effective date: 19850307

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PETERS, ERNEST

Owner name: RAUDSEPP, REIN

Owner name: BEATTIE, MORRIS JOHN VREUGDE

17Q First examination report despatched

Effective date: 19860612

R17C First examination report despatched (corrected)

Effective date: 19870309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880803

Ref country code: BE

Effective date: 19880803

REF Corresponds to:

Ref document number: 3473163

Country of ref document: DE

Date of ref document: 19880908

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

EAL Se: european patent in force in sweden

Ref document number: 84300292.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000103

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000107

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000131

Year of fee payment: 17

EUG Se: european patent has lapsed

Ref document number: 84300292.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST