EP0103717A1 - Inert salt bath for heating steel - Google Patents

Inert salt bath for heating steel Download PDF

Info

Publication number
EP0103717A1
EP0103717A1 EP83107597A EP83107597A EP0103717A1 EP 0103717 A1 EP0103717 A1 EP 0103717A1 EP 83107597 A EP83107597 A EP 83107597A EP 83107597 A EP83107597 A EP 83107597A EP 0103717 A1 EP0103717 A1 EP 0103717A1
Authority
EP
European Patent Office
Prior art keywords
salt bath
regenerator
bath
inert
inert salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83107597A
Other languages
German (de)
French (fr)
Other versions
EP0103717B1 (en
Inventor
Friedrich-Wilhelm Dipl.-Ing. Eysell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to AT83107597T priority Critical patent/ATE18921T1/en
Publication of EP0103717A1 publication Critical patent/EP0103717A1/en
Application granted granted Critical
Publication of EP0103717B1 publication Critical patent/EP0103717B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths

Definitions

  • the invention relates to an inert salt bath for heating steels to austenitizing temperatures, consisting of a mixture of essentially alkali and alkaline earth chlorides and a regenerator.
  • the parts To harden steel parts such as tools, the parts must be heated to the austenitizing temperature. In many cases, this heating takes place in salt baths. However, the heating in the salt bath must be such that the surface of the components to be hardened does not undergo any chemical changes.
  • the salt baths used should therefore, for example, neither exert an oxygen effect, which could result in decarburization, nor should carburization take place which, at the appropriate hardening temperatures, can possibly lead to melting and thus destruction of the workpieces. Nor should they have a corrosive effect.
  • Melting salts for heating steel parts to austenitizing temperatures generally contain chlorides of alkali and alkaline earth metals, mostly chlorides of sodium, potassium and barium.
  • the composition depends on the particular application, in particular on the working temperature, ie the melting point of the salt mixture. Melting of this kind, which comes from very pure substances are generally met the requirements placed on the surface quality, they are inert.
  • the production of such glow baths from very pure substances is very expensive, so that lower-quality starting materials have to be used and the baths are thus no longer inert.
  • even originally inert glow baths lose their inert character due to the introduction of impurities, in particular the inevitable introduction of iron oxide, detergent residues, processing oils, etc. This not only leads to decarburization of the workpieces, but also to an increased corrosion attack on the components and the electrodes of the furnaces containing the molten salts and thus at higher costs.
  • regenerators or regeneration processes are used. It is known that molten salt for high-temperature baths, for example for hardening high-speed steel, can be added with methyl chloride, thereby avoiding decarburization. However, the success of this treatment is often insufficient and in any case only temporary, since methyl chloride must not be introduced into the melt during the treatment of workpieces.
  • regenerators are, for example, silicon or silicon carbide.
  • silicon generally serves the desired purpose, ie prevents decarburization, the silicon is occasionally sintered onto the workpiece surface, which may result in irreparable damage. It also forms generally a tough sludge in the molten salt that is difficult to remove.
  • Silicon carbide has practically the same disadvantages as silicon itself, but above all it cannot be used if carburizing of the workpiece surface must be avoided under all circumstances.
  • This object has been achieved according to the invention in that 0.01 to 2% by weight of a carbon and nitrogen-containing polymeric organic compound is added to the salt mixture as regenerator. These compounds can be added to the bath during operation or during the preparation of the salt mixture or salts.
  • Polymeric triazine compounds, polymeric hydrocyanic acids, polymeric carboxamides and / or polymeric urea have proven particularly useful as regenerators.
  • the degree of polymerization must be chosen so that the reaction in the bath is not too stormy. In some cases degrees of polymerization n> 3 are already sufficient, but they are preferably much higher.
  • Suitable regenerators are triaminotriazine-formaldehyde condensation products and in particular melon, a polymerization product of melamine, which can be prepared by heating melamine to temperatures of 500.degree.
  • melon a polymerization product of melamine
  • other nitrogen-containing polymeric organic compounds such as cyanuric acid or azulmic acid, have also proven successful.
  • the baths can be operated at temperatures from 700 to 1300 ° C,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Seasonings (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Heat Treatment Of Steel (AREA)
  • Cosmetics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heat Treatment Of Articles (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Lubricants (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

1. Inert salt bath for heating steels to austenitizing temperature, consisting of a mixture of essentially alkaline and alkaline earth chlorides and a regenerator, characterized in that from 0,01 to 2 % by weight of a polymeric carbon and nitrogen-containing organic compound are added to the salt mixture as regenerator.

Description

Die Erfindung betrifft ein inertes Salzbad zum Erwärmen von Stählen auf Austenitisierungstemperaturen, bestehend aus einem Gemisch von im wesentlichen Alkali- und Erdalkalichloriden und einem Regenerator.The invention relates to an inert salt bath for heating steels to austenitizing temperatures, consisting of a mixture of essentially alkali and alkaline earth chlorides and a regenerator.

Zum Härten von Stahlteilen, wie beispielsweise Werkzeugen, müssen die Teile auf die Austenitisierungstemperatur erwärmt werden. Diese Erwärmung erfolgt in vielen Fällen in Salzbädern. Dabei muß die Erwärmung im Salzbad aber so erfolgen, daß die Oberfläche der zu härtenden Bauteile keinerlei chemische Veränderungen erfährt. Die verwendeten Salzbäder sollen also zum Beispiel weder eine Sauerstoffeinwirkung ausüben, wodurch Entkohlung eintreten könnte, noch sollte eine Aufkohlung stattfinden, die bei entsprechenden Härtetemperaturen eventuell zu Aufschmelzungen und damit zur Zerstörung der Werkstücke führen kann. Auch sollen sie nicht korrodierend wirken.To harden steel parts such as tools, the parts must be heated to the austenitizing temperature. In many cases, this heating takes place in salt baths. However, the heating in the salt bath must be such that the surface of the components to be hardened does not undergo any chemical changes. The salt baths used should therefore, for example, neither exert an oxygen effect, which could result in decarburization, nor should carburization take place which, at the appropriate hardening temperatures, can possibly lead to melting and thus destruction of the workpieces. Nor should they have a corrosive effect.

Salzschmelzen zum Erwärmen von Stahlteilen auf Austeniti-sierungstemperaturcenthalten im allgemeinen Chloride der Alkali- und Erdalkalimetalle, meist Chloride von Natrium, Kalium und Barium. Die Zusammensetzung richtet sich nach dem besonderen Anwendungsfall, insbesondere nach der Arbeitstemperatur, d.h. dem Schmelzpunkt des Salzgemisches. Schmelzen dieser Art, die aus sehr reinen Substanzen hergestellt werden, erfüllen im allgemeinen die gestellten Anforderungen an die Dberflächenqualität, sie sind inert. Die Herstellung derartiger Glühbäder aus sehr reinen Substanzen ist jedoch sehr teuer, so daß man geringerwertige Ausgangsstoffe verwenden muß und damit die Inertheit der Bäder verliert. Dazu kommt, daß selbst ursprünglich inerte Glühbäder durch das Hereinschleppen von Verunreinigungen, insbesondere durch das unvermeidliche Hereinschleppen von Eisenoxid, Waschmittelreste, Bearbeitungsöle usw..ihren inerten Charakter verlieren. Dadurch kommt es nicht nur zur Entkohlung der Werkstücke, sondern auch zu einem vermehrten Korrosionsangriff auf die Bauteile und die Elektroden der die Salzschmelzen enthaltenden Öfen und damit zu höheren Kosten.Melting salts for heating steel parts to austenitizing temperatures generally contain chlorides of alkali and alkaline earth metals, mostly chlorides of sodium, potassium and barium. The composition depends on the particular application, in particular on the working temperature, ie the melting point of the salt mixture. Melting of this kind, which comes from very pure substances are generally met the requirements placed on the surface quality, they are inert. However, the production of such glow baths from very pure substances is very expensive, so that lower-quality starting materials have to be used and the baths are thus no longer inert. In addition, even originally inert glow baths lose their inert character due to the introduction of impurities, in particular the inevitable introduction of iron oxide, detergent residues, processing oils, etc. This not only leads to decarburization of the workpieces, but also to an increased corrosion attack on the components and the electrodes of the furnaces containing the molten salts and thus at higher costs.

Um dennoch die gewünschte Inertheit der Salzschmelzen zu erreichen, arbeitet man mit sogenannten Regeneratoren oder Regenerierungsverfahren. Es ist bekannt, daß man Salzschmelzen für Hochtemperaturbäder, beispielsweise zum Härten von Schnellarbeitsstahl, Methylchlorid zusetzen kann, wodurch eine Abkohlung vermieden wird. Der Erfolg dieser Behandlung ist jedoch oft nicht ausreichend und auf jeden Fall nur vorübergehend, da während der Behandlung von Werkstücken eine Methylchlorideinleitung in die Schmelze nicht erfolgen darf.In order to nevertheless achieve the desired inertness of the salt melts, so-called regenerators or regeneration processes are used. It is known that molten salt for high-temperature baths, for example for hardening high-speed steel, can be added with methyl chloride, thereby avoiding decarburization. However, the success of this treatment is often insufficient and in any case only temporary, since methyl chloride must not be introduced into the melt during the treatment of workpieces.

Andere Stoffe, die als Regeneratoren verwendet werden, sind z.B. Silizium oder Siliziumcarbid. Das Silizium erfüllt zwar im allgemeinen den gewünschten Zweck, d.h. verhindert die Abkohlung, jedoch kommt es gelegentlich zum Aufsintern des Siliziums auf die Werkstückoberfläche, womit unter Umständen irreparable Schäden entstehen. Außerdem bildet es im allgemeinen einen schwer entfernbaren zähen Schlamm in der Salzschmelze.Other substances that are used as regenerators are, for example, silicon or silicon carbide. Although the silicon generally serves the desired purpose, ie prevents decarburization, the silicon is occasionally sintered onto the workpiece surface, which may result in irreparable damage. It also forms generally a tough sludge in the molten salt that is difficult to remove.

Siliziumcarbid hat praktisch die gleichen Nachteile wie das Silizium selbst, kann aber vor allen Dingen dann nicht verwendet werden, wenn eine Aufkohlung der Werkstückoberfläche unter allen Umständen vermieden werden muß.Silicon carbide has practically the same disadvantages as silicon itself, but above all it cannot be used if carburizing of the workpiece surface must be avoided under all circumstances.

Ähnlich arbeiten Regenerierungsverfahren, bei denen Kohle oder Graphit verwendet wird, z.B. in Form von Stäben, die in die Schmelze getaucht werden. Auch hier ist nicht zu vermeiden, daß Kohlepartikelchen im Bad verbleiben und damit eine aufkohlende Wirkung hervorrufen.Regeneration processes using coal or graphite, e.g. in the form of rods that are immersed in the melt. Here, too, it cannot be avoided that carbon particles remain in the bath and thus have a carburizing effect.

Besonders wirksame Regenerierungssubstanzen sind für die sogenannten Hochtemperaturbäder gefunden worden. Dort verwendet man Magnesiumfluorid in Mischung mit Bortrioxid als Regenerator. Solche Bäder sind absolut inert. Diescsetzt jedoch voraus, daß verhältnismäßig große Mengen von Magnesiumfluorid (z.B. 6%) verwendet werden. Dieser hohe Zusatz führt jedoch zu einem verhältnismäßig hohen Schlammanfall aus Magnesium- und Eisenoxid, was in solchen Fällen stört, wo die Elektrodenbeheizung der Salzbäder vom Boden her erfolgt. In solchen Fällen ist die Verwendung dieser Regeneratoren nicht möglich. Außerdem sind sie nur bei Temperaturen über 1.100 C verwendbar.Particularly effective regeneration substances have been found for the so-called high-temperature baths. There, magnesium fluoride mixed with boron trioxide is used as a regenerator. Such baths are absolutely inert. However, this requires that relatively large amounts of magnesium fluoride (e.g. 6%) are used. However, this high addition leads to a relatively high amount of sludge from magnesium and iron oxide, which is disturbing in those cases where the electrode heating of the salt baths takes place from the bottom. In such cases, the use of these regenerators is not possible. In addition, they can only be used at temperatures above 1,100 C.

Es war daher Aufgabe der vorliegenden Erfindung, ein inertes Salzbad zum Erwärmen von Stählen auf Austenitisierungstemperatur zu finden, bestehend aus einem Gemisch von im wesentlichen Alkali- und Erdalkalichloriden und einem Regenerator, daß auch bei relativ tiefen Temperaturen wirkt, keine Korrosion und keine Aufschmelzungen auf den Oberflächen der behandelten Teile hervorruft und keine Schlammbildung in der Salzschmelze verursacht.It was therefore an object of the present invention to find an inert salt bath for heating steels to the austenitizing temperature, consisting of a mixture of essentially alkali metal and alkaline earth metal chlorides and a regenerator, that works even at relatively low temperatures, does not cause corrosion and no melting on the surfaces of the treated parts and does not cause sludge formation in the salt melt.

Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß dem Salzgemisch als Regenerator 0,01 bis 2 Gew.% einer Kohlenstoff und Stickstoff enthaltenden polymeren organischen Verbindung zugesetzt wird. Diese Verbindungen können dem Bad während des Betriebs oder bereits bei der Herstellung des Salzgemisches bzw. der Salze zugesetzt werden.This object has been achieved according to the invention in that 0.01 to 2% by weight of a carbon and nitrogen-containing polymeric organic compound is added to the salt mixture as regenerator. These compounds can be added to the bath during operation or during the preparation of the salt mixture or salts.

Besonders bewährt als Regeneratoren haben sich polymere Triazinverbindungen, polymere Cyanwasserstoffsäuren, polymere Carbonsäureamide und/oder polymerer Harnstoff. Der Polymerisationsgrad muß dabei so gewählt werden, daß die Reaktion im Bad nicht zu stürmisch abläuft. Zum Teil sind Polymerisationsgrade n>3 bereits ausreichend, vorzugsweise liegen sie jedoch wesentlich höher.Polymeric triazine compounds, polymeric hydrocyanic acids, polymeric carboxamides and / or polymeric urea have proven particularly useful as regenerators. The degree of polymerization must be chosen so that the reaction in the bath is not too stormy. In some cases degrees of polymerization n> 3 are already sufficient, but they are preferably much higher.

Geeignete Regeneratoren sind Triaminotriazin-Formaldehyd-Kondensationsprodukte und insbesondere Melon, ein Polymerisationsprodukt des Melamins, herstellbar durch Erwärmen von Melamin auf Temperaturen von 500°C. Bewährt haben sich jedoch auch andere stickstoffhaltige polymere organische Verbindungen, wie Cyanursäure oder Azulminsäure. Die Bäder können bei Temperaturen von 700 bis 1300°C betrieben werden,Suitable regenerators are triaminotriazine-formaldehyde condensation products and in particular melon, a polymerization product of melamine, which can be prepared by heating melamine to temperatures of 500.degree. However, other nitrogen-containing polymeric organic compounds, such as cyanuric acid or azulmic acid, have also proven successful. The baths can be operated at temperatures from 700 to 1300 ° C,

Folgende Beispiele sollen das erfindungsgemäße Salzbad näher erläutern:

  • 1. Ein Glühsalzbad mit 70 % Bariumchlorid und 30 % Alkalichlorid wird bei Temperaturen von 1050°C eingesetzt, um Werkzeuge aus Warmarbeitsstahl zu härten. Trotz Regenerierung mit Silizium zeigt eine Stahlfolie mit einem Xohlenstoffgehalt von 1 %, die 20 Minuten bei dieser Temperatur in das Bad gehängt und dann abgeschreckt wurde, einen starken Gewichtsverlust von ca. 180 mg/dm2. Stahlwerkzeuge, die in diesem Bad behandelt wurden, zeigten insbesondere an den feinbearbeiteten Oberflächen kräftige Anfressungen, die die Weiterverarbeitung des Werkzeuges unmöglich machten. Die Werkzeuge sind Ausschuß.
The following examples are intended to explain the salt bath according to the invention in more detail:
  • 1. A salt bath with 70% barium chloride and 30% alkali Chloride is used at temperatures of 1050 ° C to harden tools made of hot-work steel. Despite regeneration with silicon, a steel foil with a carbon content of 1%, which was hung in the bath for 20 minutes at this temperature and then quenched, shows a strong weight loss of approx. 180 mg / dm 2 . Steel tools that were treated in this bath showed strong corrosion, particularly on the finely machined surfaces, which made further processing of the tool impossible. The tools are rejects.

Dem gleichen Bad wurden dann 0,05 % Melon zugesetzt. Nach Beendigung der nach der Zugabe einsetzenden Reaktion zeigte eine Folie, die wie oben beschrieben behandelt wird, nur noch einen Gewichtsverlust von ca. 20 mg/dm2. Stahlwerkzeuge, die darin behandelt wurden, hatten einwandfreie Oberflächen.

  • 2. Bei einem weiteren Versuch, unter Bedingungen wie unter Beispiel 1 geschildert, wird das Glühbad von vornherein mit einer Mischung angesetzt, die außer Alkali- und Erdalkalichloriden ca. 1 % Melon enthält. Die in diesem Bad behandelten Werkzeuge aus Warmarbeitsstahl waren frei von Oberflächenkorrosion.
  • 3. Ein magnesiumfluoridhaltiges Bad wird wie folgt angesetzt:
    • ca. 98,0 % Bariumchlorid
    • ca. 1,0 % Magnesiumfluorid
    • ca. 0,2 % B 2 0 3 0,5 % Melon
0.05% melon was then added to the same bath. After the reaction after the addition had ended, a film which was treated as described above showed only a weight loss of approximately 20 mg / dm 2 . Steel tools that were treated in it had flawless surfaces.
  • 2. In a further experiment, under conditions as described in Example 1, the glow bath is prepared from the outset with a mixture which, in addition to alkali and alkaline earth chlorides, contains about 1% melon. The tools made of hot-work steel treated in this bath were free from surface corrosion.
  • 3. A bath containing magnesium fluoride is prepared as follows:
    • approx. 98.0% barium chloride
    • approx. 1.0% magnesium fluoride
    • c a. 0.2% B 2 0 3 0.5% melon

In einem solchen Bad behandelte Werkzeuge aus Schnellarbeitsstahl weisen keine Abkohlung auf. Eine 20 Minuten bei 1220oC behandelte Folie mit einem Ausgangskohlenstoffgehalt von 1,0 % hat nach Abschluß dieser Behandlung immer noch einen Kohlenstoffgehalt von über 0,9 %, was beweist, daß das Bad praktisch nicht abkohlt. Der Gewichtsverlust einer Folie liegt bei 80 mg/dm2, ohne Zusatz von Melon führen derartige Schmelzen zu Gewichtsverlusten von über 200 mg/dm2.Tools made from high-speed steel treated in such a bath have no decarburization. A film treated at 1220 ° C. for 20 minutes with a starting carbon content of 1.0% still has a carbon content of over 0.9% after the completion of this treatment, which proves that the bath practically does not carbonize. The weight loss of a film is 80 mg / dm 2 ; without the addition of melon, such melts lead to weight losses of over 200 mg / dm 2 .

Der Versuch wird nach 50 Laufstunden des Bades wiederholt. Bei den geringen Magnesiumfluoridgehalten hätte das Bad ohne Melonzusatz stark abkohlende Wirkung gezeigt. Mit Melonzusatz verhält sich das Bad jedoch genauso inert wie bei der InbetriebnahmeThe test is repeated after 50 hours of running the bath. With the low magnesium fluoride contents, the bath would have had a strong carburizing effect without the addition of melon. With the addition of melon, however, the bath is just as inert as when it was commissioned

Claims (4)

1. Inertes Salzbad zum Erwärmen von Stählen auf Austenitisierungstemperatur, bestehend aus einem Gemisch von im wesentlichen Alkali- und Erdalkalichloriden und einem Regenerator, dadurch gekennzeichnet, daß dem Salzgemisch als Regenerator 0,01 bis 2 Gew.% einer Kohlenstoff und Stickstoff enthaltenden polymeren organischen Verbind dung zugesetzt wird.1. Inert salt bath for heating steels to austenitizing temperature, consisting of a mixture of essentially alkali and alkaline earth metal chlorides and a regenerator, characterized in that the salt mixture as a regenerator contains 0.01 to 2% by weight of a carbon and nitrogen-containing polymeric organic compound dung is added. 2. Inertes Salzbad nach Anspruch 1, dadurch gekennzeichnet, daß als Regenerator polymere Triazinverbindungen, polymere Cyanwasserstoffsäuren, polymere Carbonsäureamide und/oder polymerer Harnstoff zugesetzt werden.2. Inert salt bath according to claim 1, characterized in that polymer triazine compounds, polymeric hydrocyanic acids, polymeric carboxamides and / or polymeric urea are added as regenerators. 3. Inertes Salzbad nach Anspruch 1 und 2, dadurch gekennzeichnet, daß als Regenerator Melon zugesetzt wird.3. Inert salt bath according to claim 1 and 2, characterized in that melon is added as a regenerator. 4. Inertes Salzbad nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß es zwischen 700 und 13000C betrieben wird.4. Inert salt bath according to claim 1 to 3, characterized in that it is operated between 700 and 1300 0 C.
EP83107597A 1982-08-25 1983-08-02 Inert salt bath for heating steel Expired EP0103717B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83107597T ATE18921T1 (en) 1982-08-25 1983-08-02 INERT SALT BATH FOR HEATING STEEL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823231540 DE3231540A1 (en) 1982-08-25 1982-08-25 INERT SALT BATH FOR HEATING STEELS
DE3231540 1982-08-25

Publications (2)

Publication Number Publication Date
EP0103717A1 true EP0103717A1 (en) 1984-03-28
EP0103717B1 EP0103717B1 (en) 1986-04-02

Family

ID=6171642

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83107597A Expired EP0103717B1 (en) 1982-08-25 1983-08-02 Inert salt bath for heating steel

Country Status (12)

Country Link
EP (1) EP0103717B1 (en)
JP (1) JPS5938324A (en)
AT (1) ATE18921T1 (en)
BR (1) BR8304569A (en)
DE (2) DE3231540A1 (en)
DK (1) DK152224C (en)
ES (1) ES8405084A1 (en)
IL (1) IL69419A (en)
IN (1) IN160848B (en)
TR (1) TR21551A (en)
YU (1) YU153383A (en)
ZA (1) ZA835229B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE622802C (en) * 1932-04-15 1935-12-06 Emil Kleisinger Dr Heating bath
DE1233423B (en) * 1961-04-28 1967-02-02 Ici Ltd Process for the regeneration of a cyanide-free, molten salt bath used for the heat treatment of metals
DE1264475B (en) * 1966-05-05 1968-03-28 Degussa Salt bath for the heat treatment of steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE622802C (en) * 1932-04-15 1935-12-06 Emil Kleisinger Dr Heating bath
DE1233423B (en) * 1961-04-28 1967-02-02 Ici Ltd Process for the regeneration of a cyanide-free, molten salt bath used for the heat treatment of metals
DE1264475B (en) * 1966-05-05 1968-03-28 Degussa Salt bath for the heat treatment of steel

Also Published As

Publication number Publication date
YU153383A (en) 1985-12-31
DE3231540A1 (en) 1984-03-01
IN160848B (en) 1987-08-08
IL69419A (en) 1987-01-30
BR8304569A (en) 1984-04-03
DK152224B (en) 1988-02-08
ATE18921T1 (en) 1986-04-15
DE3362793D1 (en) 1986-05-07
DK385283A (en) 1984-02-26
ES525120A0 (en) 1984-05-16
IL69419A0 (en) 1983-11-30
DK152224C (en) 1988-06-27
JPS5938324A (en) 1984-03-02
DK385283D0 (en) 1983-08-23
JPH0453925B2 (en) 1992-08-28
TR21551A (en) 1984-09-27
ES8405084A1 (en) 1984-05-16
EP0103717B1 (en) 1986-04-02
ZA835229B (en) 1984-03-28

Similar Documents

Publication Publication Date Title
DE1131586B (en) Process for improving the resistance to oxidation of objects containing carbon
DE849789C (en) Process for cleaning metallic objects
EP0208893A1 (en) Apparatus for the treatment of ceramic bodies in a molten alkalihydroxide bath
EP0077926B1 (en) Process to suppress surface deposits during salt bath nitriding of structural parts
DE2163203A1 (en) Method of making steel in an electric furnace
EP0103717B1 (en) Inert salt bath for heating steel
CH635130A5 (en) METHOD FOR PRODUCING A CARBIDE LAYER ON THE SURFACE OF AN OBJECT FROM AN IRON ALLOY.
DE1069887B (en) Process for protecting carbon electrodes for electric melting furnaces
EP0472957B1 (en) Process for improving the corrosion resistance of nitrocarbonized steel components
DE2514398A1 (en) SALT BATH TO DETERMINE BATH NITRIZED COMPONENTS
DE2809295A1 (en) Boric oxide-treated carbon electrodes - with improved resistance to high temp. oxidn. (BR 2.1.79)
DE2425394A1 (en) METHOD FOR MANUFACTURING CONCENTRATED TITANIUM MINERAL
EP0132602A1 (en) Salt bath for the currentless production of wear-resistant boride layers
DE3626849C1 (en) Salt baths for the heat treatment of steels
DE4119820C1 (en) Treatment of iron@ (alloys) on same support - comprises nitriding in molten alkali metal cyanate and quenching in hot aq. salt bath
DE2215266C3 (en) Process for accelerating the rate of dissolution of silicon carbide in iron melts
DE2310815C3 (en) Process for regenerating nitriding and carbonization baths
DE931772C (en) Warming salt bath for carbonaceous, alloyed steels
DE370972C (en) Process for the production of oxalic acid
DE688152C (en) Saltpeter baths resistant to decomposition
AT144345B (en) Paste or powder and method for rapid cementation of steel objects.
DE2310815B2 (en) PROCESS FOR REGENERATING NITRATION AND CARBON SALT BATHS
DE2318652C3 (en) Process for the joint destruction of cyanides / cyanates, complex cyanides as well as nitrates and nitrites as waste materials in used hardening salts
DE1671175C (en) Process for the production of carbon molded parts
EP0113474B1 (en) Regenerator for carburizing salt baths and process for making it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830802

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 18921

Country of ref document: AT

Date of ref document: 19860415

Kind code of ref document: T

ITF It: translation for a ep patent filed
ET Fr: translation filed
REF Corresponds to:

Ref document number: 3362793

Country of ref document: DE

Date of ref document: 19860507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920710

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920721

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920811

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920812

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920827

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920902

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930802

Ref country code: GB

Effective date: 19930802

Ref country code: AT

Effective date: 19930802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930831

Ref country code: CH

Effective date: 19930831

Ref country code: BE

Effective date: 19930831

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930802

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83107597.3

Effective date: 19940310