EP0100877B1 - Preparation process of arylacetic and arylpropionic acids - Google Patents

Preparation process of arylacetic and arylpropionic acids Download PDF

Info

Publication number
EP0100877B1
EP0100877B1 EP83106657A EP83106657A EP0100877B1 EP 0100877 B1 EP0100877 B1 EP 0100877B1 EP 83106657 A EP83106657 A EP 83106657A EP 83106657 A EP83106657 A EP 83106657A EP 0100877 B1 EP0100877 B1 EP 0100877B1
Authority
EP
European Patent Office
Prior art keywords
process according
coordinate
nicl
anode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83106657A
Other languages
German (de)
French (fr)
Other versions
EP0100877A1 (en
Inventor
Jean-François Fauvarque
Anny Jutand
Claude Chevrot
Fernando Pfluger
Michel Troupel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Alcatel Lucent SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Compagnie Generale dElectricite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Compagnie Generale dElectricite SA filed Critical Centre National de la Recherche Scientifique CNRS
Priority to AT83106657T priority Critical patent/ATE20480T1/en
Publication of EP0100877A1 publication Critical patent/EP0100877A1/en
Application granted granted Critical
Publication of EP0100877B1 publication Critical patent/EP0100877B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the invention relates to the preparation of arylacetic and arylpropionic acids from benzyl halides, of formula ArCH Z X and ArCH (CH 3 ) X where Ar denotes a substituted or unsubstituted aromatic group and X a halogen.
  • arylacetic and arylpropionic acids are of great importance, since they constitute an essential class of anti-inflammatory drugs, anesthetics and are also precursors in the preparation of penicillins.
  • triphenylphosphine P (C 6 H 5 ) 3 was used to form the organic nickel complexes.
  • the present invention makes it possible to remedy this drawback and to easily obtain by electro-synthesis of arylacetic and arylpropionic acids.
  • It relates to a process for the preparation of arylacetic and arylpropionic acids, comprising an electrochemical reduction, under a carbon dioxide atmosphere, of benzyl halides of formula ArCH 2 X or ArCH (CH 3 ) X, characterized in that said reduction is carried out in the presence of a catalyst comprising at least one organometallic complex derived from a transition metal associated with a bidentate or tetradentate ligand.
  • bidentate ligand is meant a ligand which has two coordination sites on the metal used.
  • tetradentate ligand is meant a ligand which has four coordination sites on the metal used.
  • the transition metal is chosen so that it forms, with the preceding ligands, an electroreducible organometallic complex capable in its reduced form of reacting with the benzyl halide.
  • the metal is advantageously chosen from the group comprising nickel and cobalt.
  • the organometallic complex is chosen from the group formed on the one hand by nickel bis cyclooctadiene and on the other hand by metallic ligated halides, of formula NiY z L.
  • Y being a halogen, L bipyridyl or a diphosphine-type ligand of formula PR 2 - (CH 2 ) n - PR 2 , in which P denotes phosphorus which is a coordination site, R being a radical chosen from the group formed by the phenyl radical and the aliphatic radicals, n being an integer less than or equal to 4.
  • n can be equal to 2, 3 or 4.
  • diphenyl phosphinoethane (DPPE) of formula:
  • diphenyl phosphino propane of formula P (C 6 H 5 ) 2 - (CH 2 ) 3 -P (C 6 H 5 ) 3 or dimethyl phosphino ethane (DMPE) of formula P (CH 3 ) 2 - (CH 2 ) 2 -P (CH 3 ) 2 .
  • DPPP diphenyl phosphino propane
  • DMPE dimethyl phosphino ethane
  • the catalyst consists of a complex M 'salen where M' represents nickel or cobalt and "salen” represents the tetradentate bis salicylidene ethylene diamine ligand, the catalyst having the formula:
  • cobalt will be used, which forms with the "saien” ligand a complex more easily electroreducible than the corresponding nickel complex.
  • organometallic catalysts according to the invention can be used alone or as a mixture.
  • a cocatalyst constituted by a metal ligated halide of formula M 1 Y 2 L ' 2 , L' being a ligand of formula PR ' 3 , R' being chosen from the group formed by the alkyl and aryl radicals, M l being a transition metal, advantageously nickel.
  • the second ligand L ' can be used as triphenyl phosphine (TPP) of formula P (C 6 H 5 ) 3 , tributyl phosphine P (C 4 H 9 ) 3 , tricyclohexyl phosphine P (C 6 H 11 ) 3 .
  • TPP triphenyl phosphine
  • the catalyst used comprises approximately four molar equivalents corresponding to the first complex MY 2 L for a molar equivalent corresponding to the second complex M 1 Y 2 L ' 2 , M being a transition metal.
  • the catalyst comprises at least one organometallic complex of the aforementioned type to which a monodentate or bidentate ligand of the aforementioned type is added, for example cyclooctadiene (COD) or bipyridyl.
  • COD cyclooctadiene
  • bipyridyl for example cyclooctadiene (COD) or bipyridyl.
  • the single figure very schematically represents an electrolysis cell usable for the implementation of the invention.
  • the cell is designated by the reference 1. It comprises two separate compartments, a cathode compartment 2 and an anode compartment 3.
  • the cathode 4 can be constituted by a felt, a fabric or a braid of carbon fibers or by a sheet of mercury , with an area of approximately 20 cm 2 .
  • the cathode conductor constituted by a copper wire is designated by the reference 5.
  • the anode 6 can be of the alterable metal type, lithium, copper, etc., or of the unalterable type, carbon or metal, associated with an oxidizable electrolyte (oxalate for example).
  • the anode conductor, consisting of a copper wire, is designated by the reference 7.
  • the conductors 5 and 7 are connected to an appropriate generator.
  • the reference 8 designates a sintered glass separating the 2 compartments.
  • the reference 9 designates a magnetic bar used for agitating the medium.
  • the solvent of the electrolyte is formed by a mixture comprising by volume 2/3 of an aprotic solvent, such as tetrahydrofuran (THF), 1/3 of dipolar aprotic solvent such as hexamethylphosphorotriamide (HMPT) or N-methyl pyrrolidone, or tetramethylurea.
  • an aprotic solvent such as tetrahydrofuran (THF)
  • dipolar aprotic solvent such as hexamethylphosphorotriamide (HMPT) or N-methyl pyrrolidone, or tetramethylurea.
  • the electrolyte can be chosen identical or different in the anode 3 and cathode 2 compartments; it is used at a concentration of about 0.1 to 0.3 moles per liter.
  • the electrolyte 10 can be of the oxidizable type, advantageously a sodium or lithium oxalate, or non-oxidizable, associated with a soluble anode, for example lithium perchlorate (LiCl0 4 ), tetrabutyl tetrafluoborate ammonium "C4H9) 4NBF4).
  • a non-reducible electrolyte 11 (LiCl0 4 , tetrabutylammonium tetrafluoborate) is used in which the benzyl halide and the catalyst according to the invention are introduced.
  • a reference electrode 15 consisting of a silver wire immersed in an aprotic solvent solution containing silver perchlorate at a concentration of 0.1 mol / liter, makes it possible to identify the potential of the cathode.
  • the arrows 12 and 13 symbolize the introduction, if necessary, of an inert gas into the anode 3 and cathode 2 compartments. Furthermore, carbon dioxide can be introduced into the cathode electrolytic solution by the tube 14 at the atmospheric pressure or slightly higher.
  • This elimination can be done for example by adding a magnesium, such as C 2 H S MgX ', X' being a halogen, for example Br, in solution in ether or tetrahydrofuran.
  • a magnesium such as C 2 H S MgX ', X' being a halogen, for example Br, in solution in ether or tetrahydrofuran.
  • Carbon dioxide is then bubbled through the cathode compartment of the cell, at atmospheric pressure or slightly higher.
  • the reaction medium is maintained at ambient temperature or cooled by an external circulation of cold water.
  • the electrochemical reduction is then carried out at controlled potential.
  • the potential of the agitated mercury sheet compared to the Ag / AgCI0 4 system , is maintained at approximately -2.6 V.
  • the electrochemical reduction is carried out until the amount of current passed corresponds to a previously determined value, or until the current is zero.
  • the current density at the start of the reduction is approximately 35 mA / cm 2 .
  • the solution is then hydrolyzed in an acid medium and extracted with ether.
  • the ethereal phase is stirred with aqueous sodium hydroxide and then separated.
  • the basic aqueous phase is acidified, saturated with NaCl, then extracted with ether.
  • the ethereal phase is dried over MgS0 4 , then evaporated.
  • the phenylacetic acid formed is thus recovered, which is characterized by its IR and 1 H NMR spectra and its melting point.
  • This step is not necessary if a zerovalent nickel complex such as Ni (COD) 2 is used , but such complexes, which are very oxidizable in air, are less convenient to handle.
  • a zerovalent nickel complex such as Ni (COD) 2 is used , but such complexes, which are very oxidizable in air, are less convenient to handle.
  • Ni ° L complex is generally very reactive and not very stable. Its stability is increased by the presence of another bidentate ligand in the medium chosen so as to weakly complex Ni ° L, for example COD or bipyridyle, which are relatively weak ligands of zerovalent nickel and do little to hinder its subsequent reaction with the chloride. benzyl.
  • This complex can be reduced electrochemically according to:
  • This intermediate can evolve by giving dibenzyl C 6 H 5 -CH 2 -CH 2 -C 6 H 5 , but in the presence of C0 2, phenylacetic acid is obtained with regeneration of the zerovalent nickel complex:
  • the percentage T1 of C 6 H 5 CH 2 Cl consumed relative to the initial quantity was measured, the percentage RC (chemical yield) of C 6 H 5 CH 2 C00H formed relative to the quantity of C 6 H 5 CH 2 CI consumed, the percentage T3 of C 6 H 5 -CH 2 -CH 2 -C 6 H 5 formed relative to the quantity of initial C 6 H 5 CH 2 Cl, the faradic yield RF, representing the quantity of acid formed relative to the amount of electricity consumed assuming the stoichiometric equation.
  • the reaction medium contained 0.1 gram atom of nickel per 1 mole of C 6 H 5 CH 2 Cl, the pressure of C0 2 was 1 atmosphere, the potential was maintained at -2.6 V, unless otherwise stated;
  • the solvent of the electrolyte consisted of THF / HMPT (ratio 2/3, 1/3) for examples 1 to 12, (ratio 1/2, 1/2) for examples 13 and 14; for Examples 1 to 9 the electrolyte was 0.1 M LiCl0 4 ; for Examples 10 to 12, the cathode electrolyte was 0.3 M tetrabutylammonium tetrafluoborate, the anode electrolyte being 0.1 M lithium oxalate, with a carbon anode; for examples 13 and 14 the electrolyte was LiCI0 4 0.2 M.
  • Example 13 Same conditions as for Example 13 but under two atmospheres of CO 2 .
  • the first stage corresponding to the formation of the intermediate complex C 6 H 5 CH 2 NiCIL, operation carried out under neutral gas
  • the second to the reduction of this complex in the presence of CO 2 the biaryl derivative is preferably formed.
  • the reaction medium contained 0.1 gram atom of nickel per 1 mole of C 6 H 5 CH (CH 3 ) Cl, the pressure of C0 2 was 1 atmosphere, the temperature of 0 °, the potential was maintained at approximately - 2.4, - 2.6 V relative to the Ag + / Ag reference electrode.
  • the catalytic species was constituted by Co salen.
  • the cathode electrolyte is tetrabutylammonium tetrafluoborate 0.3 M, for example 21, Li ClO 4 0.2 M.
  • the solvent of the electrolyte was THF-HMPT (ratio 2/3, 1/3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The process includes an electrochemical reduction, under carbon dioxide atmosphere, of benzyl type ArCH2X or ArCH(CH3)X halogenides. According to the invention, the process consists of operating in the presence of a catalyst containing at least one organometallic complex derived from a transition metal combined with a bidentate or tetradentate coordinate.

Description

L'invention concerne la préparation des acides arylacétiques et arylpropioniques à partir des halogénures de type benzylique, de formule ArCHZX et ArCH(CH3)X ou Ar désigne un groupe aromatique substitué ou non et X un halogène.The invention relates to the preparation of arylacetic and arylpropionic acids from benzyl halides, of formula ArCH Z X and ArCH (CH 3 ) X where Ar denotes a substituted or unsubstituted aromatic group and X a halogen.

La fabrication des acides arylacétiques et arylpropioniques revêt une grande importance, car ils constituent une classe essentielle d'anti-inflammatoires, d'anesthésiques et sont également des précurseurs dans la préparation de pénicillines.The manufacture of arylacetic and arylpropionic acids is of great importance, since they constitute an essential class of anti-inflammatory drugs, anesthetics and are also precursors in the preparation of penicillins.

Il est connu de les fabriquer à partir des halogénures de type benzylique par cyanuration, carbonatation ou carbonylation. Toutefois ces réactions sont le plus souvent délicates, de faible sélectivité et de mauvais rendement.It is known to manufacture them from benzyl halides by cyanidation, carbonation or carbonylation. However, these reactions are most often delicate, of low selectivity and of poor yield.

On sait par ailleurs qu'il est possible de procéder à l'électrosynthèse des acides carboxyliques aromatiques ArC02H à partir d'halogénures aromatiques et de C02 sous pression atmosphérique en utilisant des catalyseurs formés par des complexes organiques de nickel.It is also known that it is possible to carry out the electrosynthesis of aromatic carboxylic acids ArC0 2 H from aromatic halides and C0 2 at atmospheric pressure using catalysts formed by organic nickel complexes.

Un tel procédé a été par exemple décrit dans l'article paru dans le Nouveau Journal de Chimie, vol. 5. n° 12 - 1981 pages 621 et suivantes, relatif aux travaux menés par Messieurs TROUPEL, PERICHON et FAUVARQUE et Madame ROLLIN.Such a process was for example described in the article published in the New Journal of Chemistry, vol. 5. No. 12 - 1981 pages 621 et seq., Relating to the work carried out by Messrs TROUPEL, PERICHON and FAUVARQUE and Madame ROLLIN.

Plus précisément, on a utilisé dans ce procédé, pour former les complexes organiques de nickel, la triphényle phosphine P(C6H5)3.More specifically, in this process, triphenylphosphine P (C 6 H 5 ) 3 was used to form the organic nickel complexes.

Toutefois, on s'est aperçu que le procédé décrit ci-dessus n'était pas directement applicable au cas des halogénures benzyliques car dans ce cas n'était observée que la formation d'un composé bibenzylique. Ainsi dans le cas où le procédé est appliqué au chlorure de benzyle C6H5CH2Cl, on obtient seulement du dibenzyle C6H5-CH2-CH2-C6H5.However, it has been found that the method described above was not directly applicable to the case of benzylic halides because in this case only the formation of a bibenzyl compound was observed. Thus, in the case where the process is applied to benzyl chloride C 6 H 5 CH 2 Cl, only dibenzyl C 6 H 5 CH 2 -CH 2 -C 6 H 5 is obtained.

La présente invention permet de remédier à cet inconvénient et d'obtenir facilement par électro- synthèse des acides arylacétiques et arylpropioniques.The present invention makes it possible to remedy this drawback and to easily obtain by electro-synthesis of arylacetic and arylpropionic acids.

Elle a pour objet un procédé de préparation des acides arylacétiques et arylpropioniques, comportant une réduction électrochimique, sous atmosphère de dioxyde de carbone, d'halogénures de type benzylique de formule ArCH2X ou ArCH(CH3)X, caractérisé par le fait que ladite réduction est effectuée en présence d'un catalyseur comprenant au moins un complexe organométallique dérivé d'un métal de transition associé à un coordinat bidenté ou tétradenté.It relates to a process for the preparation of arylacetic and arylpropionic acids, comprising an electrochemical reduction, under a carbon dioxide atmosphere, of benzyl halides of formula ArCH 2 X or ArCH (CH 3 ) X, characterized in that said reduction is carried out in the presence of a catalyst comprising at least one organometallic complex derived from a transition metal associated with a bidentate or tetradentate ligand.

Par coordinat bidenté on désigne un ligand qui a deux sites de coordination sur le métal utilisé. Par coordinat tétradenté, on désigne un ligand qui a quatre sites de coordination sur le métal utilisé.By bidentate ligand is meant a ligand which has two coordination sites on the metal used. By tetradentate ligand is meant a ligand which has four coordination sites on the metal used.

Le métal de transition est choisi de telle sorte qu'il forme avec les coordinats précédents un complexe organométallique électroréductible capable sous sa forme réduite de réagir avec l'halogénure de type benzylique. Le métal est avantageusement choisi dans le groupe comprenant le nickel et le cobalt.The transition metal is chosen so that it forms, with the preceding ligands, an electroreducible organometallic complex capable in its reduced form of reacting with the benzyl halide. The metal is advantageously chosen from the group comprising nickel and cobalt.

Selon l'invention, le complexe organométallique est choisi dans le groupe formé d'une part par le nickel bis cyclooctadiène et d'autre part par les halogénures ligandés métalliques, de formule NiYzL. Y étant un halogène, L le bipyridyle ou un coordinat de type diphosphine de formule PR2-(CH2)n- PR2, dans laquelle P désigne le phosphore qui est un site de coordination, R étant un radical choisi dans le groupe formé par le radical phényle et les radicaux aliphatiques, n étant un nombre entier inférieur ou égal à 4.According to the invention, the organometallic complex is chosen from the group formed on the one hand by nickel bis cyclooctadiene and on the other hand by metallic ligated halides, of formula NiY z L. Y being a halogen, L bipyridyl or a diphosphine-type ligand of formula PR 2 - (CH 2 ) n - PR 2 , in which P denotes phosphorus which is a coordination site, R being a radical chosen from the group formed by the phenyl radical and the aliphatic radicals, n being an integer less than or equal to 4.

Lorsque R est le radical phényle, n peut être égal à 2, 3 ou 4. Lorsque R désigne le radical méthyle, avantageusement n = 2.When R is the phenyl radical, n can be equal to 2, 3 or 4. When R denotes the methyl radical, advantageously n = 2.

Selon un mode de réalisation de l'invention, on utilise comme coordinat L le diphényle phosphino éthane (DPPE) de formule :

Figure imgb0001
According to one embodiment of the invention, diphenyl phosphinoethane (DPPE) of formula:
Figure imgb0001

On peut également utiliser le diphényle phosphino propane (DPPP) de formule P(C6H5)2-(CH2)3-P(C6H5)3 ou le diméthyle phosphino éthane (DMPE) de formule P(CH3)2-(CH2)2-P(CH3)2.It is also possible to use diphenyl phosphino propane (DPPP) of formula P (C 6 H 5 ) 2 - (CH 2 ) 3 -P (C 6 H 5 ) 3 or dimethyl phosphino ethane (DMPE) of formula P (CH 3 ) 2 - (CH 2 ) 2 -P (CH 3 ) 2 .

Selon un autre mode de réalisation de l'invention le catalyseur est constitué par un complexe M' salen où M' représente le nickel ou le cobalt et « salen » représente le coordinat tétradenté bis salicylidène éthylène diamine, le catalyseur ayant la formule :

Figure imgb0002
According to another embodiment of the invention, the catalyst consists of a complex M 'salen where M' represents nickel or cobalt and "salen" represents the tetradentate bis salicylidene ethylene diamine ligand, the catalyst having the formula:
Figure imgb0002

Avantageusement, on utilisera le cobalt qui forme avec le coordinat « saien un complexe plus facilement électroréductible que le complexe correspondant du nickel.Advantageously, cobalt will be used, which forms with the "saien" ligand a complex more easily electroreducible than the corresponding nickel complex.

Les catalyseurs organométalliques conformes à l'invention peuvent être utilisés seuls ou en mélange.The organometallic catalysts according to the invention can be used alone or as a mixture.

On peut également leur ajouter un cocatalyseur constitué par un halogénure ligandé métallique de formule M1Y2L'2, L' étant un coordinat de formule PR'3, R' étant choisi dans le groupe formé par les radicaux alkyle et aryle, Ml étant un métal de transition, avantageusement le nickel.It is also possible to add to them a cocatalyst constituted by a metal ligated halide of formula M 1 Y 2 L ' 2 , L' being a ligand of formula PR ' 3 , R' being chosen from the group formed by the alkyl and aryl radicals, M l being a transition metal, advantageously nickel.

Ainsi, on peut utiliser comme second coordinat L' la triphényle phosphine (TPP) de formule P(C6H5)3, la tributyle phosphine P(C4H9)3, la tricyclohexyle phosphine P(C6H11)3.Thus, the second ligand L 'can be used as triphenyl phosphine (TPP) of formula P (C 6 H 5 ) 3 , tributyl phosphine P (C 4 H 9 ) 3 , tricyclohexyl phosphine P (C 6 H 11 ) 3 .

Avantageusement, le catalyseur utilisé comporte environ quatre équivalents molaires correspondant au premier complexe MY2L pour un équivalent molaire correspondant au second complexe M1Y2L'2, M étant un métal de transition.Advantageously, the catalyst used comprises approximately four molar equivalents corresponding to the first complex MY 2 L for a molar equivalent corresponding to the second complex M 1 Y 2 L ' 2 , M being a transition metal.

Selon une autre caractéristique de l'invention, le catalyseur comprend au moins un complexe organométallique du type précité auquel on ajoute un coordinat monodenté ou bidenté du type précité, par exemple le cyclooctadiène (COD) ou le bipyridyle.According to another characteristic of the invention, the catalyst comprises at least one organometallic complex of the aforementioned type to which a monodentate or bidentate ligand of the aforementioned type is added, for example cyclooctadiene (COD) or bipyridyl.

D'autres caractéristiques de l'invention ressortiront de la description qui va suivre relative à différents exemples de mise en oeuvre de l'invention.Other characteristics of the invention will emerge from the description which follows, relating to various examples of implementation of the invention.

La figure unique représente très schématiquement une cellule d'électrolyse utilisable pour la mise en oeuvre de l'invention.The single figure very schematically represents an electrolysis cell usable for the implementation of the invention.

La cellule est désignée par la référence 1. Elle comprend deux compartiments séparés, un compartiment cathodique 2 et un compartiment anodique 3. La cathode 4 peut être constituée par un feutre, un tissu ou une tresse de fibres de carbone ou par une nappe de mercure, de surface environ 20 cm2. Le conducteur cathodique constitué par un fil de cuivre, est désigné par la référence 5.The cell is designated by the reference 1. It comprises two separate compartments, a cathode compartment 2 and an anode compartment 3. The cathode 4 can be constituted by a felt, a fabric or a braid of carbon fibers or by a sheet of mercury , with an area of approximately 20 cm 2 . The cathode conductor constituted by a copper wire is designated by the reference 5.

L'anode 6 peut être du type métal altérable, lithium, cuivre, etc., ou du type inaltérable, carbone ou métal, associé à un électrolyte oxydable (oxalate par exemple). Le conducteur anodique, constitué par un fil de cuivre, est désigné par la référence 7.The anode 6 can be of the alterable metal type, lithium, copper, etc., or of the unalterable type, carbon or metal, associated with an oxidizable electrolyte (oxalate for example). The anode conductor, consisting of a copper wire, is designated by the reference 7.

En vue de la réduction électrochimique les conducteurs 5 et 7 sont reliés à un générateur approprié.In view of the electrochemical reduction, the conductors 5 and 7 are connected to an appropriate generator.

La référence 8 désigne un verre fritté séparant les 2 compartiments.The reference 8 designates a sintered glass separating the 2 compartments.

La référence 9 désigne une barre aimantée servant à l'agitation du milieu.The reference 9 designates a magnetic bar used for agitating the medium.

Le solvant de l'électrolyte est formé par un mélange comprenant en volume 2/3 d'un solvant aprotique, tel que le tétrahydrofuranne (THF), 1/3 de solvant aprotique dipolaire tel que l'hexaméthylphos- phorotriamide (HMPT) ou la N-méthyl pyrrolidone, ou la tétraméthylurée.The solvent of the electrolyte is formed by a mixture comprising by volume 2/3 of an aprotic solvent, such as tetrahydrofuran (THF), 1/3 of dipolar aprotic solvent such as hexamethylphosphorotriamide (HMPT) or N-methyl pyrrolidone, or tetramethylurea.

L'électrolyte peut être choisi identique ou différent dans les compartiments anodique 3 et cathodique 2 ; il est utilisé à la concentration d'environ 0,1 à 0,3 mole par litre. Ainsi dans le compartiment anodique 3 l'électrolyte 10 peut être du type oxydable, avantageusement un oxalate de sodium ou de lithium, ou non oxydable, associé à une anode soluble, par exemple du perchlorate de lithium (LiCI04), du tétrafluoborate de tétrabutyle ammonium «C4H9)4NBF4).The electrolyte can be chosen identical or different in the anode 3 and cathode 2 compartments; it is used at a concentration of about 0.1 to 0.3 moles per liter. Thus in the anode compartment 3 the electrolyte 10 can be of the oxidizable type, advantageously a sodium or lithium oxalate, or non-oxidizable, associated with a soluble anode, for example lithium perchlorate (LiCl0 4 ), tetrabutyl tetrafluoborate ammonium "C4H9) 4NBF4).

Dans le compartiment cathodique 2, on utilise un électrolyte 11 non réductible (LiCI04, tétrabutylammonium tétrafluoborate) dans lequel on introduit l'halogénure de type benzylique et le catalyseur conforme à l'invention.In the cathode compartment 2, a non-reducible electrolyte 11 (LiCl0 4 , tetrabutylammonium tetrafluoborate) is used in which the benzyl halide and the catalyst according to the invention are introduced.

Une électrode de référence 15, constituée d'un fil d'argent immergé dans une solution de solvant aprotique contenant du perchlorate d'argent à la concentration 0,1 mole/litre, permet de repérer le potentiel de la cathode.A reference electrode 15, consisting of a silver wire immersed in an aprotic solvent solution containing silver perchlorate at a concentration of 0.1 mol / liter, makes it possible to identify the potential of the cathode.

Les flèches 12 et 13 symbolisent l'introduction, si nécessaire, d'un gaz inerte dans les compartiments anodique 3 et cathodique 2. Par ailleurs, on peut introduire, dans la solution électrolytique cathodique, du gaz carbonique, par le tube 14 à la pression atmosphérique ou légèrement supérieure.The arrows 12 and 13 symbolize the introduction, if necessary, of an inert gas into the anode 3 and cathode 2 compartments. Furthermore, carbon dioxide can be introduced into the cathode electrolytic solution by the tube 14 at the atmospheric pressure or slightly higher.

De manière à éviter des réactions secondaires, on élimine soigneusement l'eau résiduelle contenue dans le milieu électrolytique.In order to avoid side reactions, the residual water contained in the electrolytic medium is carefully removed.

Cette élimination peut se faire par exemple par addition d'un magnésien, tel que C2HSMgX', X' étant un halogène, par exemple Br, en solution dans l'éther ou le tétrahydrofuranne.This elimination can be done for example by adding a magnesium, such as C 2 H S MgX ', X' being a halogen, for example Br, in solution in ether or tetrahydrofuran.

Pour la préparation de l'acide phénylacétique C6H5CH2CO2H, on introduit 5 milli-moles de chlorure de benzyle C6H5CH2Cl dans le compartiment cathodique 2. On ajoute également le catalyseur conforme à l'invention en quantité telle qu'à une mole de chlorure de benzyle corresponde 0,1 atome-gramme de métal de transition.For the preparation of phenylacetic acid C 6 H 5 CH 2 CO 2 H, 5 milli-moles of benzyl chloride C 6 H 5 CH 2 Cl are introduced into the cathode compartment 2. The catalyst in accordance with the invention in such a quantity that to one mole of benzyl chloride corresponds to 0.1 gram atom of transition metal.

On fait ensuite barboter du dioxyde de carbone dans le compartiment cathodique de la cellule, à la pression atmosphérique ou légèrement supérieure.Carbon dioxide is then bubbled through the cathode compartment of the cell, at atmospheric pressure or slightly higher.

Le milieu réactionnel est maintenu à température ambiante ou refroidi par une circulation extérieure d'eau froide.The reaction medium is maintained at ambient temperature or cooled by an external circulation of cold water.

La réduction électrochimique est ensuite effectuée à potentiel contrôlé.The electrochemical reduction is then carried out at controlled potential.

Ainsi, le potentiel de la nappe de mercure agitée, par rapport au système Ag/AgCI04, est maintenue à environ -2,6 V.Thus, the potential of the agitated mercury sheet, compared to the Ag / AgCI0 4 system , is maintained at approximately -2.6 V.

La réduction électrochimique est effectuée jusqu'à ce que la quantité de courant passée corresponde à une valeur déterminée préalablement, ou jusqu'à ce que le courant soit nul.The electrochemical reduction is carried out until the amount of current passed corresponds to a previously determined value, or until the current is zero.

La densité de courant au début de la réduction est d'environ 35 mA/cm2.The current density at the start of the reduction is approximately 35 mA / cm 2 .

La solution est ensuite hydrolysée en milieu acide et extraite à l'éther.The solution is then hydrolyzed in an acid medium and extracted with ether.

La phase éthérée est agitée avec de la soude aqueuse puis séparée.The ethereal phase is stirred with aqueous sodium hydroxide and then separated.

L'analyse par chromatographie en phase vapeur de la phase éthérée permet de calculer la quantité de C6H5CH2Cl restante, ainsi que la quantité de C6H5-CH2-CH2-C6H5 formée.Analysis by vapor phase chromatography of the ethereal phase makes it possible to calculate the amount of C 6 H 5 CH 2 Cl remaining, as well as the amount of C 6 H 5 -CH 2 -CH 2 -C 6 H 5 formed.

La phase aqueuse basique est acidifiée, saturée en NaCI, puis extraite à l'éther. La phase éthérée est séchée sur MgS04, puis évaporée.The basic aqueous phase is acidified, saturated with NaCl, then extracted with ether. The ethereal phase is dried over MgS0 4 , then evaporated.

On récupère ainsi l'acide phénylacétique formé, qui est caractérisé par ses spectres I.R. et R.M.N.1H et son point de fusion.The phenylacetic acid formed is thus recovered, which is characterized by its IR and 1 H NMR spectra and its melting point.

Le principe de la méthode, exposé pour la fabrication de l'acide phénylacétique à partir de chlorure de benzyle, en présence d'un halogénure ligandé de nickel NiY2L est le suivant :

  • Dans un premier temps, on forme électrochimiquement un complexe intermédiaire par insertion du métal de transition, par exemple le nickel, au sein de la liaison C-CI du chlorure de benzyle.
The principle of the method, described for the production of phenylacetic acid from benzyl chloride, in the presence of a nickel halide NiY 2 L ligand is as follows:
  • Firstly, an intermediate complex is electrochemically formed by insertion of the transition metal, for example nickel, within the C-CI bond of benzyl chloride.

On a dans un premier temps la réaction :

Figure imgb0003
We first have the reaction:
Figure imgb0003

Cette étape n'est pas nécessaire si l'on utilise un complexe de nickel zérovalent tel que Ni(COD)2, mais de tels complexes, très oxydables à l'air, sont de manipulation moins commode.This step is not necessary if a zerovalent nickel complex such as Ni (COD) 2 is used , but such complexes, which are very oxidizable in air, are less convenient to handle.

Le complexe Ni°L est en général très réactif et peu stable. Sa stabilité est augmentée par la présence d'un autre coordinat bidenté dans le milieu choisi de façon à complexer faiblement Ni°L, par exemple COD ou bipyridyle, qui sont des coordinats relativement faibles du nickel zérovalent et gênent peu sa réaction ultérieure avec le chlorure de benzyle.The Ni ° L complex is generally very reactive and not very stable. Its stability is increased by the presence of another bidentate ligand in the medium chosen so as to weakly complex Ni ° L, for example COD or bipyridyle, which are relatively weak ligands of zerovalent nickel and do little to hinder its subsequent reaction with the chloride. benzyl.

Dans un deuxième temps on a :

Figure imgb0004
Then we have:
Figure imgb0004

Le bilan global étant

Figure imgb0005
The overall balance being
Figure imgb0005

Ce complexe peut être réduit électrochimiquement selon :

Figure imgb0006
This complex can be reduced electrochemically according to:
Figure imgb0006

Cet intermédiaire peut évoluer en donnant du dibenzyle C6H5-CH2-CH2-C6H5, mais en présence de C02 on obtient l'acide phénylacétique avec régénération du complexe de nickel zérovalent :

Figure imgb0007
This intermediate can evolve by giving dibenzyl C 6 H 5 -CH 2 -CH 2 -C 6 H 5 , but in the presence of C0 2, phenylacetic acid is obtained with regeneration of the zerovalent nickel complex:
Figure imgb0007

Le cycle catalytique peut alors se poursuivre. Globalement on a la réaction :

Figure imgb0008
The catalytic cycle can then continue. Overall we have the reaction:
Figure imgb0008

Les réactions sont analogues à partir d'autres complexes organométalliques conformes à l'invention.The reactions are analogous from other organometallic complexes in accordance with the invention.

Plusieurs exemples de préparation ont été effectués à partir de C6H5CH2Cl en modifiant la nature de l'espèce catalytique, ainsi que la température du milieu.Several examples of preparation were carried out from C 6 H 5 CH 2 Cl by modifying the nature of the catalytic species, as well as the temperature of the medium.

Pour ces exemples, on a mesuré le pourcentage T1 de C6H5CH2Cl consommé par rapport à la quantité initiale, le pourcentage RC (rendement chimique) de C6H5CH2C00H formé par rapport à la quantité de C6H5CH2CI consommé, le pourcentage T3 de C6H5-CH2-CH2-C6H5 formé par rapport à la quantité de C6H5CH2Cl initiale, le rendement faradique RF, représentant la quantité d'acide formée rapportée à la quantité d'électricité consommée en supposant l'équation stcechiométrique.For these examples, the percentage T1 of C 6 H 5 CH 2 Cl consumed relative to the initial quantity was measured, the percentage RC (chemical yield) of C 6 H 5 CH 2 C00H formed relative to the quantity of C 6 H 5 CH 2 CI consumed, the percentage T3 of C 6 H 5 -CH 2 -CH 2 -C 6 H 5 formed relative to the quantity of initial C 6 H 5 CH 2 Cl, the faradic yield RF, representing the quantity of acid formed relative to the amount of electricity consumed assuming the stoichiometric equation.

Pour tous ces exemples, le milieu réactionnel comportait 0,1 atome-gramme de nickel pour 1 mole de C6H5CH2Cl, la pression de C02 était de 1 atmosphère, le potentiel était maintenu à - 2,6 V, sauf mention contraire ; le solvant de l'électrolyte était constitué par THF/HMPT (rapport 2/3, 1/3) pour les exemples 1 à 12, (rapport 1/2, 1/2) pour les exemples 13 et 14 ; pour les exemples 1 à 9 l'électrolyte était LiCI04 0,1 M ; pour les exemples 10 à 12, l'électrolyte cathodique était le tétrabutylammonium tétrafluoborate 0,3 M, l'électrolyte anodique étant l'oxalate de lithium 0,1 M, avec une anode en carbone ; pour les exemples 13 et 14 l'électrolyte était LiCI04 0,2 M.For all these examples, the reaction medium contained 0.1 gram atom of nickel per 1 mole of C 6 H 5 CH 2 Cl, the pressure of C0 2 was 1 atmosphere, the potential was maintained at -2.6 V, unless otherwise stated; the solvent of the electrolyte consisted of THF / HMPT (ratio 2/3, 1/3) for examples 1 to 12, (ratio 1/2, 1/2) for examples 13 and 14; for Examples 1 to 9 the electrolyte was 0.1 M LiCl0 4 ; for Examples 10 to 12, the cathode electrolyte was 0.3 M tetrabutylammonium tetrafluoborate, the anode electrolyte being 0.1 M lithium oxalate, with a carbon anode; for examples 13 and 14 the electrolyte was LiCI0 4 0.2 M.

1er exemple 1st example

Espèce catalytique

  • NiCl2, DPPE et NiCl2 (TPP)2 dans un rapport molaire de 4/1
Catalytic species
  • NiCl 2 , DPPE and NiCl 2 (TPP) 2 in a 4/1 molar ratio

Température 20 °CTemperature 20 ° C

Arrêt de l'électrolyse à courant nul.Electrolysis stop at zero current.

2e exemple2nd example

Espèce catalytique

  • NiCl2, DPPE et NiCl2 (TPP)2 dans un rapport molaire de 4/1

Température 0 °CCatalytic species
  • NiCl 2 , DPPE and NiCl 2 (TPP) 2 in a 4/1 molar ratio

Temperature 0 ° C

Arrêt de l'électrolyse après 8 heures.Electrolysis stopped after 8 hours.

On constate qu'à 0 °C l'électrolyse est beaucoup plus lente qu'à 20 °C.It can be seen that at 0 ° C the electrolysis is much slower than at 20 ° C.

3e exemple 3rd example

Espèce catalytique

  • NiCl2, DPPE et NiCl2 (TPP)2 dans un rapport molaire de 19/1

Température 20 °CCatalytic species
  • NiCl 2 , DPPE and NiCl 2 (TPP) 2 in a 19/1 molar ratio

Temperature 20 ° C

Arrêt de l'électrolyse après 8 heures.Electrolysis stopped after 8 hours.

4e exemple 4th example

Espèce catalytique

  • NiCl2, DPPE et NiCl2 (TPP)2 dans un rapport molaire de 19/1

Température 0 °CCatalytic species
  • NiCl 2 , DPPE and NiCl 2 (TPP) 2 in a 19/1 molar ratio

Temperature 0 ° C

Arrêt de l'électrolyse après 15 heures.Electrolysis stopped after 3 p.m.

5e exemple 5th example

Espèce catalytique

  • NiCl2, DMPE et NiCl2 (TPP)2 dans un rapport molaire de 4/1

Température 20 °CCatalytic species
  • NiCl 2 , DMPE and NiCl 2 (TPP) 2 in a 4/1 molar ratio

Temperature 20 ° C

Arrêt de l'électrolyse lorsque le courant devient trop faible.Electrolysis stops when the current becomes too low.

6e exemple 6th example

Espèce catalytique

  • NiCl2, DMPE et NiCl2 (TPP)2 dans un rapport molaire de 19/1

Mêmes conditions que l'exemple 5Catalytic species
  • NiCl 2 , DMPE and NiCl 2 (TPP) 2 in a 19/1 molar ratio

Same conditions as example 5

7e exemple 7th example

Espèce catalytique

  • NiCl2, DPPP et NiCl2 (TPP)2 dans un rapport molaire de 4/1

Mêmes conditions que l'exemple 5.Catalytic species
  • NiCl 2 , DPPP and NiCl 2 (TPP) 2 in a 4/1 molar ratio

Same conditions as Example 5.

8e exemple 8th example

Espèce catalytique

  • NiCl2, DPPE et NiCl2, [P(C6H11)3]2 dans un rapport molaire de 4/1

Mêmes conditions que l'exemple 5.Catalytic species
  • NiCl 2 , DPPE and NiCl 2 , [P (C 6 H 11 ) 3 ] 2 in a molar ratio of 4/1

Same conditions as Example 5 .

9e exemple 9th example

Espèce catalytique

  • NiCl2, DPPE

Mêmes conditions que l'exemple 5.Catalytic species
  • NiCl 2 , DPPE

Same conditions as Example 5.

10e exemple 10th example

Espèce catalytique

  • NiCl2, DPPP + COD en proportion molaire 1/1

Température 20 °CCatalytic species
  • NiCl 2 , DPPP + COD in molar proportion 1/1

Temperature 20 ° C

Electrolyse terminée en 5 heures.Electrolysis completed in 5 hours.

11e exemple 1 1 st example

Espèce catalytique

  • Nickel bis cyclooctadiène

Température 20 °CCatalytic species
  • Nickel bis cyclooctadiene

Temperature 20 ° C

Electrolyse arrêtée au bout de 20 heures.Electrolysis stopped after 20 hours.

12e exemple12 th example

Espèce catalytique

  • NiCl2, bipyridyle

Température 20 °CCatalytic species
  • NiCl 2 , bipyridyle

Temperature 20 ° C

Electrolyse pendant 25 heures.Electrolysis for 25 hours.

13e exempleExample 13C

Espèce catalytique

  • Cobalt salen

CO2 sous pression atmosphériqueCatalytic species
  • Cobalt salen

CO 2 at atmospheric pressure

Electrolyse à -2,3 V sur cathode de mercure au potentiel de réduction de Co salen ; conversion totale en 20 heures.Electrolysis at -2.3 V on mercury cathode with the reduction potential of Co salen; total conversion in 20 hours.

14e exemple14 th example

Mêmes conditions que pour l'exemple 13 mais sous deux atmosphères de CO2.Same conditions as for Example 13 but under two atmospheres of CO 2 .

Les résultats des mesures sont explicités sur le tableau suivant :

Figure imgb0009
Figure imgb0010
The results of the measurements are explained in the following table:
Figure imgb0009
Figure imgb0010

On a pu constater qu'il était souhaitable de réaliser la réduction électrochimique en une seule étape.We have seen that it was desirable to carry out the electrochemical reduction in a single step.

En effet, si l'on procède en deux temps, le premier temps correspondant à la formation du complexe intermédiaire C6H5CH2NiCIL, opération réalisée sous gaz neutre, le deuxième à la réduction de ce complexe en présence de CO2, il se forme préférentiellement le dérivé biarylique.Indeed, if we proceed in two stages, the first stage corresponding to the formation of the intermediate complex C 6 H 5 CH 2 NiCIL, operation carried out under neutral gas, the second to the reduction of this complex in the presence of CO 2 , the biaryl derivative is preferably formed.

Ainsi si l'on reprend les conditions du 1er exemple en effectuant une première réduction électrochimique sous argon à un potentiel de - 2,1 V, suivie d'une seconde réduction en présence de C02 à un potentiel de - 2,6 V, la valeur obtenue pour T3 passe de 18 à 48.Thus if we take the conditions of the 1st example by performing a first electrochemical reduction under argon at a potential of - 2.1 V, followed by a second reduction in the presence of C0 2 at a potential of - 2.6 V, the value obtained for T3 goes from 18 to 48.

On a également réalisé des exemples correspondant à la préparation d'acides arylpropioniques.Examples corresponding to the preparation of arylpropionic acids have also been produced.

On a ainsi procédé à la synthèse de l'acide phényle propionique C6H5CH(CH3)COOH à partir de C6H5CH(CH3)Cl.We thus proceeded to the synthesis of phenyl propionic acid C 6 H 5 CH (CH 3 ) COOH from C 6 H 5 CH (CH 3 ) Cl.

En raison de la structure de ce composé, il existe une réaction parasite supplémentaire, conduisant par élimination de HCl à la formation de styrène. Pour éviter cette réaction il est avantageux d'une part de conduire l'opération à une température inférieure à la température ambiante, par exemple à 0 °C, d'autre part d'ajouter lorsque le catalyseur est NiY2L un bidenté supplémentaire, COD ou bipyridyle par exemple, qui se coordonne faiblement au nickel zérovalent.Due to the structure of this compound, there is an additional parasitic reaction, leading by elimination of HCl to the formation of styrene. To avoid this reaction, it is advantageous on the one hand to conduct the operation at a temperature below ambient temperature, for example at 0 ° C., on the other hand to add an additional bidentate when the catalyst is NiY 2 L, COD or bipyridyle for example, which weakly coordinates with zerovalent nickel.

L'utilisation de Co salen comme catalyseur ne nécessite pas de coordinat supplémentaire.The use of Co salen as a catalyst does not require additional coordination.

Plusieurs exemples de préparation ont été effectués à partir de C6H5―CH(CH3)Cl.Several examples of preparation were carried out from C 6 H 5 ―CH (CH 3 ) Cl.

Pour tous ces exemples, on a mesuré le pourcentage T'1 de C6H5CH(CH3)Cl consommé par rapport à la quantité initiale, le rendement chimique RC' et le rendement faradique RF'. Le produit secondaire est le styrène. On a la réaction globale :

Figure imgb0011
For all of these examples, the percentage T'1 of C 6 H 5 CH (CH 3 ) Cl consumed was measured relative to the initial quantity, the chemical yield RC 'and the faradaic yield RF'. The secondary product is styrene. We have the overall reaction:
Figure imgb0011

Pour les exemples 15 à 20, le milieu réactionnel comportait 0,1 atome-gramme de nickel pour 1 mole de C6H5CH(CH3)Cl, la pression de C02 était de 1 atmosphère, la température de 0°, le potentiel était maintenu à environ - 2,4, - 2,6 V par rapport à l'électrode de référence Ag+/Ag. Pour l'exemple 21, l'espèce catalytique était constituée par Co salen.For examples 15 to 20, the reaction medium contained 0.1 gram atom of nickel per 1 mole of C 6 H 5 CH (CH 3 ) Cl, the pressure of C0 2 was 1 atmosphere, the temperature of 0 °, the potential was maintained at approximately - 2.4, - 2.6 V relative to the Ag + / Ag reference electrode. For example 21, the catalytic species was constituted by Co salen.

Pour les exemples 15 à 20 et l'électrolyte cathodique est le tétrabutylammonium tétrafluoborate 0,3 M, pour l'exemple 21, Li ClO4 0,2 M. Le solvant de l'électrolyte était THF-HMPT (rapport 2/3, 1/3).For examples 15 to 20 and the cathode electrolyte is tetrabutylammonium tetrafluoborate 0.3 M, for example 21, Li ClO 4 0.2 M. The solvent of the electrolyte was THF-HMPT (ratio 2/3, 1/3).

15e exempleExample 15C

Espèce catalytique

  • NICl2, DPPP

anode en cuivre
électrolyse jusqu'à courant nul
  • T1' : 40, RC' : 57, RF' : 73.
Catalytic species
  • NICl 2 , DPPP

copper anode
electrolysis to zero current
  • T1 ': 40, RC': 57, RF ': 73.

16e exempleExample 16C

Espèce catalytique

  • NiCl2, DPPE + COD DPPE et COD dans un rapport molaire de 1/1,

anode en cuivre
électrolyse en 20 heures
  • T1' : 72 RC' : 82, RF' : 74.
Catalytic species
  • NiCl 2 , DPPE + COD DPPE and COD in a molar ratio of 1/1,

copper anode
electrolysis in 20 hours
  • T1 ': 72 RC': 82, RF ': 74.

17e exempleExample 17C

Espèce catalytique

  • NiClz, DPPP + COD DPPP et COD dans un rapport molaire de 1/1,

anode en cuivre,
arrêt de l'électrolyse à 55 % de la quantité d'électricité théorique
  • RC' : 71 RF' : 94
Catalytic species
  • NiCl z , DPPP + COD DPPP and COD in a molar ratio of 1/1,

copper anode,
electrolysis stopped at 55% of the theoretical amount of electricity
  • RC ': 71 RF': 94

18e exempleExample 18C

Espèce catalytique

  • NiCl2, DPPP + bipyridyle, DPPP et bipyridyle dans un rapport molaire de 1/1,

anode de cuivre
  • T1' : 82, RC' : 51, RF' : 44
Catalytic species
  • NiCl 2 , DPPP + bipyridyle, DPPP and bipyridyle in a molar ratio of 1/1,

copper anode
  • T1 ': 82, RC': 51, RF ': 44

19e exemple 1 9 th example

Espèce catalytique

  • NiClz, DPPP + COD, DPPP et COD dans un rapport molaire de 1/1,

anode de platine,
électrolyte anodique oxalate de sodium, 0,1 M
  • T1' : 100 RC' : 75 RF' : 75
Catalytic species
  • NiCl z , DPPP + COD, DPPP and COD in a molar ratio of 1/1,

platinum anode,
anodic electrolyte sodium oxalate, 0.1 M
  • T1 ': 100 RC': 75 RF ': 75

20e exemple20 th example

Espèce catalytique

  • NiCl2, DPPP + COD DPPP et COD dans un rapport molaire de 1/1,

cathode fibres de carbone tressées et non plus mercure
anode en platine, électrolyte anodique : oxalate de lithium
électrolyse complète en 12 heures
  • T1' : 96 RC' : 89 RF' : 93
Catalytic species
  • NiCl 2 , DPPP + COD DPPP and COD in a molar ratio of 1/1,

cathode braided carbon fibers and no longer mercury
platinum anode, anodic electrolyte: lithium oxalate
complete electrolysis in 12 hours
  • T1 ': 96 RC': 89 RF ': 93

21e exempleExample 21 e

Espèce catalytique

  • Co salen

CO2 sous 1 atmosphère
électrolyse à - 2 volts à 20 °C
  • T1' : 100 RC' : 60
Catalytic species
  • Co salen

CO 2 under 1 atmosphere
electrolysis at - 2 volts at 20 ° C
  • T1 ': 100 RC': 60

Le procédé décrit ci-dessus peut ainsi être directement appliqué à la synthèse d'un anti inflammatoire commercial, le naproxène, selon la réaction

Figure imgb0012
The process described above can thus be directly applied to the synthesis of a commercial anti-inflammatory, naproxen, depending on the reaction.
Figure imgb0012

Espèce catalytique

  • NiC12, DPPP + COD DPPP et COD dans un rapport molaire de 1/1 à 0 °C
  • T1':100 RC':66 RF':66
Catalytic species
  • NiC1 2 , DPPP + COD DPPP and COD in a molar ratio of 1/1 at 0 ° C
  • T1 ': 100 RC': 66 RF ': 66

Bien entendu l'invention n'est nullement limitée aux modes d'exécution qui n'ont été donnés qu'à titre d'exemple.Of course, the invention is in no way limited to the embodiments which have been given only by way of example.

Claims (19)

1. A process for preparing arylacetic and arylpropionic acids, comprising an electrochemical reduction under carbon dioxide atmosphere, of benzyl type halides having the formula ArCHzX or ArCH(CH3)X, characterized in that said reduction is effected in the presence of a catalyst comprising at least one organometallic complex derived from a transition metal associated to a bidentate or tetradentate coordinate.
2. A process according to claim 1, characterized in that the transition metal is selected from the group comprising nickel and cobalt.
3. A process according to claim 2, characterized in that the organometallic complex is selected from the group formed, on the one hand, by nickel-bis-cyclooctadiene and, on the other hand, by liganded metal halides having the formula NiYzL. Y being a halogen, L being the bipyridyl or a coordinate of the disphosphine type, having the formula PRz-(CHz)n-PR2 wherein P represents phosphorus, R being a radical selected from the group formed by the phenyl radical and the aliphatic radicals, n being an integer less than or equal to 4.
4. A process according to claim 3, characterized in that R is the phenyl radical and n = 2. 3 or 4.
5. A process according to claim 3, characterized in that R is the methyl radical and n = 2.
6. A process according to claim 2, characterized in that the catalyst is an M'-salen complex wherein M' represents nickel or cobalt and salen is the bis-(salicylidene)-ethylene-diamine tetradentate coordinate.
7. A process according to one of claims 1 to 6, characterized in that the catalyst also comprises a cocatalyst consisting of a liganded metal halide having the formula Ml y 2L'2, L' being a coordinate of the formula PR'3, R' being selected from the group formed by the alkyl and aryl radicals, M, being a transition metal.
8. A process according to claim 7, characterized in that the catalyst contains about four molar equivalents of MYzL for a molar equivalent of M1Y2L'2 wherein M is a transition metal.
9. A process according to one of claims 1 to 6, characterized in that, in addition to the organometallic complex, the catalyst comprises a monodentate or bidentate coordinate.
10. A process according to claim 9, characterized in that said coordinate is selected from the group formed by cyclooctadiene and bipyridyl.
11. A process according to one of claims 9 and 10, characterized in that the organometallic complex and said coordinate are present in a molar ratio of 1/1.
12. A process according to one of claims 2 to 11, characterized in that the reaction mixture contains 0,1 atom-gram of nickel or cobalt for every benzyl molecule.
13. A process according to one of claims 1 to 12, characterized in that the reaction medium is maintained at or below room temperature during the preparation process.
14. A process according to one of claims 1 to 13, characterized in that the used products are anhydrous.
15. A process according to one of claims 1 to 14, characterized in that the carbon dioxide is used at or close to atmospheric pressure.
16. A process according to one of claims 1 to 15, characterized in that the electrochemical reduction is carried out in an electrolysis cell comprising a cathode compartment and an anode compartment, the cathode consisting of a felt, a carbon fabric or braid, or a sheet of mercury, the anode consisting of an alterable metal, such as lithium or copper, or of an unalterable material, the electrolyte containing a solvent comprising a mixture of an aprotic solvent, such as tetrahydrofuran, and a dipolar aprotic solvent, such as hexamethylphosphorotriamide, N-methylpyrrolidone or tetramethylurea.
17. A process according to claim 16, characterized in that when the anode consists of an unalterable metal, the electrolyte present in the anode compartment consists of an oxalate such as a sodium or lithium oxalate.
18. A process according to claim 14, characterized in that when the anode consists of an alterable metal, the electrolyte present in the anode compartment contains lithium perchlorate or tetrabutylammonium tetrafluoborate.
19. A process according to claim 16, characterized in that the electrolyte present in the cathode compartment contains lithium perchlorate or tetrabutylammonium tetrafluoborate.
EP83106657A 1982-07-13 1983-07-07 Preparation process of arylacetic and arylpropionic acids Expired EP0100877B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83106657T ATE20480T1 (en) 1982-07-13 1983-07-07 PROCESS FOR THE PREPARATION OF ARYLACETIC AND ARYLPROPIONIC ACID.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8212275A FR2530266B1 (en) 1982-07-13 1982-07-13 PROCESS FOR THE PREPARATION OF ARYLACETIC AND ARYLPROPIONIC ACIDS
FR8212275 1982-07-13

Publications (2)

Publication Number Publication Date
EP0100877A1 EP0100877A1 (en) 1984-02-22
EP0100877B1 true EP0100877B1 (en) 1986-06-18

Family

ID=9275950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106657A Expired EP0100877B1 (en) 1982-07-13 1983-07-07 Preparation process of arylacetic and arylpropionic acids

Country Status (6)

Country Link
US (1) US4517061A (en)
EP (1) EP0100877B1 (en)
JP (1) JPS5935688A (en)
AT (1) ATE20480T1 (en)
DE (1) DE3364177D1 (en)
FR (1) FR2530266B1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566434B1 (en) * 1984-06-21 1986-09-26 Poudres & Explosifs Ste Nale ELECTROSYNTHESIS OF CARBOXYLIC ACIDS
FR2579627B1 (en) * 1985-03-29 1987-05-15 Poudres & Explosifs Ste Nale ELECTROSYNTHESIS OF ALCOHOLS
IT1216929B (en) * 1987-04-16 1990-03-14 Enichem Sintesi PROCEDURE FOR THE SYNTHESIS OF 2-ARYL-PROPIONIC ACIDS.
JPS63295021A (en) * 1987-05-28 1988-12-01 Nippon Steel Corp Forming method for thin pipe in welding pipe
DE19858208B4 (en) * 1998-12-17 2004-03-04 Fhp Motors Gmbh Protective conductor connection on a laminated stator core of an electric motor
GB0228018D0 (en) * 2002-11-30 2003-01-08 Lucite Int Uk Ltd Carbonylation of ester
US7767864B2 (en) * 2003-07-03 2010-08-03 Lucite International Uk Limited Process for the hydroformylation of ethylenically unsaturated compounds
GB0315536D0 (en) * 2003-07-03 2003-08-06 Lucite Int Uk Ltd Process for the hydroformylation of ethylenically unsaturated compounds
GB0403592D0 (en) * 2004-02-18 2004-03-24 Lucite Int Uk Ltd A catalyst system
WO2005082343A2 (en) 2004-02-25 2005-09-09 La Jolla Pharmaceutical Company Amines and amides for the treatment of diseases
GB0411951D0 (en) * 2004-05-28 2004-06-30 Lucite Int Uk Ltd Carbonylation of ester
GB0516556D0 (en) * 2005-08-12 2005-09-21 Lucite Int Uk Ltd Improved catalyst system
KR101633325B1 (en) 2005-11-17 2016-06-24 루사이트 인터내셔널 유케이 리미티드 Carbonylation of ethylenically unsaturated compounds
GB0607494D0 (en) 2006-04-13 2006-05-24 Lucite Int Uk Ltd Metal complexes
WO2008065448A1 (en) * 2006-12-02 2008-06-05 Lucite International Uk Limited Novel carbonylation ligands and their use in the carbonylation of ethylenically unsaturated compounds
GB0625518D0 (en) * 2006-12-21 2007-01-31 Lucite Int Uk Ltd Carbonylation of conjugated dienes
GB0812297D0 (en) * 2008-07-04 2008-08-13 Lucite Int Uk Ltd Novel carbonylation ligand sand thier use of in the carbonylation of ethylenically unsaturated compounds
GB201000078D0 (en) 2010-01-05 2010-02-17 Lucite Int Uk Ltd Process for the carbonylation of ethylenically unsaturated compounds, novel carbonylation ligands and catalyst systems incorporatng such ligands
JP5842774B2 (en) * 2012-09-20 2016-01-13 コニカミノルタ株式会社 Photoelectric conversion element and solar cell
CN113136593A (en) * 2021-04-14 2021-07-20 赤峰学院 Method for synthesizing ibuprofen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344045A (en) * 1964-10-23 1967-09-26 Sun Oil Co Electrolytic preparation of carboxylic acids
US3764492A (en) * 1972-01-10 1973-10-09 Monsanto Co Electrolytic preparation of esters from organo halides

Also Published As

Publication number Publication date
JPH0229755B2 (en) 1990-07-02
JPS5935688A (en) 1984-02-27
FR2530266B1 (en) 1985-07-12
ATE20480T1 (en) 1986-07-15
DE3364177D1 (en) 1986-07-24
EP0100877A1 (en) 1984-02-22
FR2530266A1 (en) 1984-01-20
US4517061A (en) 1985-05-14

Similar Documents

Publication Publication Date Title
EP0100877B1 (en) Preparation process of arylacetic and arylpropionic acids
Derien et al. From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel-bipyridine complexes. Magnesium ions as the key for catalysis
Derien et al. Activation of carbon dioxide: nickel-catalyzed electrochemical carboxylation of diynes
JPH01198491A (en) Electrochemical synthesis of alpha-saturated ketone
US5013412A (en) Process for the electrosynthesis of a beta,gamma-unsaturated ester
Garnier et al. Electrosynthesis of symmetrical ketones from organic halides and carbon dioxide catalysed by 2, 2′-bipyridine-nickel complexes
CA1272180A (en) Catalytic system, its preparation and its use for manufacturing aldehydes
FR2725443A1 (en) PREPARATION OF CARBOXYLIC ACIDS OR ESTERS CORRESPONDING BY CARBONYLATION IN THE PRESENCE OF IRIDIUM
Davies et al. Electrochemical generation and reactivity of bis (tertiary phosphine) platinum (0) complexes: a comparison of the reactivity of [Pt (PPh3) 2] and [Pt (PEt3) 2] equivalents
Oçafrain et al. Electrochemical generation of a nickel–carbonyl complex, catalyst for the electroreductive coupling of organic halides and carbon monoxide into ketones
Jutand et al. Activation of Aryl and Vinyl Triflates by Palladium and Electron Transfer–Electrosynthesis of Aromatic and α, β‐Unsaturated Carboxylic Acids from Carbon Dioxide
WO2013114311A1 (en) Method for preparing tertiary phosphines and derivatives of same
FR2606427A1 (en) PROCESS FOR ELECTROSYNTHESIS OF ARYL ALKYL PHOSPHINES TERTIARY
Bedioui et al. Electroassisted catalysis of the reductive coupling of 2-bromooctane and methyl vinyl ketone by a binuclear cobalt–salen–iron complex in DMF solution: electrosynthesis and cyclic voltammetry analysis
EP0196253B1 (en) Catalytic system, its preparation method and its use in the production of aldehydes
JP2009215647A (en) Method for producing carbonic acid diester
Eberson et al. Studies on Electrolytic Substitution Reactions. XVII. Selective Nuclear Acetoxylation of Alkylaromatic Compounds
EP0201365B1 (en) Process for the electrosynthesis of alcohols and epoxide compounds
CH664979A5 (en) PROCESS FOR THE ELECTROSYNTHESIS OF CARBOXYLIC ACIDS.
Chiarotto et al. Palladium-catalysed electrochemical reduction of vinyl and aryl triflates
Olivero et al. Selectivity in the tandem cyclization–carboxylation reaction of unsaturated haloaryl ethers catalyzed by electrogenerated nickel complexes
WO2022052307A1 (en) Method for preparing ruthenium carbene compound
Budnikova et al. Electrochemical synthesis of phosphorus esters from white phosphorus in the presence of copper complexes and ethanol
EP1245551B1 (en) 1,2-bis(methyl(1,1,3,3-tetramethylbutyl)-phosphino)ethane, process for the preparation thereof, transition metal complexes containing the same as the ligand and uses thereof
Degrand et al. Electrosynthesis of (fluorenone) tricarbonylchromium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 20480

Country of ref document: AT

Date of ref document: 19860715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3364177

Country of ref document: DE

Date of ref document: 19860724

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910607

Year of fee payment: 9

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920527

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920615

Year of fee payment: 10

Ref country code: BE

Payment date: 19920615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920625

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920707

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 10

Ref country code: AT

Payment date: 19920731

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930707

Ref country code: AT

Effective date: 19930707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Effective date: 19930731

Owner name: CIE GENERALE D'ELECTRICITE

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83106657.6

Effective date: 19940210