EP0104541B1 - Process for the transformation of thermal energy into mechanical energy by means of a combustion engine, and the engine - Google Patents

Process for the transformation of thermal energy into mechanical energy by means of a combustion engine, and the engine Download PDF

Info

Publication number
EP0104541B1
EP0104541B1 EP83109057A EP83109057A EP0104541B1 EP 0104541 B1 EP0104541 B1 EP 0104541B1 EP 83109057 A EP83109057 A EP 83109057A EP 83109057 A EP83109057 A EP 83109057A EP 0104541 B1 EP0104541 B1 EP 0104541B1
Authority
EP
European Patent Office
Prior art keywords
chamber
combustion
fact
variable volume
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83109057A
Other languages
German (de)
French (fr)
Other versions
EP0104541A3 (en
EP0104541A2 (en
Inventor
Roger Bajulaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0104541A2 publication Critical patent/EP0104541A2/en
Publication of EP0104541A3 publication Critical patent/EP0104541A3/en
Application granted granted Critical
Publication of EP0104541B1 publication Critical patent/EP0104541B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B75/021Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve
    • F01L7/025Cylindrical valves comprising radial inlet and side outlet or side inlet and radial outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/029Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves having the rotational axis of the valve parallel to the cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • F02G3/02Combustion-product positive-displacement engine plants with reciprocating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • Two-stroke engines have the advantage of having a high ratio of active time to inactive time, equal to 1/2, but on the other hand due to their design the fuel consumption is higher than in a four-stroke engine.
  • Four-stroke engines are more fuel efficient, but have a relatively complicated distribution system and above all have an unfavorable active time to inactive time ratio of 1/4.
  • the calorie losses through the walls are higher than in a two-step process.
  • Patents DE-A-3,027,415, DE-A-2,039,398 and GB-A-2,057,052 describe engines comprising six-stroke cycles. In these engines, in addition to the usual four times, an additional compression is performed between the intake and the conventional compression in a separate chamber. The compressed content of this separate chamber is wholly or partly introduced into the variable-volume chamber, thereby increasing the compression ratio.
  • the present invention relates to an engine whose cycle differs from existing six-stroke combustion engines which makes it possible to increase the ratio between active and inactive times with respect to these engines and to be more fuel efficient. It allows the use of all fuels and the actual thermal efficiency is greater than conventional two-stroke, four-stroke and six-stroke. Losses from exhaust gases and cooling water are lower.
  • the new engine according to the invention includes the characters listed in claim 6.
  • Figures 1 to 6 are schematic cross sections of a six-stroke rotary engine illustrating the relative positions of the movable and fixed parts of the engine for the end of each of the six times constituting a complete cycle of operation.
  • FIGS 7 to 12 illustrate in schematic cross section the six times of an execution of the linear displacement piston engine.
  • FIG. 13 is a longitudinal section of the engine illustrated in FIGS. 7 to 12.
  • FIG. 14 is a partial cross-section of a variant of the engine illustrated in FIGS. 7 to 13.
  • FIG. 15 illustrates in longitudinal section a third embodiment of the engine.
  • the present method of converting thermal energy into mechanical energy makes use of a combustion engine comprising a body provided with a suction duct and an exhaust duct and having at least one movable member displaceable relative to this body and defining a variable volume chamber.
  • This method comprises an operating cycle of which the number of active and inactive times is greater than four and preferably equal to six.
  • This process therefore comprises two active or motor times which are the expansion of the variable volume chamber by compressed hot air (time b) and the expansion of this variable volume chamber by a high temperature combustion gas and high pressure (time d).
  • This process therefore includes a ratio between active and inactive times equal to 1/3 and an escape every six times only.
  • the method described comprises two variants according to the succession of times a to f in a complete operating cycle.
  • the times of a cycle follow one another as follows: e, a, b, c, d, f while in the second variant this succession of times is: e, a, d, f, b, vs.
  • the compressed air is heated in the preheating chamber during time "a" by a heat exchange between the combustion chamber and the preheating chamber.
  • the air and the combustion gas remain in the preheating and combustion chambers respectively for a period of time corresponding to the duration of approximately two times. successive steps of the process.
  • This is advantageous, because on the one hand the combustion can be done more slowly by limiting the explosion phenomenon and on the other hand this combustion can be done more completely.
  • the emission of harmful gases and smoke is reduced. Combustion taking place in a chamber independent of the variable volume chamber, violent forces on the moving parts of the engine are eliminated, which represent a significant drawback of the diesel system. The construction is reduced and the operation quieter.
  • the residence time of the air in the preheating chamber being longer, its temperature and its pressure are increased, which allows better efficiency to be obtained.
  • any unwanted overpressure in the combustion chamber is avoided by adjusting the pressure of the preheating chamber as a function of that prevailing in the combustion chamber.
  • the pressure increases above a determined value in the combustion chamber, part of the air contained in the preheating chamber is evacuated to the intake duct.
  • this chamber is located at least partially inside the combustion chamber. Air circulation takes place in one direction only in the preheating chamber, the latter having an inlet and an outlet.
  • variable volume chamber of fresh air, hot air and combustion gases is carried out as will be seen later using a device distribution by lights or by means of controlled valves.
  • the first embodiment of the engine illustrated schematically in Figures 1 to 6 operates according to the second variant of the method described, that is to say that the succession of times in a complete cycle is: e, a, d, f , b, c.
  • This engine comprises a static body 1 comprising an ambient air intake duct 2.
  • This body 1 also comprises an exhaust duct 4.
  • This body has the general shape of a circular ring, the ducts 2 and 4 open out at both on its outer periphery and on its inner periphery.
  • the intake 5 and exhaust 6 openings opening onto the internal periphery of the static ring 1 are located one opposite the other, ie offset by approximately 180 °.
  • the body or static ring 1 comprises a preheating chamber 7 having an inlet port 8 opening onto the internal periphery of the body 1 between the inlet 5 and outlet 6 ports, approximately 60 ° after the inlet port in counterclockwise.
  • the outlet lumen 9 from this preheating chamber 7 opens onto the internal periphery of the body 1, approximately 60 ° after the exhaust lumen, always in a counterclockwise direction.
  • This body 1 also includes a combustion chamber 10, the inlet lumen 11 of which is located between the intake ports 5 and the outlet lumen 9 of the preheating chamber 7.
  • the outlet lumen 12 of this combustion chamber 10 opens onto the internal periphery of the body 1 between the inlet port 8 of the preheating chamber 7 and the exhaust port 6.
  • a fuel injector 13 opens into a throttled part 14 of this combustion chamber and makes it possible to deliver fuel to this chamber either by means of an injection pump or by venturi effect due to the circulation of air in this room.
  • a spark plug 3 also opens into this combustion chamber 10 for igniting the gas mixture when the engine is started when cold.
  • a passage 15 connects the inlet of the preheating chamber 7 to the suction port 5.
  • a controlled valve 16 generally closes this passage 15. This valve 16 is controlled by the pressure prevailing in the combustion chamber 10, detected at 1 using a detector 17 and an electronic control device 17a.
  • the movable part of the engine comprises a drive shaft 18 connected to two oscillating pistons 19 and 19a inside a distribution ring 20 mounted, rotatable inside the body 1.
  • This movable part of the engine is made for example of the manner described in Figures 1 to 6 of US-A-4,487,168 and is arranged so that the pistons 19, 19a perform three alternations, or six reciprocating movements, during a revolution of the motor shaft 18 and the distribution ring 20.
  • oscillating pistons 19, 19a define two chambers 21, 21a with variable volume working in opposition.
  • the distribution ring 20 has two opposite openings 22, 22a passing through, located in a bisector plane of the chambers 21, 21a and communicating continuously with them. These two orifices are also located in a plane transverse to the motor shaft 18.
  • the pistons 19, 19a define them variable volume chambers 21, 21a working in opposition, but each carrying out for itself the succession of the above operations 1 to 6, offset by approximately 180 °.
  • combustion preheating chambers respectively may only be partially emptied so as to maintain a given pressure therein.
  • These chambers can thus have a volume greater than the difference between the maximum and minimum volumes of the variable volume chamber. This increases the heat exchange between the combustion gases and the compressed air and ensures better regularity of operation at all speeds.
  • This engine combines simplicity, performance, economy and pollution reduction. It is found in fact that by six-stroke cycle, two strokes are engines, the expansion of preheated air and the expansion of combustion gases; this therefore increases the performance of such a timer compared to a four-stroke engine.
  • the compressed hot air sent to the combustion chamber remains in this chamber for 1/3 of the operating cycle, which is longer than is the case in a four-stroke engine. This results in better combustion of the gas and a reduction in the emission of harmful gases and smoke.
  • part of the air contained in the preheating chamber is transferred to the intake port, preheating the intake fresh air.
  • This engine can run on any petrol, diesel fuel, etc.
  • the temperature of the combustion chamber can be kept at a high value during the entire operating cycle.
  • the construction of a such a diesel engine can be as light as that of a four-stroke petrol engine.
  • the volume of combustion gas which it contains can be dosed so that after expansion in the variable volume chamber, these expanded combustion gases are at a pressure only slightly higher than atmospheric pressure. Therefore, the exhaust noise of such an engine is greatly reduced.
  • this engine can also be increased because it is possible to work at high temperature in the combustion chamber without having to cool it down considerably.
  • this chamber can be coated with ceramic, as can the lights and orifices 2.2 to allow operation at high temperature. Seals are provided between the moving parts.
  • the power of the engine and consequently its number of revolutions is controlled by the quantity of fuel introduced into the combustion chamber, the intake of fresh air being practically constant.
  • the second embodiment of the engine illustrated in FIGS. 7 to 13 comprises a body 23 comprising at least one cylinder 24 in which a piston 25 moves in a rectilinear reciprocating movement.
  • This piston 25 is connected to the crank pin 26 of a crankshaft 27 by a connecting rod 28.
  • the crankshaft 27 constitutes the engine shaft.
  • the piston 25 delimited with the cylinder 24 a chamber 29 with variable volume.
  • a rotor 30 is rotatably mounted in the upper part of the body 23 and is integral with an axis 31 carrying at one of its ends a toothed wheel 32.
  • This toothed wheel 32 is connected to a pinion q3 secured to the shaft- engine.
  • a ratio of 1/3 of this kinematic connection causes the rotor 30 to rotate three times slower than the crankshaft 27.
  • the upper part of the body comprises an intake duct 35 and an exhaust duct 34 opening on the one hand to the lateral external wall of the body 23 and on the other hand to the lateral wall of the housing of the body in which the rotor 30.
  • a distribution member is constituted here by an opening 36 formed in the body 23 and connecting the variable-volume chamber 29 to the periphery of the housing receiving the rotor 30.
  • the body 23 also contains an ignition member, such as a candle 37 emerging in a cavity 9.8 open on the housing receiving the rotor 30.
  • the spark plug 37 is offset by about 60 ° in a clockwise direction relative to the opening 36.
  • the body 23 also includes an injector for fuel 39 opening into a cavity 40 open on the periphery of the housing containing the rotor 30.
  • the rotor 30 contains a preheating chamber 41 constituted by a diametral channel, the two ends of which, the inlet 42 and the outlet 43 open onto the periphery of the rotor 30.
  • This rotor 30 also contains a combustion chamber 44, at least partially surrounding the preheating chamber 41, the inlet 45 and the outlet 46 of which open onto the periphery of the rotor 30.
  • This rotor also has an intake passage 47, one end of which opens onto the periphery of the rotor and the other onto the lateral face of the latter and cooperates with the intake duct 35 of the body 23.
  • the rotor has an exhaust passage 48, one end of which opens onto the periphery of the rotor 30, while the other end opens onto the lateral face of the rotor and cooperates with the exhaust duct 34 of the body.
  • All the orifices opening onto the periphery of the rotor 30 are adapted to cooperate successively, during the rotation of the rotor, with the dispensing opening 36.
  • This engine also operates according to the method described above and comprises the six times a to f, the succession of which is: e, a, d, f, b, c as for the first embodiment of the engine illustrated in FIGS. 1 to 6.
  • FIG. 14 relates to an engine of the type of that described with reference to FIGS. 7 to 13, but whose succession of times in a cycle is: e, a, b, c, d, f.
  • the rotator 30 of this modified engine has an intake passage 49 and an exhaust passage 50 whose outlets opening onto the periphery of the rotor are adjacent.
  • a combustion chamber 51 whose inlet 52 and outlet 53 are adjacent and a preheating chamber 54 whose inlet 55 and outlet 56 are also adjacent.
  • This engine also includes a fuel injector 57 and an ignition device 58.
  • the rotor is also driven in rotation by the drive shaft at a speed three times lower.
  • FIG. 15 illustrates a third embodiment of the engine comprising, as in the first embodiment, two chambers with variable volume in opposition but comprising, as in the second embodiment, pistons with linear displacement and a rotor containing the preheating and combustion chambers.
  • This engine illustrated in FIG. 15 comprises a body 60 comprising two cylinders 61, 61a of parallel axes in which move pistons 62, 62a connected by a conventional linkage to a drive shaft. These two pistons work in opposition and define with the body two cham-. bres 63, 63a with variable volume.
  • Each of the chambers 63, 63a is connected to a recess formed in the body 60 by a distribution channel 64, 64a, and the orifices of these channels opening into said recess cooperate with the openings of a rotor 65 rotatably mounted in this recess.
  • This rotor 65 is rotated by a shaft 66 connected by gears to the motor shaft. This rotor turns three times slower than the motor shaft.
  • the rotor 65 comprises an intake passage 67, an exhaust passage 68, a preheating chamber 69 and a combustion chamber 70 as in the second embodiment of the engine.
  • the body 60 comprises the intake ducts 71, 71a and exhaust 72, 72a, as well as a fuel injector (not illustrated) and that possibly an ignition device (not illustrated).
  • this engine is identical to that of the second embodiment of the engine except that a single rotor feeds two variable volume chambers working in opposition.
  • each passage or chamber of the rotor 65 working alternately with the distribution channel 64, 64a of one and the other of the variable volume chambers 63, 63a.
  • This third embodiment can prove to be particularly advantageous, since it could be applied to conventional engine blocks by simply modifying the cylinder head thereof.

Description

Il existe de nombreux types de moteur à combustion interne ou externe et/ou à explosion qui peuvent se classer en deux grandes catégories, les moteurs à deux temps et les moteurs à quatre temps.There are many types of internal or external combustion and / or internal combustion engines which can be classified into two main categories, two-stroke engines and four-stroke engines.

Les moteurs à deux temps présentent l'avantage d'avoir un rapport temps actifs sur temps inactifs élevé, égal à 1/2, mais par contre du fait de leur conception la consommation de combustible est plus élevée que dans un moteur à quatre temps.Two-stroke engines have the advantage of having a high ratio of active time to inactive time, equal to 1/2, but on the other hand due to their design the fuel consumption is higher than in a four-stroke engine.

Les moteurs à quatre temps sont eux plus économes en combustible, mais comportent un système de distribution relativement compliqué et surtout comportent un rapport temps actifs sur temps inactifs défavorable de 1/4. Les pertes de calories par les parois sont plus élevées que dans un deux temps.Four-stroke engines are more fuel efficient, but have a relatively complicated distribution system and above all have an unfavorable active time to inactive time ratio of 1/4. The calorie losses through the walls are higher than in a two-step process.

Les brevets DE-A-3 027 415, DE-A-2 039 398 et GB-A-2 057 052 décrivent des moteurs comportant des cycles à six temps. Dans ces moteurs, en plus des quatre temps habituels, on réalise entre l'admission et la compression conventionnelle une compression supplémentaire dans une chambre séparée. Le contenu comprimé de cette chambre séparée est en totalité ou en partie introduit dans la chambre à volume variable permettant ainsi d'augmenter le taux de compression.Patents DE-A-3,027,415, DE-A-2,039,398 and GB-A-2,057,052 describe engines comprising six-stroke cycles. In these engines, in addition to the usual four times, an additional compression is performed between the intake and the conventional compression in a separate chamber. The compressed content of this separate chamber is wholly or partly introduced into the variable-volume chamber, thereby increasing the compression ratio.

La présente invention a pour objet un moteur dont le cycle diffère des moteurs à combustion à six temps existants qui permet d'augmenter le rapport entre les temps actifs et inactifs par rapport à ces moteurs et d'être plus économe en carburant. Il permet d'utiliser tous les carburants et le rendement thermique réel est supérieur aux deux temps, quatre temps et six temps conventionnels. Les pertes par les gaz d'échappement et d'eau de refroidissement sont inférieures.The present invention relates to an engine whose cycle differs from existing six-stroke combustion engines which makes it possible to increase the ratio between active and inactive times with respect to these engines and to be more fuel efficient. It allows the use of all fuels and the actual thermal efficiency is greater than conventional two-stroke, four-stroke and six-stroke. Losses from exhaust gases and cooling water are lower.

Dans les moteurs Diesel un haut taux de compression est nécessaire à l'allumage du mélange de gas-oil/air. D'autre part, l'inflammation presque instantanée du mélange est à l'origine de phénomènes de cognement et de bruit. Ce type de moteur nécessite une construction particulièrement robuste et plus onéreuse qu'un moteur à essence. La présente invention permet d'utiliser du gas-oil tout en remédiant à ces inconvénients.In diesel engines a high compression ratio is necessary for the ignition of the diesel / air mixture. On the other hand, the almost instantaneous ignition of the mixture is at the origin of knocking and noise phenomena. This type of engine requires a particularly robust and more expensive construction than a petrol engine. The present invention makes it possible to use diesel oil while overcoming these drawbacks.

La réalisation du moteur selon l'invention est rendue possible par un nouveau procédé de transformation d'énergie thermique en énergie mécanique qui est défini à la revendication 1.The production of the motor according to the invention is made possible by a new process for transforming thermal energy into mechanical energy which is defined in claim 1.

Le nouveau moteur selon l'invention comporte les caractères énumérés à la revendication 6.The new engine according to the invention includes the characters listed in claim 6.

Le dessin annexé illustre schématiquement et à titre d'exemple trois formes d'exécution du moteur selon l'invention.The accompanying drawing illustrates schematically and by way of example three embodiments of the engine according to the invention.

Les figures 1 à 6 sont des coupes schématiques transversales d'un moteur rotatif à six temps illustrant les positions relatives des parties mobiles et fixes du moteur pour la fin de chacun des six temps constituant un cycle complet de fonctionnement.Figures 1 to 6 are schematic cross sections of a six-stroke rotary engine illustrating the relative positions of the movable and fixed parts of the engine for the end of each of the six times constituting a complete cycle of operation.

Les figures 7 à 12 illustrent en coupe schématique transversale les six temps d'une exécution du moteur à piston à déplacement linéaire.Figures 7 to 12 illustrate in schematic cross section the six times of an execution of the linear displacement piston engine.

La figure 13 est une coupe longitudinale du moteur illustré aux figures 7 à 12.FIG. 13 is a longitudinal section of the engine illustrated in FIGS. 7 to 12.

La figure 14 est une coupe partielle transversale d'une variante du moteur illustré aux figures 7 à 13.FIG. 14 is a partial cross-section of a variant of the engine illustrated in FIGS. 7 to 13.

La figure 15 illustre en coupe longitudinale une troisième forme d'exécution du moteur.FIG. 15 illustrates in longitudinal section a third embodiment of the engine.

Le présent procédé de transformation d'énergie thermique en énergie mécanique fait usage d'un moteur à combustion comportant un corps muni d'un conduit d'aspiration et d'un conduit d'échappement et présentant au moins un organe mobile déplaçable par rapport à ce corps et définissant une chambre à volume variable.The present method of converting thermal energy into mechanical energy makes use of a combustion engine comprising a body provided with a suction duct and an exhaust duct and having at least one movable member displaceable relative to this body and defining a variable volume chamber.

Ce procédé comporte un cycle de fonctionnement dont le nombre de temps actifs et inactifs est supérieur à quatre et de préférence égal à six.This method comprises an operating cycle of which the number of active and inactive times is greater than four and preferably equal to six.

Parmi les temps de ce cycle comportant plus de quatre temps, on retrouve toujours au moins les quatre temps suivants:

  • a. la compression d'air contenu dans la chambre à volume variable, par réduction du volume de celle-ci, à l'intérieur d'une chambre de préchauffage;
  • b. l'expansion de la chambre à volume variable par la détente d'air chaud contenu dans la chambre de préchauffage;
  • c. la compression, par une réduction du volume de la chambre à volume variable, de l'air chaud détendu qui s'y trouve dans une chambre de combustion dans laquelle on introduit un combustible provoquant la combustion du mélange ainsi obtenu;
  • d. l'expansion de la chambre à volume variable par la détente dans celle-ci de gaz de combustion à haute température et haute pression provenant de la chambre de combustion.
Among the times of this cycle comprising more than four times, there are always at least the following four times:
  • at. compressing the air contained in the variable volume chamber, by reducing the volume thereof, inside a preheating chamber;
  • b. the expansion of the variable volume chamber by the expansion of hot air contained in the preheating chamber;
  • vs. compression, by reducing the volume of the variable-volume chamber, of the expanded hot air therein in a combustion chamber into which a fuel is introduced causing the combustion of the mixture thus obtained;
  • d. the expansion of the variable volume chamber by the expansion therein of high temperature and high pressure combustion gases from the combustion chamber.

Ce procédé comporte donc deux temps actifs ou moteurs qui sont l'expansion de la chambre à volume variable par de l'air chaud comprimé (temps b) et l'expansion de cette chambre à volume variable par un gaz de combustion à haute température et haute pression (temps d).This process therefore comprises two active or motor times which are the expansion of the variable volume chamber by compressed hot air (time b) and the expansion of this variable volume chamber by a high temperature combustion gas and high pressure (time d).

Ce procédé comporte donc un rapport entre les temps actifs et inactifs égal à 1/3 et un échappement tous les six temps seulement.This process therefore includes a ratio between active and inactive times equal to 1/3 and an escape every six times only.

Le procédé décrit comporte deux variantes selon la succession des temps a à f dans un cycle de fonctionnement complet. Dans la première variante les temps d'un cycle se succèdent de la manière suivante: e, a, b, c, d, f tandis que dans la seconde variante cette succession des temps est: e, a, d, f, b, c.The method described comprises two variants according to the succession of times a to f in a complete operating cycle. In the first variant the times of a cycle follow one another as follows: e, a, b, c, d, f while in the second variant this succession of times is: e, a, d, f, b, vs.

Selon ce procédé on chauffe l'air comprimé dans la chambre de préchauffage lors du temps «a» par un échange de chaleur entre la chambre de combustion et la chambre de préchauffage.According to this process, the compressed air is heated in the preheating chamber during time "a" by a heat exchange between the combustion chamber and the preheating chamber.

Dans la seconde variante du procédé on remarque que l'air et le gaz de combustion séjournent dans les chambres de préchauffage, respectivement de combustion pendant un laps de temps correspondant à la durée d'environ deux temps successifs du procédé. Ceci est avantageux, car d'une part la combustion peut se faire plus lentement en limitant le phénomène d'explosion et d'autre part cette combustion peut se faire plus complètement. Par ce fait, l'émission de gaz nocifs et de fumée est moindre. La combustion ayant lieu dans une chambre indépendante de la chambre à volume variable, on élimine les efforts violents sur les organes mobiles du moteur qui représentent un inconvénient important du système diesel. La construction en est allégée et le fonctionnement plus silencieux.In the second variant of the process, it is noted that the air and the combustion gas remain in the preheating and combustion chambers respectively for a period of time corresponding to the duration of approximately two times. successive steps of the process. This is advantageous, because on the one hand the combustion can be done more slowly by limiting the explosion phenomenon and on the other hand this combustion can be done more completely. By this fact, the emission of harmful gases and smoke is reduced. Combustion taking place in a chamber independent of the variable volume chamber, violent forces on the moving parts of the engine are eliminated, which represent a significant drawback of the diesel system. The construction is reduced and the operation quieter.

De plus, dans cette seconde variante, le temps de séjour de l'air dans la chambre de préchauffage étant plus long, sa température et sa pression sont augmentées ce qui permet d'obtenir un meilleur rendement.In addition, in this second variant, the residence time of the air in the preheating chamber being longer, its temperature and its pressure are increased, which allows better efficiency to be obtained.

Selon ce procédé on évite toute surpression indésirée dans la chambre de combustion en réglant la pression de la chambre de préchauffage en fonction de celle régnant dans la chambre de combustion. Lorsque la pression augmente en-dessus d'une valeur déterminée dans la chambre de combustion, on provoque l'évacuation d'une partie de l'air contenu dans la chambre de préchauffage vers le conduit d'admission.According to this method, any unwanted overpressure in the combustion chamber is avoided by adjusting the pressure of the preheating chamber as a function of that prevailing in the combustion chamber. When the pressure increases above a determined value in the combustion chamber, part of the air contained in the preheating chamber is evacuated to the intake duct.

Pour obtenir un préchauffage optimum de l'air contenu dans la chambre de préchauffage, cette chambre est située au moins partiellement à l'intérieur de la chambre de combustion. La circulation d'air s'effectue dans un seul sens dans la chambre de préchauffage, celle-ci ayant une entrée et une sortie.To obtain optimum preheating of the air contained in the preheating chamber, this chamber is located at least partially inside the combustion chamber. Air circulation takes place in one direction only in the preheating chamber, the latter having an inlet and an outlet.

L'introduction respectivement l'expulsion dans et hors de la chambre à volume variable de l'air frais, de l'air chaud et des gaz de combustion s'effectue comme on le verra plus loin à l'aide d'un dispositif de distribution à lumières ou à l'aide de soupapes commandées.The introduction respectively expulsion into and out of the variable volume chamber of fresh air, hot air and combustion gases is carried out as will be seen later using a device distribution by lights or by means of controlled valves.

La première forme d'exécution du moteur illustrée schématiquement aux figures 1 à 6, fonctionne selon la seconde variante du procédé décrit, c'est-à-dire que la succession des temps dans un cycle complet est: e, a, d, f, b, c.The first embodiment of the engine illustrated schematically in Figures 1 to 6, operates according to the second variant of the method described, that is to say that the succession of times in a complete cycle is: e, a, d, f , b, c.

Ce moteur comporte un corps statique 1 comportant un conduit d'admission d'air ambiant 2. Ce corps 1 comporte encore un conduit d'échappement 4. Ce corps présente la forme générale d'un anneau circulaire, les conduits 2 et 4 débouchent à la fois sur sa périphérie externe et sur sa périphérie interne. Les lumières d'admission 5 et d'échappement 6 débouchant sur la périphérie interne de l'anneau statique 1 sont situées l'une en face de l'autre soit décalées d'environ 180°.This engine comprises a static body 1 comprising an ambient air intake duct 2. This body 1 also comprises an exhaust duct 4. This body has the general shape of a circular ring, the ducts 2 and 4 open out at both on its outer periphery and on its inner periphery. The intake 5 and exhaust 6 openings opening onto the internal periphery of the static ring 1 are located one opposite the other, ie offset by approximately 180 °.

Le coprs ou anneau statique 1 comporte une chambre de préchauffage 7 présentant une lumière d'entrée 8 débouchant sur la périphérie interne du corps 1 entre les lumières d'admission 5 et d'échappement 6, environ 60° après la lumière d'admission dans le sens contraire aux aiguilles d'une montre. La lumière de sortie 9 de cette chambre de préchauffage 7 débouche sur la périphérie interne du corps 1, environ 60° après la lumière d'échappement toujours dans le sens contraire aux aiguilles d'une montre.The body or static ring 1 comprises a preheating chamber 7 having an inlet port 8 opening onto the internal periphery of the body 1 between the inlet 5 and outlet 6 ports, approximately 60 ° after the inlet port in counterclockwise. The outlet lumen 9 from this preheating chamber 7 opens onto the internal periphery of the body 1, approximately 60 ° after the exhaust lumen, always in a counterclockwise direction.

Ce corps 1 comporte encore une chambre de combustion 10 dont la lumière d'entrée 11 est située entre les lumières d'admission 5 et la lumière de sortie 9 de la chambre de préchauffage 7. La lumière de sortie 12 de cette chambre de combustion 10 débouche sur la périphérie interne du corps 1 entre la lumière d'entrée 8 de la chambre de préchauffage 7 et la lumière d'échappement 6.This body 1 also includes a combustion chamber 10, the inlet lumen 11 of which is located between the intake ports 5 and the outlet lumen 9 of the preheating chamber 7. The outlet lumen 12 of this combustion chamber 10 opens onto the internal periphery of the body 1 between the inlet port 8 of the preheating chamber 7 and the exhaust port 6.

Un injecteur de carburant 13 débouche dans une partie étranglée 14 de cette chambre de combustion et permet de délivrer un combustible dans cette chambre soit par l'intermédiaire d'une pompe à injection, soit par effet venturi dû à la circulation de l'air dans cette chambre.A fuel injector 13 opens into a throttled part 14 of this combustion chamber and makes it possible to deliver fuel to this chamber either by means of an injection pump or by venturi effect due to the circulation of air in this room.

Une bougie 3 débouche également dans cette chambre de combustion 10 pour l'allumage du mélange gazeux lors du démarrage du moteur à froid.A spark plug 3 also opens into this combustion chamber 10 for igniting the gas mixture when the engine is started when cold.

Un passage 15 relie l'éntrée de la chambre de préchauffage 7 à la lumière d'aspiration 5. Une vanne commandée 16 obture généralement ce passage 15. Cette vanne 16 est commandée par la pression régnant dans la chambre de combustion 10, détectée à l'aide d'un détecteur 17 et d'un dispositif électronique de commande 17a.A passage 15 connects the inlet of the preheating chamber 7 to the suction port 5. A controlled valve 16 generally closes this passage 15. This valve 16 is controlled by the pressure prevailing in the combustion chamber 10, detected at 1 using a detector 17 and an electronic control device 17a.

La partie mobile du moteur comporte un arbre moteur 18 relié à deux pistons oscillants 19 et 19a à l'intérieur d'un anneau de distribution 20 monté, rotatif à l'intérieur du corps 1. Cette partie mobile du moteur est réalisée par exemple de la façon décrite dans les figures 1 à 6 du brevet US-A-4 487 168 et est agencée pour que les pistons 19, 19a effectuent trois alternances, soit six mouvements de va-et-vient, pendant une révolution de l'arbre moteur 18 et de l'anneau de distribution 20.The movable part of the engine comprises a drive shaft 18 connected to two oscillating pistons 19 and 19a inside a distribution ring 20 mounted, rotatable inside the body 1. This movable part of the engine is made for example of the manner described in Figures 1 to 6 of US-A-4,487,168 and is arranged so that the pistons 19, 19a perform three alternations, or six reciprocating movements, during a revolution of the motor shaft 18 and the distribution ring 20.

Ces pistons oscillants 19, 19a définissent deux chambres 21, 21a à volume variable travaillant en opposition.These oscillating pistons 19, 19a define two chambers 21, 21a with variable volume working in opposition.

L'anneau de distribution 20 présente deux orifices opposés 22, 22a traversant, situés dans un plan bisecteur des chambres 21, 21a et communiquant continuellement avec celles-ci. Ces deux orifices sont également situés dans un plan transversal à l'arbre moteur 18.The distribution ring 20 has two opposite openings 22, 22a passing through, located in a bisector plane of the chambers 21, 21a and communicating continuously with them. These two orifices are also located in a plane transverse to the motor shaft 18.

Le fonctionnement du moteur décrit est le suivant:

  • 1. Pendant la rotation de la partie mobile du moteur de sa position illustrée à la figure 6 jusqu'à sa position illustrée à la figure 1, l'ouverture 22 de l'anneau de distribution 20 s'est déplacée en regard de la lumière d'admission 5 et la chambre 21 a passé de son volume minimum à son volume maximum aspirant de l'air atmosphérique par le conduit d'admission. Ceci correspond au temps «e» d'admission d'air.
  • 2. Pendant une rotation subséquente de la partie mobile du moteur de sa position illustrée à la figure 1 jusqu'à sa position illustrée à la figure 2, la chambre 21 diminue de volume provoquant la compression de l'air qui y est enfermé et le transfert de cet air comprimé dans la chambre de préchauffage 7 pendant le temps où l'orifice 22 est en regard de la lumière d'entrée 8 de cette chambre de préchauffage 7. Ceci correspond au temps «a» de compression de l'air. Avant ce transfert dans la chambre de préchauffage 7 celle-ci s'est vidée par l'orifice 22a dans la chambre 21a provoquant son expansion (temps b).
  • 3. Pendant la rotation de la partie mobile du moteur de sa position illustrée à la figure 2 jusqu'à sa position illustrée à la figure 3, l'orifice 22 de l'anneau de distribution 20 passe devant la lumière de sortie 12 de la chambre de combustion 10 et le gaz de combustion à haute température et à haute pression entre dans la chambre 21 et provoque son expansion et par cela la rotation de l'arbre moteur 18. Ceci correspond au temps «d» d'expansion de la chambre à volume variable sous l'action des gaz de combustion.
  • 4. Pendant la rotation de là partie mobile du moteur de sa position illustrée à la figure 3 à celle illustrée à la figure 4, les gaz de combustion détendus sont expulsés par réduction de volume de la chambre 21 dans le conduit d'échappement 4 par l'intermédiaire de l'ouverture 22 qui est en regard de la lumière d'échappement 6. Ceci correspond au temps «f», échappement.
  • 5. Pendant la rotation de la partie mobile du moteur de sa position illustrée à la figure 4 à celle illustrée à la figure 5, l'orifice 22 de l'anneau de distribution 20 passe devant la lumière de sortie de la chambre de préchauffage 7 et l'air comprimé contenu dans celle-ci, chauffé par échange de chaleur avec la chambre de combustion 10, entre dans la chambre à volume variable 21, se détend dans celle-ci en provoquant sont expansion. Ceci correspond au temps «b», détente de l'air préchauffé.
  • 6. Pendant la rotation de la partie mobile du moteur de sa position illustrée à la figure 5 jusqu'à celle illustrée à la figure 6, la chambre à volume variable comprime l'air chaud détendu puis l'envoie dans la chambre de combustion lorsque l'orifice 22 de l'anneau de distribution 20 passe devant la lumière d'entrée 11 de la chambre de combustion 10. Cet air chaud comprimé entrant dans la chambre de combustion 10 reçoit une dose de combustible adéquate provenant de l'injecteur 13. La pression et la température régnant dans cette chambre de combustion provoquent l'auto-allumage du mélange et sa combustion. Ceci correspond au temps «c», combustion. Au démarrage du moteur à froid cet allumage est obtenu par la bougie 3. Avant l'envoi de cet air chaud dans la chambre de combustion 10, l'orifice 22a a passé devant la lumière de sortie 12 de la chambre de combustion 10 dont le gaz à haute pression a provoqué l'expansion de la chambre 21a (temps d).
The operation of the engine described is as follows:
  • 1. During the rotation of the movable part of the motor from its position illustrated in FIG. 6 to its position illustrated in FIG. 1, the opening 22 of the distribution ring 20 has moved opposite the light 5 and the chamber 21 has gone from its minimum volume to its maximum volume sucking atmospheric air through the intake duct. This corresponds to the air intake time "e".
  • 2. During a subsequent rotation of the mobile part of the motor from its position illustrated in FIG. 1 to its position illustrated in FIG. 2, the chamber 21 decreases in volume causing the compression of the air which is enclosed therein and the transfer of this compressed air into the preheating chamber 7 during the time when the orifice 22 is opposite the inlet lumen 8 of this preheating chamber 7. This corresponds to the time "A" air compression. Before this transfer into the preheating chamber 7, the latter is emptied through the orifice 22a in the chamber 21a causing it to expand (time b).
  • 3. During the rotation of the movable part of the motor from its position illustrated in FIG. 2 to its position illustrated in FIG. 3, the orifice 22 of the distribution ring 20 passes in front of the outlet light 12 of the combustion chamber 10 and the combustion gas at high temperature and at high pressure enters the chamber 21 and causes its expansion and thereby the rotation of the motor shaft 18. This corresponds to the time "d" of expansion of the chamber variable volume under the action of combustion gases.
  • 4. During the rotation of the mobile part of the engine from its position illustrated in FIG. 3 to that illustrated in FIG. 4, the expanded combustion gases are expelled by reduction of volume of the chamber 21 in the exhaust duct 4 by through the opening 22 which is opposite the exhaust light 6. This corresponds to the time "f", exhaust.
  • 5. During the rotation of the mobile part of the engine from its position illustrated in FIG. 4 to that illustrated in FIG. 5, the orifice 22 of the distribution ring 20 passes in front of the outlet lumen of the preheating chamber 7 and the compressed air contained therein, heated by heat exchange with the combustion chamber 10, enters the variable volume chamber 21, expands therein causing its expansion. This corresponds to time "b", relaxation of the preheated air.
  • 6. During the rotation of the movable part of the engine from its position illustrated in FIG. 5 to that illustrated in FIG. 6, the variable volume chamber compresses the expanded hot air and then sends it into the combustion chamber when the orifice 22 of the distribution ring 20 passes in front of the inlet lumen 11 of the combustion chamber 10. This hot compressed air entering the combustion chamber 10 receives an adequate dose of fuel from the injector 13. The pressure and temperature prevailing in this combustion chamber cause the mixture to self-ignite and burn. This corresponds to the time "c", combustion. When the engine is started when cold, this ignition is obtained by the spark plug 3. Before sending this hot air into the combustion chamber 10, the orifice 22a has passed in front of the outlet light 12 from the combustion chamber 10, the high pressure gas caused the expansion of chamber 21a (time d).

Le cycle recommence et se poursuit ainsi. Dans le moteur schématiquement représenté, les pistons 19, 19a définissent eux chambres à volume variable 21, 21a travaillant en opposition, mais réalisant chacune pour elle-même la succession des opérations 1 à 6 précitées, décalées d'environ de 180°.The cycle begins again and continues like this. In the engine shown diagrammatically, the pistons 19, 19a define them variable volume chambers 21, 21a working in opposition, but each carrying out for itself the succession of the above operations 1 to 6, offset by approximately 180 °.

Il faut noter que durant les temps,d'expansion b et d, les chambres de préchauffage respectivement de combustion peuvent n'être vidangées que partiellement de manière à y conserver une pression donnée. Ces chambres peuvent ainsi avoir un volume plus grand que la différence entre les volumes maxi et mini de la chambre à volume variable. Ceci augmente l'échange de chaleur entre les gaz de combustion et l'air comprimé et assure une meilleure régularité de fonctionnement à tous les régimes.It should be noted that during the times of expansion b and d, the combustion preheating chambers respectively may only be partially emptied so as to maintain a given pressure therein. These chambers can thus have a volume greater than the difference between the maximum and minimum volumes of the variable volume chamber. This increases the heat exchange between the combustion gases and the compressed air and ensures better regularity of operation at all speeds.

Ce moteur allie la simplicité, la performance, l'économie et la réduction de pollution. On constate en effet que par cycle de six temps, deux temps sont moteurs, l'expansion de l'àir préchauffé et l'expansion des gaz de combustion; ceci augmente donc la performance d'un tel mom teur par rapport à un moteur à quatre temps.This engine combines simplicity, performance, economy and pollution reduction. It is found in fact that by six-stroke cycle, two strokes are engines, the expansion of preheated air and the expansion of combustion gases; this therefore increases the performance of such a timer compared to a four-stroke engine.

L'air chaud comprimé envoyé dans la chambre de combustion reste dans cette chambre pendant 1/3 du cycle de fonctionnement, soit plus longtemps que ce n'est le cas dans un moteur à quatre temps. On obtient ainsi une meilleure combustion du gaz et une diminution de l'émission de gaz nocifs et de fumée.The compressed hot air sent to the combustion chamber remains in this chamber for 1/3 of the operating cycle, which is longer than is the case in a four-stroke engine. This results in better combustion of the gas and a reduction in the emission of harmful gases and smoke.

De plus, lorsque la pression dépasse la pression voulue dans la chambre de combustion, une partie de l'air contenu dans la chambre de préchauffage est transférée à la lumière d'admission, préchauffant l'air frais admis.In addition, when the pressure exceeds the desired pressure in the combustion chamber, part of the air contained in the preheating chamber is transferred to the intake port, preheating the intake fresh air.

Ce moteur peut fonctionner avec n'importe quel combustible essence, gas-oil, etc. En effet, la température de la chambre de combustion peut être maintenue à une valeur élevée pendant tout le cycle de fonctionnement. On peut même prévoir des éléments à l'intérieur de cette chambre restant incandescents pour assurer l'auto-allumage du combustible.This engine can run on any petrol, diesel fuel, etc. In fact, the temperature of the combustion chamber can be kept at a high value during the entire operating cycle. One can even provide elements inside this chamber remaining incandescent to ensure the self-ignition of the fuel.

Du fait que la combustion s'effectue plus lentement que dans un moteur à quatre temps et que par ailleurs la chambre de combustion est dans un bloc monolytique du moteur et qu'enfin la pression régnant dans cette chambre est contrôlée, la construction d'un tel moteur alimenté en gas-oil peut être aussi légère que celle d'un moteur à quatre temps à essence.Because combustion takes place more slowly than in a four-stroke engine and, moreover, the combustion chamber is in a monolytic block of the engine and that finally the pressure prevailing in this chamber is controlled, the construction of a such a diesel engine can be as light as that of a four-stroke petrol engine.

Toujours par le fait que la pression régnant dans la chambre de combustion est limitée, ou même contrôlée notamment en fonction de la puissance demandée et donc de la quantité de combustible qui y est introduite, le volume de gaz de combustion qu'elle contient peut être dosé de telle sorte qu'après expansion dans la chambre à volume variable, ces gaz de combustion détendus soient à une pression seulement légèrement supérieure à la pression atmosphérique. De ce fait, le bruit de l'échappement d'un tel moteur est fortement réduit.Always by the fact that the pressure prevailing in the combustion chamber is limited, or even controlled in particular as a function of the power demanded and therefore of the quantity of fuel which is introduced therein, the volume of combustion gas which it contains can be dosed so that after expansion in the variable volume chamber, these expanded combustion gases are at a pressure only slightly higher than atmospheric pressure. Therefore, the exhaust noise of such an engine is greatly reduced.

Le rendement thermique de ce moteur peut également être augmenté du fait que l'on peut travailler à haute température dans la chambre de combustion sans être obligé de la refroidir de façon conséquente. En effet, cette chambre peut être revêtue de céramique, de même que les lumières et les orifices 2.2 pour permettre un fonctionnement à haute température. Des joints d'étanchéité sont prévus entre les organes en mouvement.The thermal efficiency of this engine can also be increased because it is possible to work at high temperature in the combustion chamber without having to cool it down considerably. In fact, this chamber can be coated with ceramic, as can the lights and orifices 2.2 to allow operation at high temperature. Seals are provided between the moving parts.

La puissance du moteur ainsi qu'en conséquence son nombre de tours est contrôlée par la quantité de carburant introduite dans la chambre de combustion, l'aspiration d'air frais étant pratiquement constante.The power of the engine and consequently its number of revolutions is controlled by the quantity of fuel introduced into the combustion chamber, the intake of fresh air being practically constant.

La seconde forme d'exécution du moteur illustrée aux figures 7 à 13 comporte un corps 23 comportant au moins un cylindre 24 dans lequel se déplace un piston 25 dans un mouvement de va-et-vient rectiligne. Ce piston 25 est relié au maneton 26 d'un vilebrequin 27 par une bielle 28. Le vilebrequin 27 constitue l'arbre-moteur. Le piston 25 délimité avec le cylindre 24 une chambre 29 à volume variable.The second embodiment of the engine illustrated in FIGS. 7 to 13 comprises a body 23 comprising at least one cylinder 24 in which a piston 25 moves in a rectilinear reciprocating movement. This piston 25 is connected to the crank pin 26 of a crankshaft 27 by a connecting rod 28. The crankshaft 27 constitutes the engine shaft. The piston 25 delimited with the cylinder 24 a chamber 29 with variable volume.

Un rotor 30 est monté rotatif dans la partie supérieure du corps 23 et est solidaire d'un axe 31 portant à l'une de ses extrémités une roue dentée 32. Cette roue dentée 32 est reliée à un pignon q3 solidaire de l'arbre-moteur. Un rapport de 1/3 de cette liaison cinématique fait que le rotor 30 tourne trois fois plus lentement que le vilebrequin 27.A rotor 30 is rotatably mounted in the upper part of the body 23 and is integral with an axis 31 carrying at one of its ends a toothed wheel 32. This toothed wheel 32 is connected to a pinion q3 secured to the shaft- engine. A ratio of 1/3 of this kinematic connection causes the rotor 30 to rotate three times slower than the crankshaft 27.

La partie supérieure du corps comporte un conduit d'admission 35 et un conduit d'échappement 34 débouchant d'une part sur la paroi externe latérale du corps 23 et d'autre part sur la paroi latérale du logement du corps dans lequel est monté le rotor 30.The upper part of the body comprises an intake duct 35 and an exhaust duct 34 opening on the one hand to the lateral external wall of the body 23 and on the other hand to the lateral wall of the housing of the body in which the rotor 30.

Un organe de distribution est constitué ici par une ouverture 36 pratiquée dans le corps 23 et reliant la chambre à volume variable 29 à la périphérie du logement recevant le rotor 30. Le corps 23 renferme encore un organe d'allumage, tel une bougie 37 débouchant dans une cavité 9,8 ouverte sur le logement recevant le rotor 30. La bougie 37 est décalée d'environ 60° dans le sens des aiguilles d'une montre par rapport à l'ouverture 36. Le corps 23 comporte encore un injecteur de carburant 39 débouchant dans une cavité 40 ouverte sur la périphérie du logement renfermant le rotor 30.A distribution member is constituted here by an opening 36 formed in the body 23 and connecting the variable-volume chamber 29 to the periphery of the housing receiving the rotor 30. The body 23 also contains an ignition member, such as a candle 37 emerging in a cavity 9.8 open on the housing receiving the rotor 30. The spark plug 37 is offset by about 60 ° in a clockwise direction relative to the opening 36. The body 23 also includes an injector for fuel 39 opening into a cavity 40 open on the periphery of the housing containing the rotor 30.

Le rotor 30 renferme une chambre de préchauffage 41 constituée par un canal diamétral dont les deux extrémité, l'entrée 42 et la sortie 43 débouchent sur la périphérie du rotor 30.The rotor 30 contains a preheating chamber 41 constituted by a diametral channel, the two ends of which, the inlet 42 and the outlet 43 open onto the periphery of the rotor 30.

Ce rotor 30 renferme encore une chambre de combustion 44, entourant au moins partiellement la chambre de préchauffage 41, dont l'entrée 45 et la sortie 46 débouchent sur la périphérie du rotor 30.This rotor 30 also contains a combustion chamber 44, at least partially surrounding the preheating chamber 41, the inlet 45 and the outlet 46 of which open onto the periphery of the rotor 30.

Ce rotor comporte encore un passage d'admission 47 dont l'une des extrémités débouche sur la périphérie du rotor et l'autre sur la face latérale de celui-ci et coopère avec le conduit d'admission 35 du corps 23. Enfin, le rotor comporte un passage d'échappement 48 dont l'une des extrémités débouche sur la périphérie du rotor 30, tandis que l'autre extrémité débouche sur la face latérale du rotor et coopère avec le conduit d'échappement 34 du corps.This rotor also has an intake passage 47, one end of which opens onto the periphery of the rotor and the other onto the lateral face of the latter and cooperates with the intake duct 35 of the body 23. Finally, the rotor has an exhaust passage 48, one end of which opens onto the periphery of the rotor 30, while the other end opens onto the lateral face of the rotor and cooperates with the exhaust duct 34 of the body.

Tous les orifices débouchant sur la périphérie du rotor 30 sont adaptés à coopérer successivement, lors de la rotation du rotor, avec l'ouverture de distribution 36.All the orifices opening onto the periphery of the rotor 30 are adapted to cooperate successively, during the rotation of the rotor, with the dispensing opening 36.

Ce moteur fonctionne également selon le procédé décrit précédemment et comporte les six temps a à f dont la succession est: e, a, d, f, b, c comme pour la première forme d'exécution du moteur illustrée aux figures 1 à 6.This engine also operates according to the method described above and comprises the six times a to f, the succession of which is: e, a, d, f, b, c as for the first embodiment of the engine illustrated in FIGS. 1 to 6.

Le fonctionnement de cette seconde forme d'exécution du moteur est le suivant:

  • 1. Pendant que le piston 25 descend, la chambre 29 augmente de volume, et que le rotor passe de sa position illustrée à la figure 12 jusqu'à la figure 7, le passage d'admission 47 relie l'ouverture de distribution 36 au conduit d'admission 35 du corps 23 permettant un remplissage de la chambre 29 avec de l'air frais atmosphérique. Ceci correspond au temps «e» d'admission d'air. Pendant que le rotor 30 est dans sa position illustrée à la figure 7, fin d'admission, la sortie 46 de la chambre de combustion coïncide avec l'évidement 38. Ainsi, si le mélange combustible contenu dans cette chambre ne s'allume pas par auto-allumage, il est possible de l'allumer par une étincelle.
  • 2. Pendant la remontée du piston 25, réduisant le volume de la chambre 29, et que le rotor 30 passe de sa position illustrée à la figure 7 jusqu'à celle illustrée à la figure 8, l'air contenu dans la chambre 29 est comprimé puis envoyé dans la chambre de préchauffage 41 lorsque son entrée 42 est en coïncidence avec l'ouverture de distribution 36. Ceci correspond au temps «a», compression de l'air.
  • 3. Pendant que le rotor 30 passe de sa position illustrée à la figure 8 à celle illustrée à la figure 9, la sortie 46 de la chambre de combustion passe devant l'ouverture de distribution 36 permettant l'expansion du gaz de combustion à haute température et à haute pression dans la chambre 29 et forçant le piston 25 vers le bas. Ceci correspond au temps «d» expansion de la chambre à volume variable sous l'action des gaz de combustion.
  • 4. Pendant la remontée subséquente du piston 25, réduisant le volume de la chambre 29, et que le rotor passe de sa position illustrée à la figure 9 à celle illustrée à la figure 10, la chambre à volume variable 29 est reliée par l'ouverture 36 et le passage 48 au conduit d'échappement 34. Ceci correspond au temps «f», échappement. Pendant que le rotor 30 est dans sa position illustrée à la figure 10, correspondant à la fin de l'échappement, l'injecteur 39 introduit une quantité déterminée de carburant dans la chambre de combustion dont l'entrée 45 coïncide avec l'évidement 40.
  • 5. Pendant que le rotor 30 passe de sa position illustrée à la figure 10 à celle illustrée à la figure 11, la sortie 43 de la chambre de préchauffage 41 passe devant l'ouverture 36 et l'air comprimé préchauffé qu'elle contient se détend dans la chambre 29 provoquant la descente du piston 25. Ceci correspond au temps «b», détente de l'air préchauffé.
  • 6. Pendant la remontée subséquente du piston 25, réduisant le volume de la chambre 29, le rotor a passé de sa position illustrée à la figure 11 à celle illustrée à la figure 12, et pendant que l'entrée 45 de la chambre de combustion 44 passe devant l'ouverture 36, l'air chaud détendu contenu dans la chambre à volume variable 29 est comprimé dans la chambre de combustion 44. Cet air chaud comprimé entrant dans la chambre de combustion reçoit une dose adéquate de combustible provenant de l'injecteur 39. La pression et la température régnant dans cette chambre de combustion provoquent l'auto-allumage du mélange et sa combustion. Ceci correspond au temps «c», combustion. Les moments de l'injection et de l'allumage seront déterminés pour donner des conditions de rendements optimum pendant le temps de séjour de l'air chaud comprimé dans la chambre de combustion.
The operation of this second embodiment of the engine is as follows:
  • 1. While the piston 25 descends, the chamber 29 increases in volume, and the rotor passes from its position illustrated in FIG. 12 to FIG. 7, the intake passage 47 connects the distribution opening 36 to the inlet duct 35 of the body 23 allowing the chamber 29 to be filled with fresh atmospheric air. This corresponds to the air intake time "e". While the rotor 30 is in its position illustrated in FIG. 7, end of intake, the outlet 46 of the combustion chamber coincides with the recess 38. Thus, if the combustible mixture contained in this chamber does not ignite by self-ignition, it can be ignited by a spark.
  • 2. During the ascent of the piston 25, reducing the volume of the chamber 29, and as the rotor 30 passes from its position illustrated in FIG. 7 to that illustrated in FIG. 8, the air contained in the chamber 29 is compressed then sent to the preheating chamber 41 when its inlet 42 coincides with the dispensing opening 36. This corresponds to time "a", compression of the air.
  • 3. While the rotor 30 passes from its position illustrated in FIG. 8 to that illustrated in FIG. 9, the outlet 46 of the combustion chamber passes in front of the distribution opening 36 allowing the expansion of the combustion gas at high temperature and high pressure in the chamber 29 and forcing the piston 25 downwards. This corresponds to the time "d" of expansion of the variable volume chamber under the action of the combustion gases.
  • 4. During the subsequent raising of the piston 25, reducing the volume of the chamber 29, and as the rotor passes from its position illustrated in FIG. 9 to that illustrated in FIG. 10, the variable volume chamber 29 is connected by the opening 36 and the passage 48 to the exhaust duct 34. This corresponds to the time "f", exhaust. While the rotor 30 is in its position illustrated in FIG. 10, corresponding to the end of the exhaust, the injector 39 introduces a determined quantity of fuel into the combustion chamber, the inlet 45 of which coincides with the recess 40 .
  • 5. While the rotor 30 passes from its position illustrated in FIG. 10 to that illustrated in FIG. 11, the outlet 43 of the preheating chamber 41 passes in front of the opening 36 and the preheated compressed air it contains expands in chamber 29 causing the piston 25 to descend. This corresponds to time "b", relaxation of the preheated air.
  • 6. During the subsequent raising of the piston 25, reducing the volume of the chamber 29, the rotor has passed from its position illustrated in FIG. 11 to that illustrated in FIG. 12, and while the inlet 45 of the combustion chamber 44 passes in front of the opening 36, the relaxed hot air contained in the variable volume chamber 29 is compressed in the combustion chamber 44. This compressed hot air entering the combustion chamber receives an adequate dose of fuel from the injector 39. The pressure and the temperature prevailing in this combustion chamber cause the mixture to self-ignite and burn. This corresponds to the time "c", combustion. The times of injection and ignition will be determined to give optimum efficiency conditions during the residence time of the hot compressed air in the combustion chamber.

Les avantages de ce moteur sont les mêmes que ceux de la première forme d'exécution du moteur.The advantages of this engine are the same as those of the first embodiment of the engine.

La variante illustrée à la figure 14 se rapporte à un moteur du type de celui décrit en référence aux figures 7 à 13, mais dont la succession des temps dans un cycle est: e, a, b, c, d, f.The variant illustrated in FIG. 14 relates to an engine of the type of that described with reference to FIGS. 7 to 13, but whose succession of times in a cycle is: e, a, b, c, d, f.

Le roteur 30 de ce moteur modifié comporte un passage d'admission 49 et un passage d'échappement 50 dont les sorties débouchant sur la périphérie du rotor sont adjacentes. Une chambre de combustion 51 dont l'entrée 52 et la sortie 53 sont adjacentes et une chambre de préchauffage 54 dont l'entrée 55 et la sortie 56 sont également adjacentes. Ce moteur comporte également un injecteur de carburant 57 et un dispositif d'allumage 58.The rotator 30 of this modified engine has an intake passage 49 and an exhaust passage 50 whose outlets opening onto the periphery of the rotor are adjacent. A combustion chamber 51 whose inlet 52 and outlet 53 are adjacent and a preheating chamber 54 whose inlet 55 and outlet 56 are also adjacent. This engine also includes a fuel injector 57 and an ignition device 58.

Dans cette forme d'exécution, le rotor est également entraîné en rotation par l'arbre moteur à une vitesse trois fois inférieure.In this embodiment, the rotor is also driven in rotation by the drive shaft at a speed three times lower.

La figure 15 illustre une troisième forme d'exécution du moteur comportant, comme dans la première forme d'exécution, deux chambres à volume variable en opposition mais comportant, comme dans la seconde forme d'exécution, des pistons à déplacement linéaire et un rotor renfermant les chambres de préchauffage et de combustion.FIG. 15 illustrates a third embodiment of the engine comprising, as in the first embodiment, two chambers with variable volume in opposition but comprising, as in the second embodiment, pistons with linear displacement and a rotor containing the preheating and combustion chambers.

Ce moteur illustré à la figure 15 comporte un corps 60 comportant deux cylindres 61, 61a d'axes parallèles dans lesquels se déplacent des pistons 62, 62a reliés par un embiellage conventionnel à un arbre moteur. Ces deux pistons travaillent en opposition et définissent avec le corps deux cham-. bres 63, 63a à volume variable.This engine illustrated in FIG. 15 comprises a body 60 comprising two cylinders 61, 61a of parallel axes in which move pistons 62, 62a connected by a conventional linkage to a drive shaft. These two pistons work in opposition and define with the body two cham-. bres 63, 63a with variable volume.

Chacune des chambres 63, 63a est reliée à un évidement pratiqué dans le corps 60 par un canal de distribution 64, 64a, et les orifices de ces canaux débouchant dans ledit évidement coopèrent avec les ouvertures d'un rotor 65 monté rotatif dans cet évidement. Ce rotor 65 est entraîné en rotation par un arbre 66 relié par des engrenages à l'arbre-moteur. Ce rotor tourne trois fois moins vite que l'arbre moteur.Each of the chambers 63, 63a is connected to a recess formed in the body 60 by a distribution channel 64, 64a, and the orifices of these channels opening into said recess cooperate with the openings of a rotor 65 rotatably mounted in this recess. This rotor 65 is rotated by a shaft 66 connected by gears to the motor shaft. This rotor turns three times slower than the motor shaft.

Le rotor 65 comporte un passage d'admission 67, un passage d'échappement 68, une chambre de préchauffage 69 et une chambre de combustion 70 comme dans la seconde forme d'exécution du moteur.The rotor 65 comprises an intake passage 67, an exhaust passage 68, a preheating chamber 69 and a combustion chamber 70 as in the second embodiment of the engine.

Le corps 60 comporte les conduits d'admission 71, 71a et d'échappement 72, 72a, ainsi qu'un injecteur de combustible (non illustré) et qu'éventuellement un dispositif d'allumage (non illustré).The body 60 comprises the intake ducts 71, 71a and exhaust 72, 72a, as well as a fuel injector (not illustrated) and that possibly an ignition device (not illustrated).

Le fonctionnement de ce moteur est identique à celui de la seconde forme d'exécution du moteur au fait près qu'un seul rotor alimente deux chambres à volume variable travaillant en opposition. Pour chaque cylindre 61, 61a on retrouve exactement les six temps de fonctionnement 1 à 6 de la seconde forme d'exécution du moteur, chaque passage ou chambre du rotor 65 travaillant alternativement avec le canal de distribution 64, 64a de l'une et l'autre des chambres à volume variable 63, 63a.The operation of this engine is identical to that of the second embodiment of the engine except that a single rotor feeds two variable volume chambers working in opposition. For each cylinder 61, 61a we find exactly the six operating times 1 to 6 of the second embodiment of the engine, each passage or chamber of the rotor 65 working alternately with the distribution channel 64, 64a of one and the other of the variable volume chambers 63, 63a.

Cette troisième forme d'exécution peut s'avérer particulièrement avantageuse, car elle pourrait être appliquée sur des blocs moteur conventionnels en modifiant simplement la culasse de ceux- ci.This third embodiment can prove to be particularly advantageous, since it could be applied to conventional engine blocks by simply modifying the cylinder head thereof.

Claims (14)

1. Method for the transformation of thermal energy into mechanical energy by means of a combustion engine comprising a body (1, 23, 60) provided with admission (2, 35, 49, 71) and exhaust ducts (4, 34, 50, 72), as well as at least one member (19, 25, 62) movable within said body (1,23,60) defining at least one chamber (21, 29, 63) having a variable volume, comprising a cycle of the number of strokes is at least equal to six out of which two are constituted by:
e. the introduction of air, through the admission duct (2, 35, 49, 71) into the variable volume chamber (21, 29, 63) during an increase of volume of said chamber; and
f. the expulsion, through the exhaust duct (4, 34, 50, 72), by means of a reduction of volume of the variable volume chamber (21, 29, 63), of the expanded combustion gases contained in said' chamber,
this method being characterized by the fact that at least four strokes are constituted by:
a. compressing air contained in the variable volume chamber (21, 29, 63), through a reduction of the volume of said chamber, into a prehating chamber (7, 41, 54, 69);
b. expanding the variable volume chamber (21, 29, 63) through the expansion of the hot air contained in the preheating chamber (7, 41, 54, 69);
c. compressing, through a reduction of the volume of the variable volume chamber (21, 29, 63), the hot expanded air in said variable volume chamber, into a combustion chamber (10, 44, 51, 70) in which fuel is introduced and causing the combustion of the mixture thus obtained; and
d. expanding the variable volume chamber (21, 29, 63) through the expansion into said chamber of the combustion gases at high temperature and high pressure from the combustion chamber (10, 44, 51, 70).
2. A method according to claim 1, in which the succession of the strokes in a complete cycle is: e, a, d, f, b, c.
3. A method according to claim 2, characterized by the fact that one heats the compressed air contained in the preheating chamber (7, 41, 54, 69) by heat exchange with the combustion gas contained in the combustion chamber (10, 44, 51, 70).
4. A method according to claim 2, characterized by the fact that one limits the pressure in the preheating chamber (7,41,54,69) to a given value, and by the fact that when the pressure in the preheating chamber (7, 41, 54, 69) rises over a limit value, a part of the air contained therein is discharged.
5. A method according to one of the preceding claims, characterized by the fact that the circulation of the fluids inside the preheating (7, 41, 54, 69) and combustion (10, 44, 51, 70) chambers is unidirectional.
6. Combustion engine to carry out the method of claim 1 comprising a body (1, 23, 60), at least one movable member (19, 25, 62) defining in said body at least one chamber (21, 29, 63), the volume of which varies as a function of the relative position of this movable member (19, 25, 62) with respect to the body (1, 23, 60); the body (1, 23, 60) having an admission duct (2, 35, 49, 71) and an exhaust duct (4, 34, 50, 72), adapted to communicate by means of a distribution member (20, 36, 65) alternatively with the variable volume chamber (21, 29, 63), characterized by the fact that it comprises an air preheating chamber (7, 41, 54, 69) the inlet and outlet of which are arranged to communicate through the distribution members (20, 36, 65) alternatively with the variable volume chamber (21, 29, 63); and by the fact that it comprises a combustion chamber (10, 44, 51, 70), the inlet and the outlet of which being adapted to communicate through said distribution member (20, 36, 65) alternatively with said variable volume chamber (21, 29, 63).
7. An engine according to claim 6, characterized by the fact that the preheating chamber (7, 41, 54, 63) and the combustion chamber (10, 44, 51, 70) are arranged to constitute a heat exchanger.
8. An engine according to claim 6, characterized by the fact that the preheating (7) and combustion (10) chambers are located in the body (1) of the engine; that the distribution member is a ring (20) provided with at least one aperture (22) in permanent communication with the variable volume chamber (21); and that the movable member (25) is constituted by at least one piston (19) connected to the distributing ring (20) and to a motor shaft (18).
9. An engine as claimed in claim 6, charac- . terized by the fact that the movable member is a piston (25, 62) linearly reciprocating with respect to the body (23, 65); by the fact that the distribution member is an aperture (36, 64), provided in the body (23, 60) and in permanent communication with the variable volume chamber (29, 63); and by the fact that the preheating (41, 54, 69) and combustion (44, 51, 70) chambers are located in a rotor (30, 65) rotatively mounted in the body (23, 60).
10. An engine according to claim 9, characterized by the fact that the rotor (30, 65) and the motor shaft are connected by a cinematic linkage having a ratio of 1:3 therebetween.
11. An engine according to claim 9, characterized by the fact that the rotor (30, 65) comprises further admission (47, 67) and exhaust (48, 68) ducts, one end of which cooperates with the aperture (36, 64) whereas the other end opens onto the' lateral faces of the rotor and cooperates with the admission (35, 71) and exhaust (34, 72) ducts of the body (23, 60).
12. Engine according to claim 11, characterized by the fact that one rotor (30, 65) cooperates with two variable volume chambers (29, 63).
13. Engine according to one of claims 6 to 11, characterized by the fact that it comprises several preheating chambers (7, 41, 54, 69) and several combustion chambers (10, 44, 51, 70) cooperating each with at least one variable volume chamber (21, 29, 63).
14. Engine according to claim 6, characterized by the fact that the inlet and the outlet of each of the preheating (7, 41, 54, 69) and combustion (10, 44, 51, 70) chambers are displaced of approxi-, matively 180° the one with respect to the other.
EP83109057A 1982-09-24 1983-09-14 Process for the transformation of thermal energy into mechanical energy by means of a combustion engine, and the engine Expired EP0104541B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5648/82 1982-09-24
CH5648/82A CH654067A5 (en) 1982-09-24 1982-09-24 COMBUSTION ENGINE AND METHOD FOR ACTIVATING IT.

Publications (3)

Publication Number Publication Date
EP0104541A2 EP0104541A2 (en) 1984-04-04
EP0104541A3 EP0104541A3 (en) 1985-06-12
EP0104541B1 true EP0104541B1 (en) 1988-01-07

Family

ID=4297105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83109057A Expired EP0104541B1 (en) 1982-09-24 1983-09-14 Process for the transformation of thermal energy into mechanical energy by means of a combustion engine, and the engine

Country Status (7)

Country Link
US (1) US4513568A (en)
EP (1) EP0104541B1 (en)
JP (1) JP2557616B2 (en)
BR (1) BR8305072A (en)
CA (1) CA1199586A (en)
CH (1) CH654067A5 (en)
DE (1) DE3375184D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739615A (en) * 1986-01-14 1988-04-26 Staheli Arthur A Internal combustion engine in which compressed fuel mixture is combusted externally of the cylinders of the engine in a rotating combustion chamber
CH668291A5 (en) * 1986-06-25 1988-12-15 Roger Bajulaz INTERNAL COMBUSTION ENGINE.
DE3715796A1 (en) * 1987-05-12 1988-11-24 Tomas Klimecky Fuel-Injection and Spraying System for 2-Stroke, 2-Cylinder and Multi-Cylinder Engines
US4877395A (en) * 1987-06-22 1989-10-31 Gary Schubach System control means to preheat waste oil for combustion
US4797089A (en) * 1987-06-22 1989-01-10 Gary Schubach System control means to preheat waste oil for combustion
US5311739A (en) * 1992-02-28 1994-05-17 Clark Garry E External combustion engine
FR2748776B1 (en) * 1996-04-15 1998-07-31 Negre Guy METHOD OF CYCLIC INTERNAL COMBUSTION ENGINE WITH INDEPENDENT COMBUSTION CHAMBER WITH CONSTANT VOLUME
EP1064458A4 (en) * 1998-03-17 2004-07-14 Nextier Diesel Engines High power density, diesel engine
PL354069A1 (en) * 2002-05-22 2003-12-01 AntoniPurta Antoni Purta Rotary piston engine
US20070099135A1 (en) * 2005-11-01 2007-05-03 Frank Schubach Waste oil heater system
JP2006348947A (en) * 2006-08-18 2006-12-28 Kazuo Oyama Internal combustion engine with exhaust pressure regenerator
US9003765B1 (en) * 2011-07-14 2015-04-14 Barry A. Muth Engine having a rotary combustion chamber
WO2013038227A1 (en) * 2011-09-18 2013-03-21 Gabora Akram Mohammed Abbashar 5 - stroke, 1- piston engine
JP5315490B1 (en) * 2012-06-13 2013-10-16 武史 畑中 Rotary heat engine and rotary heat engine driven generator
JP5218930B1 (en) * 2012-09-21 2013-06-26 武史 畑中 Rotary internal combustion engine, vehicle driven by the same, and hybrid vehicle
GB201804184D0 (en) * 2018-03-15 2018-05-02 Libralato Ltd Pension Plan A simplifield multi-axial rotary technology engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA448649A (en) * 1948-05-25 Milliken Humphreys Apparatus for converting heat energy into useful work
US2248484A (en) * 1940-04-11 1941-07-08 Bancroft Charles Heat energized apparatus
DE900503C (en) * 1943-10-05 1953-12-28 Daimler Benz Ag Internal combustion engine, in particular six-stroke engine operated with light fuels with an additional flushing or cooling stroke
FR2153680A5 (en) * 1971-09-20 1973-05-04 Moca Systems Inc
US4369623A (en) * 1975-03-14 1983-01-25 Johnson David E Positive displacement engine with separate combustion chamber
GB2057052B (en) * 1979-08-10 1983-08-03 Larson A Internal combustion engine cycles
DE3027415A1 (en) * 1980-07-19 1982-02-18 Linde Ag, 6200 Wiesbaden Diesel IC engine using exhaust heated air - has air compressed in cylinder and then re-admitted for completion of four or six stroke cycle

Also Published As

Publication number Publication date
JPS5974357A (en) 1984-04-26
US4513568A (en) 1985-04-30
EP0104541A3 (en) 1985-06-12
CH654067A5 (en) 1986-01-31
EP0104541A2 (en) 1984-04-04
BR8305072A (en) 1984-05-08
DE3375184D1 (en) 1988-02-11
CA1199586A (en) 1986-01-21
JP2557616B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
EP0104541B1 (en) Process for the transformation of thermal energy into mechanical energy by means of a combustion engine, and the engine
EP0302042B1 (en) Six-stroke internal combustion engine
EP1084334B1 (en) Erfahren
WO1997039232A1 (en) Internal combustion engine with constant-volume independent combustion chamber
EP0376909B1 (en) Internal-combustion engine
EP1018597B1 (en) Charged two or four stroke internal-combustion engine
BE1017617A5 (en) FOUR-STROKE INTERNAL COMBUSTION ENGINE
EP0358655B1 (en) Process and device for equipping a post-filling two-stroke engine
EP0250960B1 (en) Internal-combustion engine
FR2634821A1 (en) Improvement to encapsulated engines
FR2655378A1 (en) 2-stroke engine system with 4 cycles
RU2023185C1 (en) Method of operation of rotary engine and rotary internal combustion engine
FR2566459A1 (en) METHOD FOR IMPROVING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE AND INTERNAL COMBUSTION ENGINE WITH IMPROVED OPERATION AND SIMPLIFIED STRUCTURE
FR2778430A1 (en) Pistonless rotary internal combustion engine
WO1988005861A1 (en) Method for igniting by compression a gaseous mixture in an internal combustion engine, and engine implementing such method
FR2604478A1 (en) INTERNAL COMBUSTION ENGINE, PARTICULARLY ALLOWING THE USE OF PLASTIC MATERIALS IN ITS CONSTRUCTION
FR2730523A1 (en) Improvements to heat engine,
FR2531139A1 (en) Control device for a gas circuit of a combustion chamber
FR2602825A1 (en) Rotary internal combustion engine
WO1980002443A1 (en) Internal combustion and injection thermal engine
FR2810077A1 (en) Two stroke internal combustion engine includes gas transfer from beneath one cylinder to above second cylinder, recovering excess pressure
FR2708668A1 (en) Device for charging (filling) a combustion engine
BE887979A (en) NEW UNIVERSAL TURBINE ENGINE SYSTEM
BE474762A (en)
FR2485089A1 (en) Rotary piston IC engine - has piston fixed to rotor working in hollow torus with external combustion chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19850708

17Q First examination report despatched

Effective date: 19860401

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3375184

Country of ref document: DE

Date of ref document: 19880211

ITF It: translation for a ep patent filed

Owner name: FERRAIOLO S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83109057.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960820

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960916

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960927

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961129

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

EUG Se: european patent has lapsed

Ref document number: 83109057.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST