EP0113474B1 - Regenerator for carburizing salt baths and process for making it - Google Patents

Regenerator for carburizing salt baths and process for making it Download PDF

Info

Publication number
EP0113474B1
EP0113474B1 EP83112965A EP83112965A EP0113474B1 EP 0113474 B1 EP0113474 B1 EP 0113474B1 EP 83112965 A EP83112965 A EP 83112965A EP 83112965 A EP83112965 A EP 83112965A EP 0113474 B1 EP0113474 B1 EP 0113474B1
Authority
EP
European Patent Office
Prior art keywords
cyanide
regeneration
regeneration agents
agents according
salt baths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112965A
Other languages
German (de)
French (fr)
Other versions
EP0113474A3 (en
EP0113474A2 (en
Inventor
Hans-Hermann Dr. Dipl.-Chem. Beyer
Ulrich Dr. Dipl.-Chem. Baudis
Peter Dipl.-Ing. Biberbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to AT83112965T priority Critical patent/ATE23054T1/en
Publication of EP0113474A2 publication Critical patent/EP0113474A2/en
Publication of EP0113474A3 publication Critical patent/EP0113474A3/en
Application granted granted Critical
Publication of EP0113474B1 publication Critical patent/EP0113474B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions

Definitions

  • the invention relates to regeneration agents for salt baths for carburizing iron and steel parts in the form of polymeric organic compounds and a process for their production.
  • Salt baths for carburizing iron and steel parts in hardening technology generally consist of a mixture of alkali cyanide as an effective carburizing substance, barium chloride as a carrier melt and alkali carbonate. They are operated at a temperature of 800 to 950 ° C. At this temperature, carbon preferably diffuses into the surface of the workpieces suspended in the melt for about 1 to 5 hours. Subsequent quenching of the carburized workpieces results in a high hardness and high wear resistance. During the operation of the salt bath, however, there is a gradual oxidation of the cyanide by atmospheric oxygen to carbonate, which is ineffective for the carburizing process.
  • the polymeric regeneration agents according to the invention thus enable problem-free regeneration of carburizing salt baths.
  • the good carbonation effect of these baths is not affected by the regeneration.
  • the formaldehyde is preferably used in the form of solid paraformaldehyde and the pyrolysis is carried out in a nitrogen atmosphere.
  • the gross composition of the regenerant thus obtained can be changed by varying the pyrolysis conditions (temperature and pyrolysis time) and by varying the mixing ratio of the starting materials.
  • the reaction and pyrolysis are preferably carried out at 400 to 500 °, for a period of 10 to 60 minutes.
  • the addition of the formaldehyde can be varied in the range from 5 to 7 moles.
  • This polymer is a deep black substance which is practically insoluble in the usual solvents. It has no optically recognizable melting point and decomposes slowly and exothermically in air at temperatures above 610 ° C.
  • the material properties do not allow a clear structure determination with the usual analytical methods. However, the gross composition and the material properties mentioned, in particular the insolubility and the black color, and the elimination of ammonia, urotropin, water and traces of hydrocyanic acid during the preparation, show that the compounds according to the invention must have a completely different structure than the white ones which occur as intermediates and water-soluble formaldehyde resins.
  • the following table shows the advantages of the regeneration agent according to the invention compared to the substances melon and polymeric hydrocyanic acid used in nitrating salt baths.
  • the same weight amounts of regenerating agent are added to commercially available carbonic salt baths which have been in operation for a long time and which still contained 9.0% cyanide and 0% cyanate.
  • the increase in cyanide and cyanate values was measured 5 minutes after the regeneration agent was added.
  • the marginal oxidation that can be observed metallographically is directly related to the cyanate content of the bath.
  • the reaction gas is passed through dust chambers to separate entrained solid particles and then into a torch.
  • the analysis of the compounds produced by the above methods is very difficult, in particular in the determination of z.
  • the values of x vary between 3 and 5 and the values of y between 5 and 8, depending on the manufacturing conditions.
  • the values of z have to be estimated more or less.
  • This drop in the cyanide content is prevented by adding 150 g / h of the regenerating agent according to the invention, since the carbonate formed during the oxidation of NaCN is converted back to carbon-active NaCN by the regenerating agent. In this way, the optimal cyanide content of 10% NaCN can be constantly maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die Erfindung betrifft Regenerierungsmittel für Salzbäder zum Aufkohlen von Eisen- und Stahlteilen in Form polymerer organischer Verbindungen und ein Verfahren zu deren Herstellung.The invention relates to regeneration agents for salt baths for carburizing iron and steel parts in the form of polymeric organic compounds and a process for their production.

Salzbäder zum Aufkohlen von Eisen- und Stahlteilen in der Härtereitechnik bestehen im allgemeinen aus einem Gemisch von Alkalicyanid als wirksamer Kohlungssubstanz, Bariumchlorid als Trägerschmelze und Alkalicarbonat. Sie werden bei einer Temperatur von 800 bis 950 °C betrieben. Bei dieser Temperatur diffundiert bevorzugt Kohlenstoff in die Oberfläche der für etwa 1 bis 5 Stunden in die Schmelze eingehängten Werkstücke ein. Durch anschließendes Abschrecken der aufgekohlten Werkstücke wird eine hohe Randhärte und hohe Verschleißfestigkeit erzielt. Während des Betriebes des Salzbades findet jedoch eine allmähliche Oxidation des Cyanids durch Luftsauerstoff zu Carbonat statt, das für den Kohlungsvorgang unwirksam ist.Salt baths for carburizing iron and steel parts in hardening technology generally consist of a mixture of alkali cyanide as an effective carburizing substance, barium chloride as a carrier melt and alkali carbonate. They are operated at a temperature of 800 to 950 ° C. At this temperature, carbon preferably diffuses into the surface of the workpieces suspended in the melt for about 1 to 5 hours. Subsequent quenching of the carburized workpieces results in a high hardness and high wear resistance. During the operation of the salt bath, however, there is a gradual oxidation of the cyanide by atmospheric oxygen to carbonate, which is ineffective for the carburizing process.

Weil die Bäder dadurch inaktiv werden, mußte die ursprüngliche Badzusammensetzung bisher von Zeit zu Zeit durch Zusatz von Cyanid oder cyanidhaltigen Salzgemischen wieder hergestellt werden. Für jede Regenerierung mußte ein Teil des Salzes aus dem Bad ausgetragen und als hochgiftiges Altsalz verworfen werden. Diese Betriebsweise hat jedoch den Nachteil, daß hochgiftige Abfallsalze entsorgt werden müssen und daß giftiges Cyanid als Regenerierungsmittel gelagert werden muß. Es ist daher bereits vorgeschlagen worden (DE-C-2 310 815), zur Regenerierung von Salzbädern für die Nitrierung von Werkstücken polymere Triazinverbindungen, polymere Cyanwasserstoffsäure und polymere Carbonsäureamide (DE-C-2 409 285) zu verwenden. Diese Zusätze haben den Vorteil, daß sie ungiftig sind. Sie sind im Prinzip auch für Kohlungssalzbäder verwendbar. Bei Zugabe dieser Verbindungen wird das durch Oxidation entstandene, für die Kohlung unwirksame Carbonat im Salzbadtiegel selbst wieder in kohlungsaktives Cyanid zurückverwandelt. Bei dieser Betriebsweise entfällt daher das Ausschöpfen von Abfallsalzen und das Lagern von Cyanid.Because the baths become inactive as a result, the original bath composition had to be restored from time to time by adding cyanide or salt mixtures containing cyanide. For each regeneration, part of the salt had to be removed from the bath and discarded as highly toxic old salt. However, this mode of operation has the disadvantage that highly toxic waste salts have to be disposed of and that toxic cyanide has to be stored as a regenerating agent. It has therefore already been proposed (DE-C-2 310 815) to use polymeric triazine compounds, polymeric hydrocyanic acid and polymeric carboxamides (DE-C-2 409 285) for the regeneration of salt baths for the nitriding of workpieces. The advantage of these additives is that they are non-toxic. In principle, they can also be used for carbonic salt baths. When these compounds are added, the carbonate in the salt bath crucible, which is formed by oxidation and is ineffective for carbonization, is converted back into carbon-active cyanide. With this mode of operation, there is no need to exhaust waste salts and store cyanide.

Die obengenannten Regeneriermittel werden in der Praxis jedoch überwiegend nur zur Regenerierung von Nitriersalzbädern bei Temperaturen um 580 °C eingesetzt. Bei Verwendung dieser Stoffe zur Regenerierung von Kohlungssalzbädern bei 800 bis 950 °C tritt nämlich eine Reihe von Nachteilen auf, die ihren Einsatz in der Technik bislang verhindert haben.In practice, however, the abovementioned regeneration agents are predominantly used only for the regeneration of nitriding salt baths at temperatures around 580 ° C. When these substances are used to regenerate carbonic acid salt baths at 800 to 950 ° C, there are a number of disadvantages which have hitherto prevented their use in technology.

So entstehen bei Verwendung von Melon oder polymerem Harnstoff als Regenerierungsmittel in Kohlungsbädern bei 800 bis 950 °C nur geringe Mengen des kohlungsaktiven Cyanids, aber große Mengen Cyanat, das nur teilweise und langsam zu Cyanid zerfällt und in Kohlungssalzbädern unerwünscht ist, da es die Kohlungswirkung negativ beeinflusst und zu Randoxidationen am Stahl führt. Außerdem tritt durch den Zerfall des Cyanats bei den hohen Temperaturen der Kohlungsbäder ein starkes Schäumen des Salzbades auf, das zum Überlaufen der Schmelze führen kann. Ferner verläuft die Umsetzung dieser Regenerierungsmittel mit der Schmelze überaus heftig. Melon besitzt die Bruttoformel [C6H3N9]x, wie beispielsweise aus J. appl. Chem. 9, Juni 1959, Seite 340-344, hervorgeht.For example, when using melon or polymeric urea as a regeneration agent in carbonation baths at 800 to 950 ° C, only small amounts of the carbonizing cyanide arise, but large amounts of cyanate, which only partially and slowly breaks down into cyanide and is undesirable in carbonating salt baths because it has a negative effect on carbonization influences and leads to edge oxidation on the steel. In addition, due to the decomposition of the cyanate at the high temperatures of the carbonation baths, the salt bath is foamed to a great extent, which can lead to the melt overflowing. Furthermore, the implementation of these regenerants with the melt is extremely violent. Melon has the gross formula [C 6 H 3 N 9 ] x , as for example from J. appl. Chem. 9, June 1959, pages 340-344.

Bei Verwendung der bekannten polymeren Cyanwasserstoffsäure (Azulminsäure) treten die obigen Schwierigkeiten zwar in geringerem Umfang auf, dafür entstehen aber andere Probleme. So bildet Azulminsäure bei der Reaktion mit Carbonat neben Cyanid beträchtliche Mengen an Kohlenstoff, wodurch sich eine dichte Baddecke ausbildet, die die Regenerierung erschwert. Die Cyanidausbeute ist daher unbefriedigend. Außerdem erfordert die Herstellung der polymeren Blausäure umfangreiche Sicherheitsmaßnahmen und großen apparativen Aufwand, da von dem hochgiftigen Cyanwasserstoff ausgegangen werden muß.When using the known polymeric hydrocyanic acid (azulmic acid), the above difficulties occur to a lesser extent, but other problems arise for this. In addition to cyanide, azulmic acid forms considerable amounts of carbon in the reaction with carbonate, which creates a dense bath cover that makes regeneration difficult. The cyanide yield is therefore unsatisfactory. In addition, the production of the polymeric hydrocyanic acid requires extensive safety measures and a large outlay on equipment, since the highly toxic hydrogen cyanide must be assumed.

Es war daher Aufgabe der vorliegenden Erdindung, Regenerierungsmittel für Salzbäder zum Aufkohlen von Eisen- und Stahlteilen in Form polymerer organischer Verbindungen zu finden, die eine praktisch vollständige Umwandlung von Carbonat in Cyanid bewirken, kein Überschäumen des Salzbades verursachen, keine Kohlenrückstände bilden und gefahrlos herzustellen sind.It was therefore an object of the present invention to find regeneration agents for salt baths for carburizing iron and steel parts in the form of polymeric organic compounds which bring about a virtually complete conversion of carbonate to cyanide, do not cause the salt bath to foam, do not form any carbon residues and are safe to produce .

Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß die polymeren organischen Verbindungen eine Bruttozusammensetzung [C6H"Ny]z besitzen, wobei x = 3-5, y = 5-8 und z = 10 bis 10 000 betragen, und durch Umsetzung von etwa 6 Mol Formaldehyd mit 3 Mol Dicyandiamid oder 6 Mol Cyanamid oder 2 Mol Melamin oder entsprechenden Gemischen dieser Verbindungen bei 300 bis 600 °C und anschließender Pyrolysebehandlung der harzartigen Kondensationsprodukte bei der gleichen Temperatur hergestellt werden. Daneben kann die Substanz noch bis 1 % Sauerstoff in gebundener Form enthalten.This object was achieved in that the polymeric organic compounds have a gross composition [C 6 H " Ny] z , where x = 3-5, y = 5-8 and z = 10 to 10,000, and by reacting about 6 moles of formaldehyde with 3 moles of dicyandiamide or 6 moles of cyanamide or 2 moles of melamine or corresponding mixtures of these compounds at 300 to 600 ° C. and subsequent pyrolysis treatment of the resinous condensation products at the same temperature Form included.

Vorzugsweise verwendet man Verbindungen der Zusammensetzung [CaH3N7]z' wobei z = 10 bis 10 000 ist. Besonders bewährt haben sich Polymere mit z zwischen 100 und 1 000. Die Bestimmung von z ist dabei aber sehr schwierig. Es ist daher möglich, daß auch Verbindungen mit anderen z-Werten gut eingesetzt werden können.Compounds of the composition [C a H 3 N 7] z 'are preferably used, where z = 10 to 10,000. Polymers with z between 100 and 1,000 have proven particularly useful. However, the determination of z is very difficult. It is therefore possible that compounds with other z values can also be used well.

Diese polymeren Verbindungen setzen sich mit dem Carbonat im Kohlungssalzbad in ruhiger Reaktion und mit sehr guter Ausbeute zu Cyanid um, wobei weder Kohlenstoffrückstände noch störende Cyanatanteile entstehen.These polymeric compounds react with the carbonate in the carbonation salt bath in a calm reaction and with very good yield to cyanide, with neither carbon residues nor disruptive cyanate components.

Die erfindungsgemäßen polymeren Regenerierungsmittel ermöglichen somit eine problemlose Regenerierung von Kohlungssalzbädern. Die gute Kohlungswirkung dieser Bäder wird durch die Regenerierung dabei nicht beeinträchtigt.The polymeric regeneration agents according to the invention thus enable problem-free regeneration of carburizing salt baths. The good carbonation effect of these baths is not affected by the regeneration.

Bei der Herstellung der Regenerierungsmittel wird der Formaldehyd vorzugsweise in Form von festem Paraformaldehyd eingesetzt und die Pyrolyse in einer Stickstoffatmosphäre durchgeführt.In the preparation of the regeneration agents, the formaldehyde is preferably used in the form of solid paraformaldehyde and the pyrolysis is carried out in a nitrogen atmosphere.

Die Bruttozusammensetzung des so erhaltenen Regenerierungsmittels läßt sich durch Variation der Pyrolysebedingungen (Temperatur und Pyrolysedauer) und durch Variation des Mischungsverhältnisses der Ausgangsstoffe verändern. Vorzugsweise wird die Umsetzung und Pyrolyse bei 400 bis 500° durchgeführt, während einer Dauer von 10 bis 60 Minuten. Die Zugabe des Formaldehyds kann man im Bereich von 5 bis 7 Mol variieren.The gross composition of the regenerant thus obtained can be changed by varying the pyrolysis conditions (temperature and pyrolysis time) and by varying the mixing ratio of the starting materials. The reaction and pyrolysis are preferably carried out at 400 to 500 °, for a period of 10 to 60 minutes. The addition of the formaldehyde can be varied in the range from 5 to 7 moles.

Als besonders geeignet hat sich die Umsetzung von 2 Mol Paraformaldehyd mit 1 Mol Dicyandiamid bei einer Pyrolysetemperatur von 400 °C und einer Pyrolysedauer von 30 Minuten erwiesen. Hierbei bilden sich zunächst unter Wasserabspaltung die an sich bekannten harzartig-klebrigen weißen Dicyandiamid-Formaldehyd-Kondensationsprodukte (vgl. R. Wegler u. H. Herlinger in Houben-Weyl, Band 14/2, Makromolekulare Stoffe II, S. 382 ff, Stgt. 1963), die bei den Pyrolysetemperaturen unter Abspaltung von Wasserdampf, Ammoniak, Urotropin und geringen Mengen von Blausäure zu einem schwarzen Polymerisat der Zusammensetzung [C6H3N7]z, z = 100-1 000, weiterreagieren.The reaction of 2 moles of paraformaldehyde with 1 mole of dicyandiamide at a pyrolysis temperature of 400 ° C. and a pyrolysis time of 30 minutes has proven to be particularly suitable. In this process, the resinous-sticky white dicyandiamide-formaldehyde condensation products known per se form firstly with elimination of water (see R. Wegler and H. Herlinger in Houben-Weyl, Volume 14/2, Macromolecular Substances II, p. 382 ff, Stgt . 1963), which react further at the pyrolysis temperatures with elimination of water vapor, ammonia, urotropin and small amounts of hydrocyanic acid to give a black polymer of the composition [C 6 H 3 N 7 ] z , z = 100-1000.

Dieses Polymerisat ist eine tiefschwarze, in den üblichen Lösungsmitteln praktisch unlösliche Substanz. Sie besitzt keinen optisch erkennbaren Schmelzpunkt und zersetzt sich langsam und exotherm an Luft bei Temperaturen oberhalb 610 °C.This polymer is a deep black substance which is practically insoluble in the usual solvents. It has no optically recognizable melting point and decomposes slowly and exothermically in air at temperatures above 610 ° C.

Die Materialeigenschaften lassen keine eindeutige Strukturermittlung mit den üblichen analytischen Methoden zu. Die Bruttozusammensetzung und die erwähnten Materialeigenschaften, insbesondere die Unlöslichkeit und die schwarze Farbe sowie die Abspaltung von Ammoniak, Urotropin, Wasser und Spuren von Blausäure bei der Herstellung zeigen jedoch, daß die erfindungsgemäßen Verbindungen eine völlig andere Struktur aufweisen müssen, als die als Zwischenprodukte auftretenden weißen und wasserlöslichen Formaldehydharze.The material properties do not allow a clear structure determination with the usual analytical methods. However, the gross composition and the material properties mentioned, in particular the insolubility and the black color, and the elimination of ammonia, urotropin, water and traces of hydrocyanic acid during the preparation, show that the compounds according to the invention must have a completely different structure than the white ones which occur as intermediates and water-soluble formaldehyde resins.

Die Vorteile des erfindungsgemäßen Regenerierungsmittels im Vergleich zu den in Nitriersalzbädern eingesetzten Substanzen Melon und polymere Blausäure zeigt folgende Tabelle. Dazu werden gleiche Gewichtsmengen an Regenerierungsmittel in handelsübliche Kohlungssalzbäder gegeben, die längere Zeit in Betrieb waren und noch 9,0 % Cyanid und 0 % Cyanat enthielten. Der Anstieg der Cyanid- und Cyanatwerte wurde 5 Minuten nach Zugabe des Regenerierungsmittels gemessen.

Figure imgb0001
The following table shows the advantages of the regeneration agent according to the invention compared to the substances melon and polymeric hydrocyanic acid used in nitrating salt baths. To this end, the same weight amounts of regenerating agent are added to commercially available carbonic salt baths which have been in operation for a long time and which still contained 9.0% cyanide and 0% cyanate. The increase in cyanide and cyanate values was measured 5 minutes after the regeneration agent was added.
Figure imgb0001

Die metallographisch zu beobachtende Randoxidation steht im direkten Zusammenhang mit dem Cyanatgehalt des Bades.The marginal oxidation that can be observed metallographically is directly related to the cyanate content of the bath.

Folgende Beispiele sollen die Herstellung der erfindungsgemäßen Regenerierungsmittel näher beschreiben.The following examples are intended to describe in more detail the preparation of the regenerants according to the invention.

Kleinere Mengen des erfindungsgemäßen Regenerierungsmittels können wie folgt hergestellt werden :

  • 1. Man vermischt 4,2 kg Dicyandiamid mit 3,0 kg Paraformaldehyd möglichst innig. Dieses Gemisch wird in einem eisernen Tiegel unter Stickstoffbeschleierung langsam auf 400 °C erhitzt. Es tritt Reaktion unter Abspaltung von Wasserdampf ein. Im Wasserdampf sind geringe Mengen Ammoniak, Urotropin und Blausäure enthalten. Die zunächst weiße, harzartige, aufgeblähte Reaktionsmasse verfärbt sich mit steigender Temperatur zunehmend dunkler und wird bei Erreichen von 400 °C schwarz, spröde und fest. Sie wird mechanisch im Tiegel zerstoßen und noch 20 Minuten bei 450 °C getempert. Dieses Material besitzt die Formel [C6Hx,Ny]z, x=3-5, y = 5-8, z = 10-10 000. Bei der Reaktion werden 3,6 kg Wasserdampf frei. Die Ausbeute beträgt- 60 % der Theorie.
  • 2. Technisch erfolgt die Herstellung kontinuierlich in einem mit Stickstoff gespülten elektrisch auf 400-450 °C beheizten Reaktorrohr. Das Gemisch von Dicyandiamid und Paraformaldehyd im MolVerhältnis 1 : 2 wird automatisch über eine Schleuse in den Reaktor eingetragen. Es reagiert dort nach Erreichen der angegebenen Temperatur unter Abspaltung von 2 Mol Wasserdampf und geringen Mengen NH3, HCN und Urotropin zu dem Polymerisat [C6H3N7]z, z = 10-10 000. Dieses Produkt wird durch eine bewegte Welle im Reaktor gebrochen und über eine zweite Schleuse pulverförmig ausgetragen.
Smaller amounts of the regeneration agent according to the invention can be produced as follows:
  • 1. Mix 4.2 kg of dicyandiamide with 3.0 kg of paraformaldehyde as intimately as possible. This mixture is slowly heated to 400 ° C in an iron crucible with nitrogen blanketing. A reaction occurs with the elimination of water vapor. Small amounts of ammonia, urotropin and hydrocyanic acid are contained in the water vapor. The initially white, resin-like, inflated reaction mass turns increasingly darker with increasing temperature and becomes black, brittle and solid when 400 ° C is reached. It is mechanically crushed in the crucible and annealed at 450 ° C for a further 20 minutes. This material has the formula [C 6 H x, Ny ] z , x = 3-5, y = 5-8, z = 10-10,000. The reaction releases 3.6 kg of water vapor. The yield is 60% of theory.
  • 2. Technically, the production takes place continuously in a nitrogen-purged reactor tube heated electrically to 400-450 ° C. The mixture of dicyandiamide and paraformaldehyde in a molar ratio of 1: 2 is automatically introduced into the reactor via a lock. After the specified temperature has been reached, 2 moles of water vapor and small amounts of NH 3 , HCN and urotropin are reacted to give the polymer [C 6 H 3 N 7 ] z , z = 10-10,000. This product is caused by a moving wave broken in the reactor and discharged in powder form via a second lock.

Das Reaktionsgas wird zur Abscheidung mitgerissener Feststoffpartikel über Staubkammern und anschließend in eine Fackel geführt.The reaction gas is passed through dust chambers to separate entrained solid particles and then into a torch.

Die Analyse der nach den obigen Verfahren hergestellten Verbindungen ist insbesondere in der Bestimmung von z sehr schwierig. Die Werte von x schwanken zwischen 3 und 5 und die Werte von y zwischen 5 und 8, je nach den Herstellungsbedingungen. Die Werte von z müssen mehr oder weniger geschätzt werden.The analysis of the compounds produced by the above methods is very difficult, in particular in the determination of z. The values of x vary between 3 and 5 and the values of y between 5 and 8, depending on the manufacturing conditions. The values of z have to be estimated more or less.

Folgendes Beispiel zeigt die Anwendung des erfindungsgemäßen Regenerierungsmittels :

  • In einem Tiegelofen werden 100 kg eines Kohlungssalzes der Zusammensetzung 40 % BaCl2, 50 % Na2C03 und 10 % NaCN aufgeschmolzen und auf.930 °C erhitzt. Infolge der Aufkohlung der eingebrachten Chargen und durch Luftoxidation sinkt der Cyanidgehalt dieses Bades stündlich und kontinuierlich um etwa 0,15 %. Bei normaler Betriebsweise würde dieses Bad nach 24 Stunden nur noch 6,4 % NaCN enthalten und keine optimalen Kohlungsergebnisse mehr liefern.
The following example shows the use of the regeneration agent according to the invention:
  • 100 kg of a carbonic salt of the composition 40% BaCl 2 , 50% Na 2 CO 3 and 10% NaCN are melted in a crucible furnace and heated to 930 ° C. As a result of the carburization of the introduced batches and due to air oxidation, the cyanide content of this bath drops continuously and continuously by approximately 0.15%. Under normal operating conditions, this bath would only contain 6.4% NaCN after 24 hours and would no longer provide optimal coaling results.

Dieses Absinken des Cyanidgehalts wird durch Zugabe von 150 g/h des erfindungsgemäßen Regenerierungsmittel verhindert, da das bei der Oxidation von NaCN gebildete Carbonat durch das Regenerierungsmittel wieder zu kohlungsaktivem NaCN zurückverwandelt wird. Auf diese Weise kann der optimale Cyanidgehalt von 10 % NaCN stetig aufrecht erhalten werden.This drop in the cyanide content is prevented by adding 150 g / h of the regenerating agent according to the invention, since the carbonate formed during the oxidation of NaCN is converted back to carbon-active NaCN by the regenerating agent. In this way, the optimal cyanide content of 10% NaCN can be constantly maintained.

Claims (6)

1. Regeneration agents for cyanide-containing salt baths for the carburization of iron and steel members in the form of polymeric organic compounds, characterised in that the polymeric organic compounds have an empirical formula [C6HxNy]z, wherein x = 3-5, y = 5-8 and z = 10-10 000, and are produced by reaction of about 6 mol of formaldehyde with 3 mol of dicyandiamide or 6 mol of cyanamide or 2 mol of melamine or corresponding mixtures of these compounds at from 300 to 6000C and subsequent pyrolysis treatment of the resin-like condensation products at the same temperature.
2. Regeneration agents according to Claim 1, characterised in that the polymeric organic compounds have the formula [C6H3N7],, wherein z = from 10 to 10 000.
3. Regeneration agents according to Claims 1 and 2, characterised in that z lies between 100 and 1 000.
4. A process for the production of regeneration agents according to Claim 1, characterised in that the formaldehyde is used in the form of paraformaldehyde.
5. A process for the production of regeneration agents according to Claims 1 and 4, characterised in that the pyrolysis treatment is carried out for 10 to 60 minutes.
6. A process for the production of regeneration agents according to Claims 1, 4 and 5, characterised in that the reaction and the pyrolysis are carried out at temperatures of from 400 to 500 °C.
EP83112965A 1983-01-08 1983-12-22 Regenerator for carburizing salt baths and process for making it Expired EP0113474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83112965T ATE23054T1 (en) 1983-01-08 1983-12-22 CARBON SALT BATH REGENERATOR AND PROCESS FOR THEIR MANUFACTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3300488 1983-01-08
DE19833300488 DE3300488A1 (en) 1983-01-08 1983-01-08 REGENERATION AGENT FOR CARBON SALT BATHS AND METHOD FOR THE PRODUCTION THEREOF

Publications (3)

Publication Number Publication Date
EP0113474A2 EP0113474A2 (en) 1984-07-18
EP0113474A3 EP0113474A3 (en) 1984-12-05
EP0113474B1 true EP0113474B1 (en) 1986-10-22

Family

ID=6187925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112965A Expired EP0113474B1 (en) 1983-01-08 1983-12-22 Regenerator for carburizing salt baths and process for making it

Country Status (18)

Country Link
US (1) US4509993A (en)
EP (1) EP0113474B1 (en)
JP (1) JPS59133363A (en)
AR (1) AR241711A1 (en)
AT (1) ATE23054T1 (en)
AU (1) AU563807B2 (en)
BR (1) BR8400058A (en)
CA (1) CA1200472A (en)
DE (2) DE3300488A1 (en)
ES (1) ES528702A0 (en)
HU (1) HU191261B (en)
IL (1) IL70461A (en)
IN (1) IN161676B (en)
MX (1) MX169710B (en)
PT (1) PT77901B (en)
SU (1) SU1227120A3 (en)
YU (1) YU43558B (en)
ZA (1) ZA839274B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB379764A (en) * 1930-06-07 1932-09-05 Degussa Improvements in or relating to the cementation of iron and steel and their alloys
US2049806A (en) * 1933-03-10 1936-08-04 Du Pont Carburization of ferrous metals
US3303063A (en) * 1964-06-15 1967-02-07 Gen Motors Corp Liquid nitriding process using urea
DE2234171C2 (en) * 1972-07-12 1973-10-31 Th. Goldschmidt Ag, 4300 Essen Procedure for the joint disposal and / or processing of hard salt waste
US4019928A (en) * 1973-03-05 1977-04-26 Duetsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for nitriding iron and steel in salt baths regenerated with triazine polymers
ES437450A1 (en) * 1974-05-17 1976-12-01 Stephanois Rech Mec Method of maintaining at very low values the content of cyanide in salt baths containing cyanates
SU697603A1 (en) * 1977-05-19 1979-11-15 Предприятие П/Я Р-6500 Melt for nitriding steel parts
SU775170A1 (en) * 1979-01-16 1980-10-30 Львовский Ордена Ленина Политехнический Институт Steel cyaniding medium
US4268323A (en) * 1979-04-05 1981-05-19 Kolene Corp. Process for case hardening steel

Also Published As

Publication number Publication date
DE3300488A1 (en) 1984-07-12
ES8407106A1 (en) 1984-09-01
CA1200472A (en) 1986-02-11
EP0113474A3 (en) 1984-12-05
AU2307384A (en) 1984-07-12
ZA839274B (en) 1984-10-31
JPS59133363A (en) 1984-07-31
PT77901B (en) 1986-04-11
AR241711A1 (en) 1992-11-30
MX169710B (en) 1993-07-19
ATE23054T1 (en) 1986-11-15
IL70461A0 (en) 1984-03-30
DE3367113D1 (en) 1986-11-27
YU43558B (en) 1989-08-31
PT77901A (en) 1984-01-01
SU1227120A3 (en) 1986-04-23
HU191261B (en) 1987-01-28
EP0113474A2 (en) 1984-07-18
US4509993A (en) 1985-04-09
YU248083A (en) 1985-10-31
ES528702A0 (en) 1984-09-01
JPH0524986B2 (en) 1993-04-09
BR8400058A (en) 1984-08-14
AU563807B2 (en) 1987-07-23
IL70461A (en) 1987-12-20
IN161676B (en) 1988-01-16

Similar Documents

Publication Publication Date Title
DE2363415C3 (en) Process for the surface treatment of carbon fibers
US3303063A (en) Liquid nitriding process using urea
DE883149C (en) Process for the production of melamine
DE3206592C2 (en)
EP0113474B1 (en) Regenerator for carburizing salt baths and process for making it
DE2234171B1 (en) PROCEDURE FOR THE JOINT DISPOSAL AND / OR PROCESSING OF HARD SALT WASTE
DE2310815C3 (en) Process for regenerating nitriding and carbonization baths
DE2521550A1 (en) Regeneration of molten metal salt nitration baths - by addition of isocyanic acid polymer
DE2542519A1 (en) Regenerating cyanate contg. melt baths - by adding polycarbonyl carbodiimide, esp. for nitriding iron
DE2112459A1 (en) Trityl-4-N-tritylaminobutyrate, its production and use as a polymerization activator
DE1911174A1 (en) Process for the production of malonic dinitrile
DE574357C (en) Process for restricting the decomposition of ammonia in the production of cyanamides of alkaline earths and magnesium or cyanamides, cyanates, cyanides of alkalis or mixtures of the last-mentioned compounds
EP0190395B1 (en) Process for removing thiosulfate
AT204054B (en) Process for the preparation of a fertilizer containing urea and ammonium sulphate
DE2310815B2 (en) PROCESS FOR REGENERATING NITRATION AND CARBON SALT BATHS
DE730331C (en) Process for the production of aminoguanidine bicarbonate
DE1263447B (en) Process for the production of a cyanate molten salt bath for the case hardening of steel
DE577340C (en) Process for the production of cyanamides of the metals of the 2nd group of the periodic table of elements
DD156877A3 (en) REGENERATIVE FOR NITRIERSALZBAEDER
EP0103717B1 (en) Inert salt bath for heating steel
DE1288082B (en) Process for the production of calcium cyanamide
DE2639874C2 (en) Continuous process for the production of iminodiacetonitrile
SI8312480A8 (en) Process for obtaining regeneration agents for salt baths for iron and steel articles heat treatment
DE602644C (en) Process for the production of cyanamides, cyanates and cyanides of alkalis, alkaline earths and magnesium
DE2602754A1 (en) Metal cyanates prodn. from molten carbonates - and ammonium carbamate or ammonia and carbon dioxide, for metal nitriding baths

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19831222

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 23054

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3367113

Country of ref document: DE

Date of ref document: 19861127

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83112965.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981118

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19981126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981209

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19991231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

EUG Se: european patent has lapsed

Ref document number: 83112965.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000701

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021204

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021206

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021218

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031222

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20