EP0105175B2 - Vacuum-formed electrical heating unit and method of making it - Google Patents

Vacuum-formed electrical heating unit and method of making it Download PDF

Info

Publication number
EP0105175B2
EP0105175B2 EP83108349A EP83108349A EP0105175B2 EP 0105175 B2 EP0105175 B2 EP 0105175B2 EP 83108349 A EP83108349 A EP 83108349A EP 83108349 A EP83108349 A EP 83108349A EP 0105175 B2 EP0105175 B2 EP 0105175B2
Authority
EP
European Patent Office
Prior art keywords
heating coil
heating
ceramic
sieve
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP83108349A
Other languages
German (de)
French (fr)
Other versions
EP0105175A1 (en
EP0105175B1 (en
Inventor
Josef Bös
Leo Saris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanthal GmbH
Original Assignee
Kanthal GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6172636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0105175(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kanthal GmbH filed Critical Kanthal GmbH
Priority to AT83108349T priority Critical patent/ATE32157T1/en
Publication of EP0105175A1 publication Critical patent/EP0105175A1/en
Application granted granted Critical
Publication of EP0105175B1 publication Critical patent/EP0105175B1/en
Publication of EP0105175B2 publication Critical patent/EP0105175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing

Definitions

  • the invention relates to an electrical, free-radiating resistance heating device which is vacuum-formed from ceramic fibers and according to the preamble of patent claim 1.
  • the invention also relates to a vacuum molding method for producing such a resistance heating device according to the preamble of claim 3.
  • heating modules The basic technique for vacuum forming electrical heating devices, also referred to here as “heating modules”, is described, for example, in US-A-35 00 444 and in a more modern form in US-A-42 78 877 (see DE-Al 28 55 382).
  • heating modules produced by these vacuum molding processes the heating coils or heating spirals are embedded in the ceramic fiber mass in such a way that the interior of the heating coils is normally filled with fiber material.
  • a heating coil 5 is placed on a sieve-like base 1, for example a perforated plate. Under the floor 1 there is a suction box, not shown, through which liquid is drawn off from a top-filled sludge 3, which consists of a slurry of ceramic fibers, binders and water, by means of the vacuum generally indicated with reference 2. The liquid portion is sucked off through the sieve-like base 1 and a layer of ceramic fibers builds up.
  • the interior 8 of the heating coil 5 is generally also filled with ceramic fibers, specifically the density in this interior 8 will correspond approximately to the density of the remaining mass of the ceramic fiber block 4, which is approximately 200 kg / m 3 .
  • the free-radiating surface area 6 of the heating coil 5 is brought to an operating temperature of 1,150 ° C., for example. so on the opposite side (the back 7) of the heating coil 5, which is largely completely embedded in the ceramic fiber mass, a considerably higher temperature will occur. As a result, it is not possible to heat the heating coil on its freely radiating surface side 6 to a maximum desired operating temperature, since the rear side 7 would then be overheated.
  • Another problem associated with the desired maximum possible application or operating temperature of such heating modules is based on the fact that the aluminum silicate fibers which are used predominantly for the fiber mass are only suitable for a maximum permissible operating temperature of 1,150 ° C. Excessive crystallization of the fiber takes place above this temperature, causing it to lose its structure and desired properties entirely. If you now heat the heating coil 5 on the free-radiating surface side 6 to a temperature of approximately 1,150 ° C., 5 temperatures of approximately 1,250 ° C. occur on the rear of the heating coil. This temperature value is then about 100 ° C above the maximum permissible operating temperature of the fiber and will lead to an excessively rapid crystallization of the fiber material.
  • the heating coil loses its hold in the overheated part of the fiber mass and will detach itself from the fiber mass more or less quickly, especially with ceiling elements in an oven space.
  • the heating coil 5 will then initially protrude more and more on the radiating side 9 of the fiber block 4 and will eventually fall out.
  • the invention is therefore based on the object to provide heating modules of the type mentioned and a vacuum molding process for their production, by which it is achieved that the heating coil does not loosen or loosen in its anchoring in the ceramic fiber mass, in particular an aluminum silicate fiber mass when the heating coil is heated to an optimal operating temperature, such that, for example, a temperature of 1,150 ° C. occurs on the radiating side of the module.
  • a vacuum molding process for producing a heating module is the subject of claim 3.
  • the invention achieves, on the one hand, in a simple manner and without the use of plastic hoses that the interior of the heater Spiral remains more or less free of fiber material, so that the temperature difference on the heating coil between the radiating surface of the heating module and the back is significantly reduced and the heating coil can be operated at a significantly higher operating temperature overall without the risk of a gradual loosening there is anchoring within the fiber block.
  • the heating coils in vacuum forming are preferably underlaid by supporting elements, the supporting elements being narrower than the width dimensions of the heating coils in a plane parallel to the radiating surface or narrower than the diameter of the heating coils, means that the heating coils are largely in their interior remain free of fiber material, as can be seen, the openings of the sieve-like bottom in the longitudinal extension of the heating coils are partially closed during the vacuum molding process.
  • the heating coils are underlaid during the vacuum molding process by strip-like elements, hereinafter referred to as “spacer strips”, so that, for reasons explained below, the heating coils are later exposed on the radiating surface of the heating module, but overall are set back into the fiber block by the thickness of the spacer strips, so that optimum anchoring is achieved, but at the same time the interior of the heating coils remains free of fiber material.
  • FIG 3 illustrates a first embodiment: on the sieve-like base 1 (the perforated plate), for example, adhesive strips 10 are applied, which cover the perforation in the longitudinal extent of the heating spirals 5, that is to say in the direction perpendicular to the plane of the drawing. These adhesive strips 10 are attached directly under the heating spirals 5 which are subsequently placed on the perforated plate and are slightly fixed. The partial closure of the perforation does not result in a suction effect caused by the vacuum 2 at these points, so that the interior 8 of the heating spirals 5 remains largely free of ceramic fiber material.
  • FIG. 4 shows the result of the manufacturing method explained with reference to FIG. 3. Similar to the exemplary embodiment in FIG. 2, the heating coil 5 is also flush with the radiating side 9 of the fiber block 4. The interior 8 of the heating coil 5 is now hollow, that is to say free of fiber material, so that the rear side 7 of the heating coil 5 radiates much more freely can. It is thereby achieved that the temperature difference on the heating coil between the free-radiating side 6 on the radiating surface 9 and the rear side 7 is greatly reduced, so that undesired overheating in the area of the rear side 7 of the heating spirals 5 is avoided.
  • this first principle embodiment of the invention still has the disadvantage that the heating coil 5 is now less overall connected to the ceramic fiber block 4, although the above-explained effect of recrystallization of the fibers due to partial overheating is no longer observed.
  • the heating coils 5 are only surrounded by fiber material along their outer circumference and, moreover, they are not held on the free-radiating side 6, as is also the case in the prior art according to FIG. 2.
  • the principle advantage that the crystallization of the fiber material no longer occurs a difficulty can also arise with this construction, however, in that the heating spirals fall out of the fiber block because of inadequate anchoring, especially when such heating modules are used for ceiling constructions in furnace rooms.
  • the significantly improved embodiment of the invention according to FIGS. 5 and 6 is based on the idea of embedding the heating coil 5 on the one hand in the mass of the fiber block 4 in such a way that its interior 8 remains free of ceramic fibers without, on the other hand, the risk of the heating coils 5 can fall out of the fiber block 4 due to poor adhesion.
  • spacer strips 11 are attached to the sieve-like base 1 below the intended positions of the heating spirals.
  • These spacer strips 11 can, for. B. consist of metal, wood or plastic.
  • the width of these spacer strips 11 should in any case be somewhat less than the diameter or the width dimension of the heating coil 5 in a plane parallel to the radiating surface side 9 of the fiber block 4; the thickness of the spacer bars 11 should be in the range of at least 0.1 to approximately 30 mm, preferably in the range of 2 to 10 mm.
  • the silt 3 is now introduced into the frame (not shown in more detail) equipped with the sieve-like bottom 1 and the flux portion is drawn off through the sieve-like bottom 1, the fibers build up in such a way that the spacer strips 11 are enclosed, while the interior 4 of the heating coils 5 largely hollow, ie remains free of fiber deposits.
  • the free-radiating side 6 of the heating coil 5 is no longer flush with the radiating side 9 of the fiber block 4, but is set back into the fiber block 4 by the thickness of the spacer strips 11.
  • the resulting on the spacers 11 retaining webs 12 partially enclose the exposed side 6 of the heating spirals 5, but without the interior 8 is filled with fibers.
  • the desired goal was achieved, namely to keep the interior fiber-free, so that the temperature difference between the radiating side 6 and the back 7 of the heating coils 5 is significantly less than in the conventional technique in which the heating coils are completely, i.e. H. are embedded in the fiber block 4 with a fiber-filled interior 8.
  • the heating spirals 5 are held securely by the holding webs 12, so that there is no longer any danger of falling out, even if such a heating module is used as a ceiling element in an oven.

Abstract

A resistance heating coil is placed on a sieve like tray above a suction box, and a slip of ceramic fibers is placed in the suction box, so that a ceramic fiber layer builds up when suction is applied. Portions of the sieve like tray are closed in regions beneath the resistance heating coil by strips in such a manner that the impervious regions of the sieve like tray are narrower than the width dimensions of the heating coil so that the space inside the heating coil remains free of fiber material during the vacuum moulding operation. This allows the heater to be operated at a higher temperature without the risk of crystallization of the fibers.

Description

Die Erfindung betrifft eine aus keramischen Fasern vakuumgeformte, elektrische, freistrahlende Widerstands-Heizvorrichtung nach dem Oberbegriff des Patentanspruchs 1.The invention relates to an electrical, free-radiating resistance heating device which is vacuum-formed from ceramic fibers and according to the preamble of patent claim 1.

Die Erfindung bezieht sich außerdem auf ein Vakuumformverfahren zur Herstellung einer solchen Widerstands-Heizvorrichtung gemäß dem Oberbegriff des Patentanspruchs 3.The invention also relates to a vacuum molding method for producing such a resistance heating device according to the preamble of claim 3.

Die prinzipielle Technik zum Vakuumformen von hier auch als « Heizmoduln » bezeichneten elektrischen Heizvorrichtungen ist beispielsweise in der US-A-35 00 444 sowie in moderner Form in der US-A-42 78 877 (s DE-Al 28 55 382) beschrieben. Bei nach diesen Vakuum-Formverfahren hergestellten Heizmoduln sind die Heizwendeln oder Heizspiralen in die keramische Fasermasse so eingebettet, daß der Innenraum der Heizwendeln im Normalfall mit Fasermaterial gefüllt ist.The basic technique for vacuum forming electrical heating devices, also referred to here as “heating modules”, is described, for example, in US-A-35 00 444 and in a more modern form in US-A-42 78 877 (see DE-Al 28 55 382). In heating modules produced by these vacuum molding processes, the heating coils or heating spirals are embedded in the ceramic fiber mass in such a way that the interior of the heating coils is normally filled with fiber material.

Dieses übliche Vakuum-Formverfahren wird zunächst anhand der Fig. 1 erläutert :This conventional vacuum molding process is first explained with reference to FIG. 1:

Auf einen siebartigen Boden 1, beispielsweise eine perforierte Platte, wird eine Heizwendel 5 aufgelegt. Unter dem Boden 1 befindet sich ein nicht dargestellter Saugkasten, durch den mittels des allgemein mit dem Bezugshinweis 2 angegebenen Vakuums Flüssigkeit aus einem oberseitig aufgefüllten Schlick 3 abgezogen wird, der aus einer Aufschlämmung von keramischen Fasern, Bindemittel und Wasser besteht. Der Flüssiganteil wird durch den siebartigen Boden 1 abgesaugt und es baut sich eine Schicht aus keramischen Fasern auf. Bei diesem herkömmlichen Verfahren wird in der Regel auch der Innenraum 8 der Heizwendel 5 mit keramischen Fasern gefüllt, und zwar wird die Dichte in diesem Innenraum 8 in etwa der Dichte der übrigen Masse des keramischen Faserblock 4 entsprechen, die etwa 200 kg/m3 beträgt.A heating coil 5 is placed on a sieve-like base 1, for example a perforated plate. Under the floor 1 there is a suction box, not shown, through which liquid is drawn off from a top-filled sludge 3, which consists of a slurry of ceramic fibers, binders and water, by means of the vacuum generally indicated with reference 2. The liquid portion is sucked off through the sieve-like base 1 and a layer of ceramic fibers builds up. In this conventional method, the interior 8 of the heating coil 5 is generally also filled with ceramic fibers, specifically the density in this interior 8 will correspond approximately to the density of the remaining mass of the ceramic fiber block 4, which is approximately 200 kg / m 3 .

Die technischen Schwierigkeiten, die sich beim Gebrauch solcher Heizmodulen ergeben, werden nachfolgend unter Bezug auf die Fig. 2 beschrieben:The technical difficulties that arise when using such heating modules are described below with reference to FIG. 2:

Wird derfreistrahlende Oberflächenbereich 6 der Heizwendel 5 beispielsweise auf eine Betriebstemperatur von 1 150 °C gebracht. so wird auf der gegenüberliegenden Seite (der Rückseite 7) der weitgehend vollständig in die keramische Fasermasse eingebetteten Heizwendel 5 eine beträchtlich höhere Temperatur auftreten. Dadurch ist es nicht möglich, die Heizwendel auf ihrer freistrahlenden Oberflächenseite 6 bis zu einer maximal erwünschten Betriebstemperatur zu erwärmen, da dann die Rückseite 7 überhitzt werden würde.If the free-radiating surface area 6 of the heating coil 5 is brought to an operating temperature of 1,150 ° C., for example. so on the opposite side (the back 7) of the heating coil 5, which is largely completely embedded in the ceramic fiber mass, a considerably higher temperature will occur. As a result, it is not possible to heat the heating coil on its freely radiating surface side 6 to a maximum desired operating temperature, since the rear side 7 would then be overheated.

Um die übermäßige Überhitzung auf der der freistrahlenden Oberflächenseite 6 gegenüberliegend in die Fasermasse eingebetteten Rückseite 7 sowie die Überhitzung im Innern der Heizwendel 5 zu vermeiden, ist es aus der GB-A-14 41 577 bekannt, den Innenraum der Heizwendel 5 während des Vakuumformprozesses mit einem wärmeausschmelzbaren Material, beispielsweise mit einem Kunststoffrohr auszufüllen, das beim ersten Inbetriebnehmen des Heizmoduls ausgeschmolzen und verdampft wird, so daß der Innenraum der Heizwendel 5 dann frei ist von Fasermaterial.In order to avoid the excessive overheating on the back 7 embedded in the fiber mass opposite the free-radiating surface side 6 and the overheating inside the heating coil 5, it is known from GB-A-14 41 577 to include the interior of the heating coil 5 during the vacuum molding process a fusible material, for example, to be filled with a plastic tube which is melted and evaporated when the heating module is started up for the first time, so that the interior of the heating coil 5 is then free of fiber material.

Ein anderes mit der erwünschten maximal möglichen Anwendungs- oder Betriebstemperatur solcher Heizmodulen verbundenes Problem beruht darauf, daß die für die Fasermasse ganz überwiegend verwendeten Aluminium-Silikatfasern nur für eine maximal zulässige Betriebstemperatur von 1 150 °C geeignet sind. Oberhalb dieser Temperatur findet eine übermäßige Kristallisation der Faser statt, wodurch diese ihre Struktur und erwünschten Eigenschaften völlig verliert. Heizt man nun die Heizwendel 5 an der freistrahlenden Oberflächenseite 6 auf eine Temperatur von etwa 1 150 °C auf, so treten an der Rückseite der Heizwendel 5 Temperaturen von ca. 1 250 °C auf. Dieser Temperaturwert liegt dann um ca. 100 °C über der maximal zulässigen Betriebstemperatur der Faser und wird zu einer übermäßig schnellen Kristallisation des Fasermaterials führen. Damit verliert die Heizwendel im überhitzten Teil der Fasermasse ihren Halt und wird sich mehr oder weniger rasch, vor allem bei Deckenelementen in einem Ofenraum, aus der Fasermasse lösen. Die Heizwendel 5 wird dann zunächst an der strahlenden Seite 9 des Faserblocks 4 mehr und mehr hervorstehen und schließlich herausfallen. Um dies zu vermeiden, ist es aus der GB-PS 14 41 577 für eine darin beschriebene weitere Ausführungsform bekannt, die Heizwendel durch ein Zementbett seitlich zu fixieren. Diese Verankerung der Heizwendel erfordert jedoch einen erhöhten Herstellungsaufwand.Another problem associated with the desired maximum possible application or operating temperature of such heating modules is based on the fact that the aluminum silicate fibers which are used predominantly for the fiber mass are only suitable for a maximum permissible operating temperature of 1,150 ° C. Excessive crystallization of the fiber takes place above this temperature, causing it to lose its structure and desired properties entirely. If you now heat the heating coil 5 on the free-radiating surface side 6 to a temperature of approximately 1,150 ° C., 5 temperatures of approximately 1,250 ° C. occur on the rear of the heating coil. This temperature value is then about 100 ° C above the maximum permissible operating temperature of the fiber and will lead to an excessively rapid crystallization of the fiber material. As a result, the heating coil loses its hold in the overheated part of the fiber mass and will detach itself from the fiber mass more or less quickly, especially with ceiling elements in an oven space. The heating coil 5 will then initially protrude more and more on the radiating side 9 of the fiber block 4 and will eventually fall out. To avoid this, it is known from GB-PS 14 41 577 for a further embodiment described therein to fix the heating coil laterally by means of a cement bed. This anchoring of the heating coil, however, requires an increased manufacturing effort.

Der Erfindung liegt damit die Aufgabe zugrunde, Heizmodule der eingangs genannten Art sowie ein Vakuum-Formverfahren zu deren Herstellung zu schaffen, durch die erreicht wird, daß die Heizspirale sich in ihrer Verankerung in der Keramikfasermasse, insbesondere einer Aluminiumsilikatfasermasse, auch dann nicht lockert oder löst, wenn die Heizwendel auf eine optimale Betriebstemperatur aufgeheizt wird, derart, daß an der strahlenden Seite des Moduls beispielsweise eine Temperatur von 1 150 °C auftritt.The invention is therefore based on the object to provide heating modules of the type mentioned and a vacuum molding process for their production, by which it is achieved that the heating coil does not loosen or loosen in its anchoring in the ceramic fiber mass, in particular an aluminum silicate fiber mass when the heating coil is heated to an optimal operating temperature, such that, for example, a temperature of 1,150 ° C. occurs on the radiating side of the module.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst. Ein Vakuum-Formverfahren zur Herstellung eines Heizmoduls ist Gegenstand des Patentanspruchs 3.This object is achieved by the features specified in the characterizing part of patent claim 1. A vacuum molding process for producing a heating module is the subject of claim 3.

Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Widerstandsheizvorrichtung sind in den Unteransprüchen angegeben.Advantageous refinements and developments of the method according to the invention and the resistance heating device according to the invention are specified in the subclaims.

Durch die Erfindung wird einerseits auf einfache Weise und ohne die Verwendung von Kunststoffschläuchen erreicht, daß der Innenraum der Heizwendel mehr oder weniger frei bleibt von Fasermaterial, so daß die Temperaturdifferenz an der Heizwendel zwischen der strahlenden Oberfläche des Heizmoduls und der Rückseite wesentlich verringert ist und die Heizwendel insgesamt auf einer deutlich höheren Betriebstemperatur betrieben werden kann, ohne daß andererseits die Gefahr einer allmählichen Lockerung aus der Verankerung innerhalb des Faserblocks besteht.The invention achieves, on the one hand, in a simple manner and without the use of plastic hoses that the interior of the heater Spiral remains more or less free of fiber material, so that the temperature difference on the heating coil between the radiating surface of the heating module and the back is significantly reduced and the heating coil can be operated at a significantly higher operating temperature overall without the risk of a gradual loosening there is anchoring within the fiber block.

Dadurch, daß die Heizwendeln beim VakuumFormen vorzugsweise durch Unterlageelemente unterlegt sind, wobei die Unterlageelemente schmäler sind als die Breitenabmessungen der Heizwendeln in einer Ebene parallel zur strahlenden Oberfläche bzw. schmäler sind als der Durchmesser der Heizwendeln, wird erreicht, daß die Heizwendeln in ihrem Innenraum weitgehend frei bleiben von Fasermaterial, da ersichtlich die Öffnungen des siebartigen Bodens in Längserstreckung der Heizwendeln während des Vakuum-Formvorgangs partiell verschlossen sind.The fact that the heating coils in vacuum forming are preferably underlaid by supporting elements, the supporting elements being narrower than the width dimensions of the heating coils in a plane parallel to the radiating surface or narrower than the diameter of the heating coils, means that the heating coils are largely in their interior remain free of fiber material, as can be seen, the openings of the sieve-like bottom in the longitudinal extension of the heating coils are partially closed during the vacuum molding process.

Bei einer besonders vorteilhaften Ausführungsform der Erfindung werden die Heizwendeln während des Vakuum-Formvorgangs durch streifenartige Elemente, im folgenden « Distanzleisten » genannt, unterlegt, so daß aus weiter unten noch erläuterten Gründen die Heizwendeln später zwar an der strahlenden Oberfläche des Heizmoduls freiliegen, jedoch insgesamt um die Dicke der Distanzleisten in den Faserblock hinein zurückversetzt sind, so daß eine optimale Verankerung erreicht wird, gleichzeitig jedoch der Innenraum der Heizwendeln frei bleibt von Fasermaterial.In a particularly advantageous embodiment of the invention, the heating coils are underlaid during the vacuum molding process by strip-like elements, hereinafter referred to as “spacer strips”, so that, for reasons explained below, the heating coils are later exposed on the radiating surface of the heating module, but overall are set back into the fiber block by the thickness of the spacer strips, so that optimum anchoring is achieved, but at the same time the interior of the heating coils remains free of fiber material.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. Es zeigen :

  • Fig. 1 und 2 den bereits erläuterten Stand der Technik ;
  • Fig. 3 ein erstes Ausführungsbeispiel zur Erläuterung des erfindungsgemäßen Vakuum-Formverfahrens:
  • Fig. 4 in schematischer Darstellung das Produkt als Ergebnis des Vakuum-Formverfahrens nach Fig. 3 ;
  • Fig. 5 ein zu bevorzugendes Ausführungsbeispiel für ein erfindungsgemäßes Vakuum-Formverfahren ; und
  • Fig. 6 wiederum in schematischer Darstellung das Produkt des Vakuum-Formverfahrens nach
  • Fig. 5 zur Erläuterung bestimmter vorteilhafter Eigenschaften.
Exemplary embodiments of the invention are explained in more detail below with reference to the drawing. Show it :
  • 1 and 2 the already explained prior art;
  • 3 shows a first exemplary embodiment to explain the vacuum molding process according to the invention:
  • 4 shows a schematic representation of the product as a result of the vacuum molding process according to FIG. 3;
  • 5 shows a preferred exemplary embodiment for a vacuum molding process according to the invention; and
  • Fig. 6 again in a schematic representation of the product of the vacuum molding process
  • Fig. 5 for explaining certain advantageous properties.

Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugshinweisen gekennzeichnet.Corresponding parts are identified in all figures with the same reference notes.

Die Fig. 3 verdeutlicht eine erste Ausführungsform : Auf dem siebartigen Boden 1 (der perforierten Platte) werden beispielsweise Klebestreifen 10 aufgebracht, welche die Perforation in Längserstreckung der Heizspiralen 5, also in senkrechter Richtung zur Zeichenebene, abdecken. Diese Klebestreifen 10 werden direkt unter der anschließend auf die perforierte Platte aufgelegten und leicht fixierten Heizspiralen 5 angebracht. Durch das partielle Verschließen der Perforation entsteht an diesen Stellen keine durch das Vakuum 2 verursachte Saugwirkung, so daß der Innenraum 8 der Heizspiralen 5 weitestgehend frei bleibt von keramischem Fasermaterial.3 illustrates a first embodiment: on the sieve-like base 1 (the perforated plate), for example, adhesive strips 10 are applied, which cover the perforation in the longitudinal extent of the heating spirals 5, that is to say in the direction perpendicular to the plane of the drawing. These adhesive strips 10 are attached directly under the heating spirals 5 which are subsequently placed on the perforated plate and are slightly fixed. The partial closure of the perforation does not result in a suction effect caused by the vacuum 2 at these points, so that the interior 8 of the heating spirals 5 remains largely free of ceramic fiber material.

Die Fig. 4 zeigt das Ergebnis des anhand der Fig. 3 erläuterten Herstellungsverfahrens. Ähnlich wie beim Ausführungsbeispiel der Fig. 2 liegt auch hier die Heizspirale 5 bündig mit der strahlenden Seite 9 des Faserblocks 4. Der Innenraum 8 der Heizspiralen 5 ist jetzt hohl, also frei von Fasermaterial, so daß die Rückseite 7 der Heizspiralen 5 wesentlich freier abstrahlen kann. Damit ist erreicht, daß der Temperaturunterschied an der Heizspirale zwischen der freistrahlenden Seite 6 an der strahlenden Oberfläche 9 und der Rückseite 7 stark verringert ist, so daß eine unerwünschte Überhitzung im Bereich der Rückseite 7 der Heizspiralen 5 vermieden ist.FIG. 4 shows the result of the manufacturing method explained with reference to FIG. 3. Similar to the exemplary embodiment in FIG. 2, the heating coil 5 is also flush with the radiating side 9 of the fiber block 4. The interior 8 of the heating coil 5 is now hollow, that is to say free of fiber material, so that the rear side 7 of the heating coil 5 radiates much more freely can. It is thereby achieved that the temperature difference on the heating coil between the free-radiating side 6 on the radiating surface 9 and the rear side 7 is greatly reduced, so that undesired overheating in the area of the rear side 7 of the heating spirals 5 is avoided.

Diese erste prinzipielle Ausführungsform der Erfindung hat jedoch noch den Nachteil, daß die Heizspirale 5 jetzt insgesamt weniger gut mit dem keramischen Faserblock 4 verbunden ist, obgleich der oben erläuterte Effekt der Umkristallisation der Fasern aufgrund von partieller Überhitzung nicht mehr beobachtet wird. Die Heizspiralen 5 sind jedoch nur entlang ihres äußeren Umfangs von Fasermaterial umgeben und sie werden überdies an der freistrahlenden Seite 6 nicht gehalten, wie dies auch beim Stand der Technik nach Fig. 2 der Fall ist. Trotz des prinzipiellen Vorteils, daß die Kristallisation des Fasermaterials nicht mehr auftritt, kann jedoch auch bei dieser Konstruktion noch eine Schwierigkeit dadurch entstehen, daß die Heizspiralen wegen unzureichender Verankerung aus dem Faserblock herausfallen, insbesondere, wenn solche Heizmoduln für Deckenkonstruktionen in Ofenräumen eingesetzt werden.However, this first principle embodiment of the invention still has the disadvantage that the heating coil 5 is now less overall connected to the ceramic fiber block 4, although the above-explained effect of recrystallization of the fibers due to partial overheating is no longer observed. However, the heating coils 5 are only surrounded by fiber material along their outer circumference and, moreover, they are not held on the free-radiating side 6, as is also the case in the prior art according to FIG. 2. Despite the principle advantage that the crystallization of the fiber material no longer occurs, a difficulty can also arise with this construction, however, in that the heating spirals fall out of the fiber block because of inadequate anchoring, especially when such heating modules are used for ceiling constructions in furnace rooms.

Der wesentlich verbesserten Ausführungsform der Erfindung nach den Fig. 5 und 6 liegt die Idee zugrunde, die Heizspirale 5 einerseits so in die Masse des Faserblocks 4 einzubetten, daß deren Innenraum 8 frei bleibt von keramischen Fasern, ohne andererseits Gefahr zu laufen, daß die Heizspiralen 5 durch mangelhafte Haftung aus dem Faserblock 4 herausfallen können.The significantly improved embodiment of the invention according to FIGS. 5 and 6 is based on the idea of embedding the heating coil 5 on the one hand in the mass of the fiber block 4 in such a way that its interior 8 remains free of ceramic fibers without, on the other hand, the risk of the heating coils 5 can fall out of the fiber block 4 due to poor adhesion.

Das Prinzip der Herstellung wird zunächst anhand der schematischen Schnittdarstellung der Fig. 5 erläutert: Auf dem siebartigen Boden 1 werden unterhalb der vorgesehenen Positionen der Heizspiralen 5 Distanzleisten 11 angebracht. Diese Distanzleisten 11 können z. B. aus Metall, Holz oder Kunststoff bestehen. Die Breite dieser Distanzleisten 11 sollte auf jeden Fall etwas geringer sein als der Durchmesser bzw. die Breitenabmessung der Heizspirale 5 in einer Ebene parallel zur strahlenden Oberflächenseite 9 des Faserblocks 4 ; die Dicke der Distanzleisten 11 sollte im Bereich von wenigstens 0,1 bis ca. 30 mm, vorzugsweise im Bereich von 2 bis 10mm, liegen. Wird nun der Schlick 3 in den mit dem siebartigen Boden 1 ausgerüsteten nicht näher gezeigten Rahmen eingebracht und wird der Flussiganteil durch den siebartigen Boden 1 abgezogen, so bauen sich die Fasern derart auf, daß die Distanzleisten 11 umschlossen werden, während der Innenraum 4 der Heizspiralen 5 weitgehend hohl, d. h. frei von Faserablagerungen bleibt.The principle of manufacture is first explained with the aid of the schematic sectional illustration in FIG. 5: 5 spacer strips 11 are attached to the sieve-like base 1 below the intended positions of the heating spirals. These spacer strips 11 can, for. B. consist of metal, wood or plastic. The width of these spacer strips 11 should in any case be somewhat less than the diameter or the width dimension of the heating coil 5 in a plane parallel to the radiating surface side 9 of the fiber block 4; the thickness of the spacer bars 11 should be in the range of at least 0.1 to approximately 30 mm, preferably in the range of 2 to 10 mm. If the silt 3 is now introduced into the frame (not shown in more detail) equipped with the sieve-like bottom 1 and the flux portion is drawn off through the sieve-like bottom 1, the fibers build up in such a way that the spacer strips 11 are enclosed, while the interior 4 of the heating coils 5 largely hollow, ie remains free of fiber deposits.

Die Fig. 6 zeigt in einer prinzipiellen Schnittdarstellung das Produktergebnis: Die freistrahlende Seite 6 der Heizspirale 5 liegt jetzt nicht mehr bündig mit der strahlenden Seite 9 des Faserblocks 4, sondern liegt um die Dicke der Distanzleisten 11 in den Faserblock 4 zurückversetzt. Die aufgrund der Distanzleisten 11 entstehenden Haltestege 12 umschließen die freistrahlende Seite 6 der Heizspiralen 5 teilweise, ohne daß jedoch der Innenraum 8 mit Fasern gefüllt ist. Damit wurde das angestrebte Ziel erreicht, nämlich, den Innenraum faserfrei zu halten, so daß die Temperaturdifferenz zwischen der strahlenden Seite 6 und der Rückseite 7 der Heizspiralen 5 wesentlich geringer ist als bei der herkömmlichen Technik, bei der die Heizspiralen komplett, d. h. mit fasergefülltem Innenraum 8 in den Faserblock 4 eingebettet sind. Andererseits aber werden die Heizspiralen 5 durch die Haltestege 12 sicher gehalten, so daß keine Gefahr des Herausfallens mehr besteht, auch wenn ein solcher Heizmodul als Deckenelement in einem Ofen verwendet wird.6 shows a basic sectional illustration of the product result: the free-radiating side 6 of the heating coil 5 is no longer flush with the radiating side 9 of the fiber block 4, but is set back into the fiber block 4 by the thickness of the spacer strips 11. The resulting on the spacers 11 retaining webs 12 partially enclose the exposed side 6 of the heating spirals 5, but without the interior 8 is filled with fibers. Thus, the desired goal was achieved, namely to keep the interior fiber-free, so that the temperature difference between the radiating side 6 and the back 7 of the heating coils 5 is significantly less than in the conventional technique in which the heating coils are completely, i.e. H. are embedded in the fiber block 4 with a fiber-filled interior 8. On the other hand, the heating spirals 5 are held securely by the holding webs 12, so that there is no longer any danger of falling out, even if such a heating module is used as a ceiling element in an oven.

Bei den beschriebenen Ausführungsformen der Erfindung sind, wie die Figuren erkennen lassen, sogenannte ovale Heizspiralen oder Heizwendeln 5 vorgesehen, wie sie auch in der oben erwähnten US-PS 4 278 877 mit den dort erwähnten Vorteilen beschrieben sind. Für den Fachmann ist ohne weiteres ersichtlich, daß sich die Erfindung auch für Heizspiralen mit anderen Querschnitten, beispielsweise mit rundem Querschnitt oder zu einem Rechteck verformten Querschnitt, mit Vorteil einsetzen läßt.In the described embodiments of the invention, as can be seen from the figures, so-called oval heating spirals or heating coils 5 are provided, as are also described in the above-mentioned US Pat. No. 4,278,877 with the advantages mentioned therein. It is readily apparent to the person skilled in the art that the invention can also be used advantageously for heating spirals with other cross sections, for example with a round cross section or a cross section deformed into a rectangle.

Claims (6)

1. Free-radiating electrical resistance-heating device, vacuum-formed from ceramic fibres, with a resistance-heating coil (5) which is embedded directly in a ceramic-fibre layer and is anchored in this by retaining webs (12) partially surrounding the free-radiating side (6) and which is essentially free of ceramic-fibre material in its interior (8), and a surface region (6) of which is exposed on the radiating heating surface (9), characterized in that those surface regions (6) of the heating coil (5) which are exposed on the heating surface (9) are offset inwards in their entirety by a distance of 2 to 30 mm relative to the outer surface (9) of the ceramic fibre layer (4).
2. Heating device according to Claim 1, characterized in that the distance between the exposed surface regions (6) of the heating coil (5) and the outer surface (9) of the ceramic-fibre layer (4) is 2 to 10 mm.
3. Vacuum-forming process for producing an electrical resistance-heating device, in which a resistance-heating coil (5) is laid on a sieve-like base (1) of a frame above a suction box, and a silt consisting of a slurry of ceramic fibres, binder and water is introduced into the frame, so that there builds up under the suction effect a ceramic fibre layer which is hardened and which contains the resistance-heating coil as an embedded heating element (5), characterized in that the surface portions of the sieve-like base (1) which are located under the resistance-heating coil (5) are made impermeable to liquid by strips (11) placed in the positions of the heating coil(s) before the heating coil(s) is laid on the sieve-like base (1) in an area which is narrower than the maximum diameter or width dimension of the heating coil in a plane offset inwards and parallel to the radiating surface, so that the interior of the heating coil (5) remains essentially free of ceramic fibres during the sucking-off operation.
4. Vacuum-forming process according to Claim 3, characterized in that the surface portions impermeable to liquid are formed by strips (11) and are placed in the positions of the heating coil (5) before the latter is laid on the sieve-like base (1).
5. Vacuum-forming process according to Claim 3, characterized in that the surface portions impermeable to liquid are formed by strips (11) and are fastened to the heating coil (5) on the side facing the sieve-like base (1), so as to adhere to it in an easily releasable manner.
6. Vacuum-forming process according to Claim 4 or 5, characterized in that the strips (11) are designed as spacer strips with a thickness of 0.1 to 30 mm, preferably with a thickness of 2 to 10 mm.
EP83108349A 1982-09-07 1983-08-24 Vacuum-formed electrical heating unit and method of making it Expired - Lifetime EP0105175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83108349T ATE32157T1 (en) 1982-09-07 1983-08-24 VACUUM-FORMED ELECTRIC HEATING DEVICE AND METHOD OF MANUFACTURE THERE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3233181 1982-09-07
DE3233181A DE3233181C2 (en) 1982-09-07 1982-09-07 Vacuum-formed, electric, radiant resistance heating device for industrial furnaces and processes for their production, made from ceramic fibers.

Publications (3)

Publication Number Publication Date
EP0105175A1 EP0105175A1 (en) 1984-04-11
EP0105175B1 EP0105175B1 (en) 1988-01-20
EP0105175B2 true EP0105175B2 (en) 1993-06-23

Family

ID=6172636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83108349A Expired - Lifetime EP0105175B2 (en) 1982-09-07 1983-08-24 Vacuum-formed electrical heating unit and method of making it

Country Status (7)

Country Link
US (1) US4617450A (en)
EP (1) EP0105175B2 (en)
JP (1) JPS5966094A (en)
AT (1) ATE32157T1 (en)
CA (1) CA1213635A (en)
DE (1) DE3233181C2 (en)
MX (1) MX153420A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575619A (en) * 1984-05-08 1986-03-11 General Signal Corporation Electrical heating unit with serpentine heating element
JPS6116488A (en) * 1984-06-30 1986-01-24 イビデン株式会社 Heat insulating heater
DE3539881A1 (en) * 1985-11-11 1987-05-14 Ego Elektro Blanc & Fischer Electrical radiant heating element for heating heating surfaces, and a method and device for its production
US4719336A (en) * 1986-05-30 1988-01-12 General Signal Corporation Method of making thermal insulating blocks and electrical heating units and the products thereof
US4855576A (en) * 1986-05-30 1989-08-08 General Signal Corporation Thermal insulating blocks and utilizing single blocks for electrical heating units
GB2192119A (en) * 1986-06-20 1987-12-31 Kanthal Ltd Heating devices
DE3932854A1 (en) * 1988-10-05 1990-04-12 Rudolf Wille Insulated wall panel for heating chamber - has flat heater element covered by perforated internal wall
EP0424818B1 (en) * 1989-10-24 1994-12-14 General Signal Corporation Furnace and heating unit therefor
US5413032A (en) * 1994-08-18 1995-05-09 The Middleby Corporation Restaurant type griddle with modular construction and which is load sensitive
US5708251A (en) * 1995-10-30 1998-01-13 Compucraft Ltd. Method for embedding resistance heating wire in an electrofusion saddle coupler
US5847368A (en) * 1996-06-20 1998-12-08 Koyo Lindberg Limited Electric heating unit and method of producing same
AU2010316620B2 (en) * 2009-11-05 2016-06-02 Winstone Wallboards Limited Heating panel and method therefor

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1317883A (en) * 1919-10-07 Method of generating radiant energy and projecting same through free
US2255518A (en) * 1938-11-15 1941-09-09 Babcock & Wilcox Co Electric furnace
US2254925A (en) * 1939-03-30 1941-09-02 Louis E Wirth Paint disintegrator
US2489190A (en) * 1945-07-13 1949-11-22 Procedes Sauter Electric heating element
US2674775A (en) * 1946-07-03 1954-04-13 Corwin D Willson Making molded panels
US2744946A (en) * 1953-11-25 1956-05-08 L & L Mfg Company Electric furnace and heating unit therefor
DE1024181B (en) * 1955-12-30 1958-02-13 Kanthal Ab Electric heater
US3275497A (en) * 1962-01-17 1966-09-27 American Thermocatalytic Corp Method of molding a combustion element of ceramic fibers on a porous support
GB1136811A (en) * 1965-09-14 1968-12-18 Foseco Trading Ag Production of heat insulating products
US3500444A (en) * 1968-01-16 1970-03-10 Johns Manville Electrical heating unit with an insulating refractory support
US3952408A (en) * 1970-03-26 1976-04-27 Albert George Docx Method of assembling a resistance furnace
DE2051048C3 (en) * 1970-10-17 1980-10-09 Glaswerk Schuller Gmbh, 6980 Wertheim Wire section of a machine for producing a fiber web
DE2156361A1 (en) * 1971-11-12 1973-05-17 Siemens Ag Ceramic support bodies for coverless resistors - produced by extrusion with intermittent inclusion of foreign substance
GB1441577A (en) * 1972-09-02 1976-07-07 Docx A G Muffle furnaces
US3870861A (en) * 1974-03-07 1975-03-11 Sola Basic Ind Inc Electric hot plate heating unit with a ceramic cover
US3978183A (en) * 1974-06-24 1976-08-31 Sybron Corporation Method of filter molding and electrical heating unit made thereby
DE2500586A1 (en) * 1975-01-09 1976-07-15 Ego Elektro Blanc & Fischer Boiling plate with a refractory top plate - with plate made of vitrified ceramic material on which pans are placed
FR2301148A1 (en) * 1975-02-11 1976-09-10 Physique Appliquee Ind Cylindrical electric heating element - is embedded in a refractory pref. a concrete comprising cement and aluminium grains
US4272670A (en) * 1976-05-01 1981-06-09 Docx Albert G Furnace muffles and furnaces
US4091355A (en) * 1977-01-19 1978-05-23 Btu Engineering Corporation Anchored coil heater
GB2011768B (en) * 1977-12-21 1982-03-17 Gen Signal Corp Electric heating units
US4278877A (en) * 1977-12-21 1981-07-14 General Signal Corporation Electrical heating unit with flattened embedded heating coil
US4247979A (en) * 1979-03-08 1981-02-03 Eck Richard H Radiant heater and method of making same
DE7930529U1 (en) * 1979-10-27 1980-02-28 E.G.O. Elektro-Geraete Blanc U. Fischer, 7519 Oberderdingen HEATING ELEMENT FOR A GLASS CERAMIC COOKING APPLIANCE
JPS5678088A (en) * 1979-11-30 1981-06-26 Riken Kk Method of manufacturing heater burying refractory formed article
DE2950302A1 (en) * 1979-12-14 1981-06-19 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen ELECTRIC RADIANT RADIATOR, METHOD AND DEVICE FOR PRODUCING IT
DE3206508C2 (en) * 1982-02-24 1986-02-27 KERFA GmbH Industriebeheizungen, 5820 Gevelsberg Process for the production of an electrical ceramic fiber surface heating element

Also Published As

Publication number Publication date
US4617450A (en) 1986-10-14
EP0105175A1 (en) 1984-04-11
MX153420A (en) 1986-10-07
DE3233181C2 (en) 1985-08-01
CA1213635A (en) 1986-11-04
DE3233181A1 (en) 1984-03-08
EP0105175B1 (en) 1988-01-20
JPS5966094A (en) 1984-04-14
ATE32157T1 (en) 1988-02-15

Similar Documents

Publication Publication Date Title
EP0371268B1 (en) Panel for a thermal hollow floor
EP0105175B2 (en) Vacuum-formed electrical heating unit and method of making it
DE2937417C2 (en) Method of making a structure containing foam
DE60225995T2 (en) Stripping film, process for producing a stripping film and apparatus for producing a stripping film
DE3231185C2 (en)
EP1564341B1 (en) Wall element for a building and method of manufacturing
EP0750444B1 (en) Radiant heater and method for its manufacture
DE2749501C3 (en) Multi-layer membrane for loudspeakers
DE10258324B4 (en) Process for the production of sets for the milling of hydrous paper pulp
EP0031576B1 (en) Method of casting-in an electrical appliance
DE69921621T2 (en) Thermal insulating material, electric heating unit using this material, and process for its production
EP0067237A1 (en) Reinforcement in the shape of plastic-laminated fibre cloth
DE4329546C2 (en) Flat radiators
DE3013441C2 (en) Anode plate for a rotating anode X-ray tube and process for its manufacture
DE1943374B2 (en) ARRANGEMENT FOR FULLY OR PARTIAL STRIPPING OF CABLES
CH627312A5 (en)
EP0156863A1 (en) Method for manufacturing a heat exchanger
EP0071700A2 (en) Fire-proof casing for metallic profiles, and manufacturing method
DE3602541C2 (en)
DE878992C (en) Electric surface heating device and method and means for making same
EP0598401A1 (en) Heating panel and method of manufacturing same
DE2938479C2 (en) Process for the production of plates, webs or moldings and device
CH565909A5 (en) Heat-providing lost-formwork concrete ceiling - with form units' underside covered by surface heating elements
DE8225210U1 (en) VACUUM-MOLDED ELECTRIC HEATING DEVICE
DE1596957B1 (en) IN A GLASS OBJECT MELTABLE OF THE POSITION DETERMINATION AND RELEASABLE HOLDER OF THE GLASS OBJECT, FIXING AND HOLDING PINS SERVING THE USE OF SUCH PINS IN THE END PLATE OF A CATHODE BEAM TUBE FOR DISPLAY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840125

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19860127

D17Q First examination report despatched (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BULTEN-KANTHAL GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KANTHAL GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 32157

Country of ref document: AT

Date of ref document: 19880215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KERFA-INDUSTRIE- BEHEIZUNGEN GMBH

Effective date: 19881005

NLR1 Nl: opposition has been filed with the epo

Opponent name: KERFA-INDUSTRIE- BEHEIZUNGEN GMBH

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19930623

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19930714

NLR2 Nl: decision of opposition
ITTA It: last paid annual fee
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
EAL Se: european patent in force in sweden

Ref document number: 83108349.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960726

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960730

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960814

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960820

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960827

Year of fee payment: 14

Ref country code: AT

Payment date: 19960827

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960831

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970824

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: KANTHAL G.M.B.H.

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

EUG Se: european patent has lapsed

Ref document number: 83108349.8

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO