EP0115461B1 - Aspheric convex mirror quality-control arrangement and its application to the control of a convex telescope mirror - Google Patents

Aspheric convex mirror quality-control arrangement and its application to the control of a convex telescope mirror Download PDF

Info

Publication number
EP0115461B1
EP0115461B1 EP19840400164 EP84400164A EP0115461B1 EP 0115461 B1 EP0115461 B1 EP 0115461B1 EP 19840400164 EP19840400164 EP 19840400164 EP 84400164 A EP84400164 A EP 84400164A EP 0115461 B1 EP0115461 B1 EP 0115461B1
Authority
EP
European Patent Office
Prior art keywords
mirror
convex
control
telescope
convex mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840400164
Other languages
German (de)
French (fr)
Other versions
EP0115461A3 (en
EP0115461A2 (en
Inventor
Jean Espiard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagem SA
Original Assignee
Recherches et Etudes dOptique et de Sciences Connexes SA REOSC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recherches et Etudes dOptique et de Sciences Connexes SA REOSC filed Critical Recherches et Etudes dOptique et de Sciences Connexes SA REOSC
Publication of EP0115461A2 publication Critical patent/EP0115461A2/en
Publication of EP0115461A3 publication Critical patent/EP0115461A3/en
Application granted granted Critical
Publication of EP0115461B1 publication Critical patent/EP0115461B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telescopes (AREA)
  • Lenses (AREA)

Description

La présente invention concerne le contrôle des qualités optiques d'un miroir convexe asphérique et elle s'applique notamment au contrôle du miroir convexe d'un télescope.The present invention relates to the control of the optical qualities of an aspherical convex mirror and it applies in particular to the control of the convex mirror of a telescope.

On décrira ci-après la présente invention en référence à cette application typique mais il est bien entendu qu'il ne s'agit là que d'une application parmi d'autres et que l'invention s'applique au contrôle de tout miroir convexe.The present invention will be described below with reference to this typical application but it is understood that this is only one application among others and that the invention applies to the control of any convex mirror .

Une méthode courante pour contrôler les qualités optiques d'une pièce optique consiste à étudier l'image que produit cette pièce d'un point objet. Pour que cette étude soit possible, l'image doit être réelle et, lorsqu'on veut appliquer une telle méthode au contrôle d'un miroir convexe, lequel produit normalement une image virtuelle, il est nécessaire d'associer au miroir convexe un ou plusieurs éléments optiques auxiliaires qui forment avec le miroir convexe un système optique produisant une image réelle.A common method for controlling the optical qualities of an optical part consists in studying the image produced by this part of an object point. For this study to be possible, the image must be real and, when one wants to apply such a method to the control of a convex mirror, which normally produces a virtual image, it is necessary to associate with the convex mirror one or more auxiliary optical elements which form with the convex mirror an optical system producing a real image.

Diverses méthodes ont été décrites à cet effet, par exemple les techniques exposées par R.N. Wilson dans la publication «Technical Report» of European Southern Observatory, n° 3, juillet 1974 sous le titre «Test Methods for Secondary Mirrors of Cassegrain Telescopes with Special Reference to the ESO 3.6 Telescope».Various methods have been described for this purpose, for example the techniques exposed by RN Wilson in the publication "Technical Report" of European Southern Observatory, n ° 3, July 1974 under the title "Test Methods for Secondary Mirrors of Cassegrain Telescopes with Special Reference to the ESO 3.6 Telescope ”.

L'une de ces méthodes dite «méthode Lytle» utilise comme élément auxiliaire le grand miroir concave du télescope. Cette méthode est décrite plus en détail dans le Technical Report n° 4, août 1974, par le même auteur, sous le titre «Supple- mentary Tests of the Optics of the ESO 3.6 m Telescope by the Method of Lytle».One of these methods, known as the “Lytle method”, uses the large concave mirror of the telescope as an auxiliary element. This method is described in more detail in Technical Report No. 4, August 1974, by the same author, under the title "Additional Tests of the Optics of the ESO 3.6 m Telescope by the Method of Lytle".

Cette méthode exige que le grand miroir concave du télescope soit disponible pour servir de pièce auxiliaire. A titre d'exemple, un télescope Cassegrain de 3 m et plus de diamètre a un miroir convexe dont le diamètre varie de 0,8 à 1,5 m selon l'ouverture relative du grand miroir concave et, pour contrôler ce miroir convexe, on utilise le miroir concave du télescope qui doit être d'excellente qualité.This method requires that the large concave mirror of the telescope be available to serve as an auxiliary part. For example, a Cassegrain telescope 3 m or more in diameter has a convex mirror whose diameter varies from 0.8 to 1.5 m depending on the relative opening of the large concave mirror and, to control this convex mirror, we use the concave mirror of the telescope which must be of excellent quality.

La présente invention préconise également l'utilisation d'un miroir concave auxiliaire. Selon l'invention, le miroir concave auxiliaire est un miroir de préférence sans défauts zonaux pour obtenir une mesure la plus exacte possible dont la méridienne a la forme d'une sphère ou d'une parabole ou une forme intermédiaire et dont l'ouverture numérique est inférieure ou égale à 0,25.The present invention also recommends the use of an auxiliary concave mirror. According to the invention, the auxiliary concave mirror is preferably a mirror without zonal defects in order to obtain the most exact possible measurement, the meridian of which is in the form of a sphere or a parabola or an intermediate form and whose numerical aperture is less than or equal to 0.25.

Le procédé de contrôle, comme celui de Lytle, est une méthode d'autocollimation sur le miroir convexe à contrôler, le miroir auxiliaire étant parcouru deux fois par la lumière, mais la comparaison du dispositif de l'invention et du dispositif préconisé par Lytle conduit notamment aux remarques suivantes:

  • - Le miroir auxiliaire selon la présente invention a un diamètre qui est seulement légèrement plus grand que celui du miroir convexe à contrôler. Par exemple, pour vérifier un miroir convexe de 0,8 m de diamètre on utilisera un miroir auxiliaire de 1,2 m de diamètre et, pour contrôler un miroir convexe de 1,4 m de diamètre, on utilisera un miroir auxiliaire de 1,6 de diamètre, alors que dans le dispositif de Lytle, on utilise un miroir auxiliaire (le grand miroir du télescope) dont le diamètre est 3,5 m pour les cas cités.
  • - Dans le dispositif de Lytle, le miroir auxiliaire (c'est-à-dire le grand miroir concave) est en général parabolique et, le plus souvent, hyperbolique alors que dans le dispositif de la présente invention le miroir a une forme allant de la forme sphérique à la forme parabolique et il ne doit pas avoir une forme hyperbolique.
  • - Dans le dispositif de Lytle, il est dans tous les cas nécessaire de compenser l'aberration sphérique due à la forme du miroir concave et cette compensation se fait habituellement au moyen d'un plus ou moins grand nombre de lentilles. Dans le dispositif de l'invention, si on utilise un miroir auxiliaire sphérique, la compensation générale des aberrations du système est plus facile à obtenir puisqu'il y a moins d'aberrations à compenser; si on utilise une méridienne elliptique, c'est-à-dire une forme intermédiaire entre la sphère et le paraboloïde, la lentille de compensation devient pratiquement inutile. Ainsi, dans tous les cas, le dispositif de l'invention permet une compensation d'aberrations bien meilleure et cette compensation est toujours obtenue avec moins de lentilles que dans le dispositif de Lytle et ces lentilles sont toujours de plus faible puissance. A titre d'exemple, le rapport n° 4 mentionné plus haut indique en page 5 une aberration zonale résiduelle de 1,6 À pic/pic alors que le dispositif de la présente invention permet d'attein- dre environ λ/20 pic/pic.
  • - Le dispositif de l'invention permet de contrôler à la fois les défauts zonaux et la forme géométrique du miroir alors que le dispositif de Lytle permet de contrôler les défauts zonaux mais ne permet pas de s'assurer de la forme géométrique du miroir et oblige à recourir à une autre méthode, par exemple celle des équerres optiques.
  • - Le dispositif de l'invention permet un contrôle en laboratoire. Le dispositif de Lytle qui comporte le grand miroir concave du télescope n'est pas utilisable en laboratoire lorsque ce grand miroir est un miroir mince mis en forme par des vérins puisque cette mise en forme ne se fait que le miroir monté dans le télescope et pointant un objet ponctuel stigmatique et situé à l'infini (étoile par exemple).
The control method, like that of Lytle, is a method of collimation on the convex mirror to be controlled, the auxiliary mirror being traversed twice by light, but the comparison of the device of the invention and the device recommended by Lytle leads in particular to the following remarks:
  • - The auxiliary mirror according to the present invention has a diameter which is only slightly larger than that of the convex mirror to be checked. For example, to check a convex mirror of 0.8 m in diameter we will use an auxiliary mirror of 1.2 m in diameter and, to check a convex mirror of 1.4 m in diameter, we will use an auxiliary mirror of 1, 6 in diameter, while in Lytle's device, an auxiliary mirror (the large telescope mirror) is used, the diameter of which is 3.5 m for the cases cited.
  • - In Lytle's device, the auxiliary mirror (that is to say the large concave mirror) is generally parabolic and, most often, hyperbolic whereas in the device of the present invention the mirror has a shape ranging from the spherical form to the parabolic form and it must not have a hyperbolic form.
  • - In Lytle's device, it is in all cases necessary to compensate for the spherical aberration due to the shape of the concave mirror and this compensation is usually done by means of a greater or lesser number of lenses. In the device of the invention, if a spherical auxiliary mirror is used, the general compensation for system aberrations is easier to obtain since there are fewer aberrations to compensate for; if an elliptical meridian is used, that is to say an intermediate form between the sphere and the paraboloid, the compensation lens becomes practically useless. Thus, in all cases, the device of the invention allows much better aberration compensation and this compensation is always obtained with fewer lenses than in the Lytle device and these lenses are always of lower power. As an example, the report n ° 4 mentioned above indicates on page 5 a residual zonal aberration of 1.6 A peak / peak while the device of the present invention makes it possible to reach approximately λ / 20 peak / peak.
  • - The device of the invention makes it possible to control both the zonal defects and the geometric shape of the mirror while the Lytle device makes it possible to control the zonal defects but does not make it possible to ascertain the geometric shape of the mirror and obliges to use another method, for example that of optical brackets.
  • - The device of the invention allows control in the laboratory. The Lytle device which includes the large concave mirror of the telescope cannot be used in the laboratory when this large mirror is a thin mirror shaped by jacks since this shaping is done only with the mirror mounted in the telescope and pointing a stigmatic point object located at infinity (star for example).

On décrira ci-après deux exemples de dispositifs conformes à la présente invention, en référence aux figures du dessin joint.Two examples of devices in accordance with the present invention will be described below, with reference to the figures in the accompanying drawing.

La première figure est un schéma du dispositif appliqué au contrôle d'un miroir convexe de diamètre 0,80 m et la deuxième figure est un schéma du dispositif appliqué au contrôle d'un miroir convexe de diamètre 1,4 m.The first figure is a diagram of the device applied to the control of a convex mirror with a diameter of 0.80 m and the second figure is a diagram of the device applied to the control of a convex mirror with a diameter of 1.4 m.

Le dispositif représenté sur la figure 1, pour le contrôle d'un miroir convexe 1 de diamètre 0,80 m, comprend un miroir concave 2 de diamètre 1,2 m et un système compensateur d'aberrations 4 constitué d'une lentille.The device shown in FIG. 1, for controlling a convex mirror 1 with a diameter of 0.80 m, comprises a concave mirror 2 with a diameter of 1.2 m and an aberration compensator system 4 consisting of a lens.

Les caractéristiques numériques de ce dispositif sont les suivantes (dimensions en mm):The digital characteristics of this device are as follows (dimensions in mm):

Miroir convexe (1):Convex mirror (1):

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002

Lentille compensatrice divergente (4):Diverging compensating lens (4):

Figure imgb0003
Figure imgb0003

cette lentille et le miroir concave (2) 2011,25this lens and the concave mirror (2) 2011.25

L'angle a (dont le sinus représente l'ouverture numérique de fonctionnement du miroir concave auxiliaire dans le montage) est inférieur à 14°.The angle a (whose sine represents the numerical aperture of operation of the auxiliary concave mirror in the assembly) is less than 14 °.

D'un point lumineux objet S, après réflexion sur un miroir plan 3, le miroir concave 2 donne une image que l'on fait se former au centre de courbure C du miroir convexe. Après réflexion sur ce miroir, la lumière se réfléchit à nouveau sur le miroir concave 2 pour former finalement une image superposée au point source S. Selon la nature du miroir concave et celle du miroir convexe (sphérique, hyperbolique, parabolique ou asphérique généralisée de révolution) l'image de retour est entachée d'aberrations sphériques que l'on corrige au moyen du système compensateur 4.From an object light point S, after reflection on a plane mirror 3, the concave mirror 2 gives an image which is made to form at the center of curvature C of the convex mirror. After reflection on this mirror, the light is reflected again on the concave mirror 2 to finally form an image superimposed on the source point S. Depending on the nature of the concave mirror and that of the convex mirror (spherical, hyperbolic, parabolic or generalized aspherical of revolution ) the return image is tainted with spherical aberrations which are corrected by means of the compensating system 4.

La figure 2 représente une disposition similaire comportant, pour le contrôle d'un miroir convexe 1' de diamètre 1,4 m, un miroir concave 2' de diamètre 1,6 m. Dans cette réalisation, le dispositif comporte un miroir plan supplémentaire 5' pour replier le faisceau. Le système compensateur 4' comprend dans cet exemple deux ménisques divergents dont les surfaces convexes regardant par leurs bosses sont pratiquement au contact.FIG. 2 represents a similar arrangement comprising, for the control of a convex mirror 1 'of diameter 1.4 m, a concave mirror 2' of diameter 1.6 m. In this embodiment, the device includes an additional plane mirror 5 'for folding the beam. The compensating system 4 ′ comprises in this example two divergent menisci whose convex surfaces looking through their bumps are practically in contact.

Les caractéristiques numériques de ce dispositif sont les suivantes (dimensions en mm):The digital characteristics of this device are as follows (dimensions in mm):

Miroir convexe (1'):Convex mirror (1 '):

Figure imgb0004
Figure imgb0004

Miroir concave auxiliaire (2'):Auxiliary concave mirror (2 '):

Figure imgb0005
Figure imgb0005

Lentilles compensatrices (4'):Compensating lenses (4 '):

Figure imgb0006
Figure imgb0006
Figure imgb0007
Figure imgb0007

deuxième lentille divergentesecond divergent lens

Figure imgb0008
Figure imgb0008

A titre de comparaison, si l'on utilisait dans le dispositif de la figure 1 le miroir concave du télescope au lieu du miroir auxiliaire, ce miroir concave aurait un diamètre beaucoup plus grand.For comparison, if we used in the device of Figure 1 the concave mirror of the telescope instead of the auxiliary mirror, this concave mirror would have a much larger diameter.

On remarquera qu'il suffit d'utiliser un miroir concave ayant la valeur requise pour le rayon de courbure au sommet, la seule condition imposée à la surface concave étant faite parfaitement régulière, c'est-à-dire exempte de défauts zonaux. Une étude de cette surface par interférométrie ou par la méthode de Hartmann permet d'en fixer la nature et l'équation à partir de laquelle est déterminé le compensateur d'aberrations sphériques.It will be noted that it suffices to use a concave mirror having the value required for the radius of curvature at the top, the only condition imposed on the concave surface being made perfectly regular, that is to say free of zonal defects. A study of this surface by interferometry or by the Hartmann method makes it possible to fix the nature and the equation from which the compensator of spherical aberrations is determined.

Le dispositif de l'invention limite la longueur des trajets de la lumière dans l'air, ce qui contribue à une plus grande précision des mesures de la surface du miroir convexe. A titre comparatif, les distances entre miroir convexe et miroir auxiliaire sont cinq à dix fois plus grande dans le cas du dispositif de Lytle.The device of the invention limits the length of the paths of light in the air, which contributes to greater accuracy of the measurements of the surface of the convex mirror. By way of comparison, the distances between the convex mirror and the auxiliary mirror are five to ten times greater in the case of the Lytle device.

De fait, l'invention fournit une méthode de contrôle en teinte plate qui permet à l'opticien de mettre son miroir convexe en forme (rayon de courbure et coefficient d'asphérisation) et de contrôler aussi la régularité de la surface (défauts zonaux et défauts qui ne sont pas de révolution) alors que le dispositif de Lytle permet généralement de vérifier sur le miroir convexe la présence de défauts zonaux, vérification que l'on effectue en se mettant en teinte plate pour différents diamètres de ce miroir en déplaçant longitudinalement la lentille convergente de compensation et permettant de vérifier la présence de défauts autres que des défauts de révolution.In fact, the invention provides a control method in flat tint which allows the optician to shape his convex mirror (radius of curvature and coefficient of aspherization) and also to control the regularity of the surface (zonal defects and defects which are not of revolution) whereas the Lytle device generally makes it possible to check on the convex mirror the presence of zonal defects, verification which is carried out by putting in flat tint for different diameters of this mirror by moving longitudinally the converging compensation lens and making it possible to verify the presence of defects other than defects of revolution.

Claims (4)

1. Aspheric convex mirror optical quality- control arrangement operating by studying the real image provided by an optical system comprising the convex mirror (1) to be checked and an auxiliary concave mirror (2), according to a method of autocollimation on the convex mirror, the auxiliary concave mirror being a mirror preferably without zonal defects in order to obtain the most exact measurement possible, whereof the meridian is in the shape of a sphere or a parabola or an intermediate shape and whereof the numerical opening is less than or equal to 0.25.
2. Arrangement according to Claim 1, characterised in that the auxiliary concave mirror (2) has an elliptical meridian.
3. Arrangement according to one of Claims 1 and 2, characterised in that it comprises at most two lenses (4) for compensating for aberrations.
4. Use of an arrangement according to one of Claims 1 to 3, to the control of a convex telescope mirror.
EP19840400164 1983-01-28 1984-01-25 Aspheric convex mirror quality-control arrangement and its application to the control of a convex telescope mirror Expired EP0115461B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8301329A FR2540255B1 (en) 1983-01-28 1983-01-28 DEVICE FOR MONITORING THE OPTICAL QUALITIES OF AN ASPHERIC CONVEX MIRROR AND ITS APPLICATION TO MONITORING THE CONVEX MIRROR OF A TELESCOPE
FR8301329 1983-01-28

Publications (3)

Publication Number Publication Date
EP0115461A2 EP0115461A2 (en) 1984-08-08
EP0115461A3 EP0115461A3 (en) 1985-10-02
EP0115461B1 true EP0115461B1 (en) 1988-06-01

Family

ID=9285382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840400164 Expired EP0115461B1 (en) 1983-01-28 1984-01-25 Aspheric convex mirror quality-control arrangement and its application to the control of a convex telescope mirror

Country Status (4)

Country Link
EP (1) EP0115461B1 (en)
CA (1) CA1253023A (en)
DE (1) DE3471749D1 (en)
FR (1) FR2540255B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628849B1 (en) * 1988-03-17 1990-08-24 Reosc VARIABLE COMPENSATOR OF DIFFERENT ORDERS OF SPHERICAL ABERRATION TO VERIFY THE SHAPE OF THE SURFACE OF AN ASPHERIC MIRROR AND ITS APPLICATION
US5361129A (en) * 1992-03-18 1994-11-01 Eastman Kodak Company Method of assessing a surface figure of an optical element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518004A (en) * 1968-02-13 1970-06-30 Us Air Force Method and apparatus for determining the accuracy of the reflecting surface of a paraboloidal reflector in space

Also Published As

Publication number Publication date
FR2540255A1 (en) 1984-08-03
EP0115461A3 (en) 1985-10-02
DE3471749D1 (en) 1988-07-07
CA1253023A (en) 1989-04-25
FR2540255B1 (en) 1987-03-06
EP0115461A2 (en) 1984-08-08

Similar Documents

Publication Publication Date Title
EP0644411B1 (en) Procedure and apparatus for the absolute measurement of the geometrical or optical structure of an optical component
FR2464494A1 (en) OPTICAL SCANNING SYSTEM
FR3060136A1 (en) COMPACT TELESCOPE HAVING A PLURALITY OF FOCUS COMPENSATED BY ASPHERIC OPTICAL COMPONENTS
EP3336595B1 (en) Compact telescope having a plurality of focal distances compensated by a deformable mirror
EP3336594B1 (en) Compact telescope having a plurality of focal distances compensated by non-spherical optical components
EP0115461B1 (en) Aspheric convex mirror quality-control arrangement and its application to the control of a convex telescope mirror
US4958931A (en) System utilizing an achromatic null lens for correcting aberrations in a spherical wavefront
EP0840158B1 (en) Device for determining phase errors of electromagnetic waves
CH625055A5 (en) Annular optical device having a specific (unitary) power
EP3667395B1 (en) Bi-spectral anastigmatic telescope
KR100992839B1 (en) Spectroscopic Ellipsometer with a Microspot Module
FR2653879A1 (en) Spectrograph with convex diffraction grating
EP1261891A2 (en) Aberration correcting optical relay for optical system, in particular mirror telescope
WO2015040117A1 (en) Telescope comprising inner adjustment means in the focal plane
US5072104A (en) Achromatic null lens
US7342667B1 (en) Method of processing an optical element using an interferometer having an aspherical lens that transforms a first spherical beam type into a second spherical beam type
FR2653905A1 (en) OPTICAL DEVICE FOR THE CORRECTION OF DEFECTS INTRODUCED BY A SPHERICAL HOPPER USED OUTSIDE AXIS.
Sandri Wavefront error measurement of the concave ellipsoidal mirrors of the METIS coronagraph on ESA Solar Orbiter mission
KR100355025B1 (en) Null lens optical system for testing a surface of a concave mirror with a ellipsoid
FR2710146A1 (en) Optical device for measuring transverse deviation.
EP0333597B1 (en) Variable compensator of spherical aberrations of different orders for the verification of the surface-shape of a non-speric mirror and its application
EP1079215A1 (en) High resolution infrared spectroscopic instrument
JPH08271209A (en) Light waveguide path type displacement sensor and hemispherical lens used for the sensor
EP0004813A1 (en) Optical observation instrument
Bhatia et al. Telescopes: their design and maintenance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19851001

17Q First examination report despatched

Effective date: 19860813

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 3471749

Country of ref document: DE

Date of ref document: 19880707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890131

Ref country code: CH

Effective date: 19890131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940609

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003