EP0092461B1 - Annular closure slab for a fast neutron nuclear reactor vessel - Google Patents

Annular closure slab for a fast neutron nuclear reactor vessel Download PDF

Info

Publication number
EP0092461B1
EP0092461B1 EP83400712A EP83400712A EP0092461B1 EP 0092461 B1 EP0092461 B1 EP 0092461B1 EP 83400712 A EP83400712 A EP 83400712A EP 83400712 A EP83400712 A EP 83400712A EP 0092461 B1 EP0092461 B1 EP 0092461B1
Authority
EP
European Patent Office
Prior art keywords
slab
enclosure
shell
frustoconical
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83400712A
Other languages
German (de)
French (fr)
Other versions
EP0092461A1 (en
Inventor
Claude Malaval
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novatome SA
Original Assignee
Novatome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novatome SA filed Critical Novatome SA
Publication of EP0092461A1 publication Critical patent/EP0092461A1/en
Application granted granted Critical
Publication of EP0092461B1 publication Critical patent/EP0092461B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/06Sealing-plugs
    • G21C13/073Closures for reactor-vessels, e.g. rotatable
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/093Concrete vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to an annular closure slab for the vessel of a fast neutron nuclear reactor.
  • Fast neutron nuclear reactors generally have a concrete structure comprising a cylindrical well shaft with a vertical axis inside which is placed the main reactor vessel surrounded by the safety vessel and closed by the slab which rests on the upper part from the tank well.
  • the main tank and the reactor safety tank are suspended from the lower part of the slab which is made up of a composite structure of steel and concrete.
  • This structure is constituted by an annular envelope filled with concrete leaving at its central part a cylindrical space to allow the slab to receive the large rotating plug carrying all the devices for handling the fuel assemblies constituting the core of the reactor arranged at the inside of the tank.
  • the annular envelope is constituted by two coaxial cylindrical ferrules and by two annular flanges connected to each of the ferrules at their upper part and at their lower part, respectively.
  • Cylindrical locations are provided inside the envelope by ferrules passing through the slab over its entire thickness and emerging at the level of circular openings provided in the upper and lower flanges of the slab.
  • the concrete filling occupies the interior volume of the envelope with the exception of these cylindrical spaces allowing the passage of the components of the reactor plunging through their lower part into the tank, such as the primary pumps and the intermediate exchangers.
  • Radial direction stiffeners allow rigid assembly of the cylindrical ferrules, upper and lower flanges and ferrules for passage of the components. These various elements are interconnected by welding.
  • the external cylindrical shell of the cover of the slab is used to fix the latter above the tank well.
  • a ferrule of the same diameter is in fact fixed to the upper part of the vessel well and the connection of the external shell of the slab on this support ferrule allows the slab to be fixed.
  • the reactor vessel is intended to contain the primary fluid maintained at high temperature by the heat released by the core.
  • This primary fluid is generally liquid sodium.
  • Cooling tubes are therefore placed in contact with the bottom flange and the sheaths for the passage of components, inside which a circulation of water is established, these cooling tubes being embedded in the concrete filling the slab.
  • the bottom sole is protected from the heat of the primary fluid by an insulation.
  • the dilations of the slab are therefore limited and it is thus possible to connect it to the support ferrule secured to the vessel well.
  • the entire metal structure of the slab comprising the outer shell, the inner shell, the upper and lower flanges, the sheaths for the passage of the components and the vertical stiffeners of radial direction must therefore have very high strength and very high rigidity. .
  • the stiffeners In particular, to transmit the shearing forces without discontinuity, the stiffeners must be very close together, so that the internal volume of the slab envelope is extremely fragmented.
  • the filling concrete therefore practically does not participate in the resistance of the assembly and only serves as protection against radiation of the materials contained inside the tank.
  • the metal structure of the slab is extremely heavy, expensive and difficult to weld, this structure being made even more complex by the fact that it is necessary to provide cooling tubes in contact with the sheaths for passage of the components and in contact with the bottom flange. which supports very important constraints. These cooling pipes must pass through the radial stiffeners in which numerous openings must be provided.
  • the object of the invention is therefore to propose an annular closure slab for the vessel of a fast neutron nuclear reactor, the concrete structure of which comprises a cylindrical vessel well with a vertical axis on the upper part of which the slab constituted horizontally rests.
  • a composite steel and concrete structure which itself carries the tank suspended from its lower part and which comprises an annular envelope constituted by two coaxial cylindrical ferrules and two annular flanges connected to each other directly and by means of an assembly stiffening, filled with concrete with the exception of cylindrical spaces with axes parallel to the axis of the ferrules and passing through the slab over its entire thickness for the passage of the components of the reactor plunging into the tank, this slab having great resistance and great rigidity despite a simple structure, greater ease of production and less mass.
  • the slab comprises, inside the envelope, as a stiffening element, at least one frustoconical ferrule coaxial with the ferrules limiting the slab connected by welding to the envelope along its small base, in the vicinity of the upper part of this envelope and along its large base, in the vicinity of the lower part thereof, pierced with openings for the passage of components and dividing the internal volume of the envelope into two superimposed parts.
  • the upper part of the internal volume of the envelope, above the frustoconical shell, is filled with concrete incorporating metal reinforcements for reinforcement and constituting a continuous resistant structure over the entire periphery of the slab.
  • the tank well 1 of a fast neutron nuclear reactor comprising at its upper part an anchoring device 2 of a support shell 4 whose diameter corresponds to the inside diameter of the tank well and to the outside diameter of slab 3.
  • the slab comprises an outer ferrule 5 of the same diameter as the support ferrule 4 on which it is fixed by welding and an internal ferrule 7 coaxial with the ferrule 5.
  • These ferrules 5 and 7 are connected by welding to a sole upper annular 8 and a lower annular sole 9, all of the ferrules 5 and 7 and the soles 8 and 9 constituting the envelope of the slab.
  • the cylindrical ferrules and the flanges are also connected to each other by vertical stiffeners 10 in the radial direction.
  • the internal volume of the envelope is filled with concrete 14 with the exception of vertical cylindrical spaces 12 formed by cylindrical sleeves 15 inside the envelope of the slab. These cylindrical spaces 12 crossing the entire thickness of the slab allow the passage of the components of the nuclear reactor immersed in the tank, such as pumps or intermediate exchangers.
  • the sleeves 15 are connected by welding to the flanges 8 and 9 which have circular openings corresponding to these sleeves and to the outer shell 5, by means of vertical stiffeners of radial direction 11.
  • the set of stiffeners 10, sleeves 15 and stiffeners 11 ensures the stiffening of the envelope of the slab.
  • cooling tubes 6 of the sleeves 15 and of the lower flange 9 must pass through numerous vertical stiffeners during their journey.
  • the main tank 16 and the safety tank 17 of the reactor are constituted by a cylindrical shell of large diameter whose upper part visible in FIG. 1 is fixed inside the slab for the suspension of these tanks and by a curved bottom comprising several elements of spherical shape.
  • FIG. 3 shows a slab according to the invention 20 resting on the upper part of the tank well 21.
  • this slab 20 comprises an envelope constituted by an outer ferrule 25 and an inner ferrule 27 coaxial, an upper sole 28 and a lower sole 29. Sheaths for the passage of the components 24 are disposed inside this envelope at the level of openings 22 provided in the upper and lower soles of the envelope.
  • the stiffening assembly of the envelope is constituted by a simple frustoconical ferrule 30 coaxial with the ferrules 25 and 27.
  • the frustoconical shell 30 is connected by welding along its small base to the internal cylindrical shell 27, in the vicinity of the upper part of the slab.
  • the ferrule 30 is also connected by welding along its large base to the outer ferrule 25, in the vicinity of the lower part of the slab.
  • the ferrule 30 is pierced with openings allowing the passage of the sleeves 24 and welded to these sleeves 24 along the outline of these openings.
  • the frustoconical ferrule 30 separates the internal volume of the envelope of the slab into two superimposed parts, one located below the ferrule 30 and the other above this ferrule.
  • the part situated below the shell 30 is filled with radiological protection concrete 34 thanks to filling openings passing through the shell 30.
  • the upper part of the internal volume of the envelope, above the frustoconical shell 30, is filled with concrete incorporating metal reinforcements 33 arranged in particular along concentric paths throughout the internal volume of the slab. In this way, the reinforced concrete filling this part of the slab plays an important role in the resistance of the latter.
  • the outer shell 25 is reinforced at its lower part 35 where the large base of the frustoconical shell 30 is connected.
  • a support structure 37 constituted by an annular belt with a square section.
  • This annular structure 37 consists of a steel casing welded to the outer ring 25 in its reinforced part, filled with concrete.
  • the support structure 37 rests on a sliding support 38 carried by the upper part of the tank well 21.
  • the main tank 40 and the safety tank 39 are fixed by their upper part to the frustoconical shell 30, so that they are suspended under the slab 20.
  • the part of the slab located below the frustoconical shell 30 undergoes very low stresses and in this zone the internal volume of the envelope of the slab is filled with radiological protective concrete.
  • the part of the internal volume of the envelope of the slab situated above the frusto-conical shell 30 is filled with concrete incorporating metal reinforcements arranged in particular concentrically in the slab.
  • This reinforced concrete ensures the mechanical strength of the slab at the same time as the ferrules, the soles, the sheaths and the frustoconical ferrule serving as a stiffener.
  • the frustoconical shell 30 which is embedded in the protective concrete cannot be deformed by buckling so that it is possible to use for its manufacture a sheet of moderate thickness and which can be avoided to reinforce it.
  • the main advantages of the slab according to the invention are that it makes it possible to obtain great mechanical strength and great rigidity thereof with a much simpler structure, easier to produce and of less weight.
  • the new structure of the slab according to the invention makes it possible to rest it on the upper part of the tank well and to avoid connecting it to a support ferrule secured to the tank well, by a solder exposed to the heat of the primary fluid.
  • Part of the concrete filling the slab contributes to obtaining good mechanical strength and great rigidity thereof.
  • the invention is not limited to the embodiment which has just been described; this is how the frusto-conical shell can be welded at its ends on the upper and lower flanges instead of being welded on the external and internal ferrules.
  • the frustoconical ferrule can be welded at one of its ends on one of the flanges and at its other end on one of the ferrules.
  • stiffener assembly consisting of at least two coaxial frustoconical ferrules and separated by a constant distance, that is to say having the same angle at the top, and connected together by spacers.
  • stiffener assembly consisting of at least two coaxial frustoconical ferrules and separated by a constant distance, that is to say having the same angle at the top, and connected together by spacers.
  • one or more frusto-conical rotors having reinforcements to prevent their buckling, although the concrete surrounding these stiffening ferrules practically prevents their deformation.
  • the slab according to the invention applies to all fast neutron nuclear reactors comprising an annular slab whose central part supports a heavy assembly such as a rotating plug for handling fuel assemblies.

Description

L'invention concerne une dalle de fermeture annulaire de la cuve d'un réacteur nucléaire à neutrons rapides.The invention relates to an annular closure slab for the vessel of a fast neutron nuclear reactor.

Les réacteurs nucléaires à neutrons rapides comportent généralement une structure en béton comportant un puits de cuve cylindrique à axe vertical à l'intérieur duquel est disposée la cuve principale du réacteur entourée par la cuve de sécurité et fermée par la dalle qui repose sur la partie supérieure du puits de cuve. La cuve principale et la cuve de sécurité du réacteur sont suspendues à la partie inférieure de la dalle qui est constituée par une structure composite en acier et en béton.Fast neutron nuclear reactors generally have a concrete structure comprising a cylindrical well shaft with a vertical axis inside which is placed the main reactor vessel surrounded by the safety vessel and closed by the slab which rests on the upper part from the tank well. The main tank and the reactor safety tank are suspended from the lower part of the slab which is made up of a composite structure of steel and concrete.

Cette structure est constituée par une enveloppe annulaire remplie de béton ménageant à sa partie centrale un espace cylindrique pour permettre à la dalle de recevoir le grand bouchon tournant portant l'ensemble des dispositifs de manutention des assemblages combustibles constituant le coeur du réacteur disposé à l'intérieur de la cuve.This structure is constituted by an annular envelope filled with concrete leaving at its central part a cylindrical space to allow the slab to receive the large rotating plug carrying all the devices for handling the fuel assemblies constituting the core of the reactor arranged at the inside of the tank.

L'enveloppe annulaire est constituée par deux viroles cylindriques coaxiales et par deux semelles annulaires reliées à chacune des viroles à leur partie supérieure et à leur partie inférieure, respectivement.The annular envelope is constituted by two coaxial cylindrical ferrules and by two annular flanges connected to each of the ferrules at their upper part and at their lower part, respectively.

Des emplacements cylindriques sont ménagés à l'intérieur de l'enveloppe par des viroles traversant la dalle sur toute son épaisseur et débouchant au niveau d'ouvertures circulaires prévues dans les semelles supérieure et inférieure de la dalle. Le remplissage de béton occupe le volume intérieur de l'enveloppe à l'exception de ces espaces cylindriques permettant le passage des composants du réacteur plongeant par leur partie inférieure dans la cuve, tels que les pompes primaires et les échangeurs intermédiaires.Cylindrical locations are provided inside the envelope by ferrules passing through the slab over its entire thickness and emerging at the level of circular openings provided in the upper and lower flanges of the slab. The concrete filling occupies the interior volume of the envelope with the exception of these cylindrical spaces allowing the passage of the components of the reactor plunging through their lower part into the tank, such as the primary pumps and the intermediate exchangers.

Des raidisseurs de direction radiale permettent un assemblage rigide des viroles cylindriques, des semelles supérieure et inférieure et des viroles de passage des composants. Ces divers éléments sont reliés entre eux par soudure.Radial direction stiffeners allow rigid assembly of the cylindrical ferrules, upper and lower flanges and ferrules for passage of the components. These various elements are interconnected by welding.

La virole cylindrique externe de l'enveloppe de la dalle sert à la fixation de celle-ci au-dessus du puits de cuve. Une virolle de même diamètre est en effet fixée à la partie supérieure du puits de cuve et la liaison de la virole externe de la dalle sur cette virole de support permet la fixation de la dalle.The external cylindrical shell of the cover of the slab is used to fix the latter above the tank well. A ferrule of the same diameter is in fact fixed to the upper part of the vessel well and the connection of the external shell of the slab on this support ferrule allows the slab to be fixed.

La cuve du réacteur est destinée à contenir le fluide primaire maintenu à haute température par la chaleur dégagée par le coeur. Ce fluide primaire est généralement du sodium liquide.The reactor vessel is intended to contain the primary fluid maintained at high temperature by the heat released by the core. This primary fluid is generally liquid sodium.

Les parties de la dalle dirigées vers l'intérieur de la cuve, c'est-à-dire la semelle inférieure et les fourreaux de passage des composants, doivent donc être refroidies pour limiter leur échauffement et éviter un abaissement de leur résistance mécanique. On place donc, au contact de la semelle inférieure et des fourreaux de passage de composants, des tubes de refroidissement à l'intérieur desquels on établit une circulation d'eau, ces tubes de refroidissement étant noyés dans le béton de remplissage de la dalle.The parts of the slab directed towards the interior of the tank, that is to say the bottom sole and the sheaths for the passage of the components, must therefore be cooled to limit their heating and to avoid a reduction in their mechanical resistance. Cooling tubes are therefore placed in contact with the bottom flange and the sheaths for the passage of components, inside which a circulation of water is established, these cooling tubes being embedded in the concrete filling the slab.

En outre, la semelle inférieure est protégée de la chaleur du fluide primaire par un calorifuge.In addition, the bottom sole is protected from the heat of the primary fluid by an insulation.

Les dilatations de la dalle sont donc limitées et il est ainsi possible de la raccorder à la virole de support solidaire du puits de cuve.The dilations of the slab are therefore limited and it is thus possible to connect it to the support ferrule secured to the vessel well.

Lorsque le grand bouchon tournant repose dans son logement au centre de la dalle annulaire, son poids extrêmement important est entièrement supporté par la dalle dont la semelle supérieure travaille en compression et la semelle inférieure en traction.When the large rotating plug rests in its housing in the center of the annular slab, its extremely high weight is entirely supported by the slab, the upper sole of which works in compression and the lower sole in tension.

L'ensemble de la structure métallique de la dalle comportant la virole externe, la virole interne, les semelles supérieure et inférieure, les fourreaux de passage des composants et les raidisseurs verticaux de direction radiale doit donc présenter une très grande résistance et une très grande rigidité.The entire metal structure of the slab comprising the outer shell, the inner shell, the upper and lower flanges, the sheaths for the passage of the components and the vertical stiffeners of radial direction must therefore have very high strength and very high rigidity. .

En particulier, pour transmettre les efforts de cisaillement sans discontinuité, les raidisseurs doivent être très rapprochés, si bien que le volume interne de l'enveloppe de la dalle est extrêmement morcelé. Le béton de remplissage ne participe donc pratiquement pas à la résistance de l'ensemble et sert uniquement de protection contre les radiations des matériaux contenus à l'intérieur de la cuve.In particular, to transmit the shearing forces without discontinuity, the stiffeners must be very close together, so that the internal volume of the slab envelope is extremely fragmented. The filling concrete therefore practically does not participate in the resistance of the assembly and only serves as protection against radiation of the materials contained inside the tank.

La structure métallique de la dalle est extrêmement lourde, coûteuse et difficile à souder, cette structure étant encore rendue plus complexe par le fait qu'il faut prévoir des tubes de refroidissement au contact des fourreaux de passage des composants et au contact de la semelle inférieure qui supporte des contraintes très importantes. Ces tuyaux de refroidissement doivent traverser les raidisseurs radiaux dans lesquels il faut prévoir de nombreuses ouvertures.The metal structure of the slab is extremely heavy, expensive and difficult to weld, this structure being made even more complex by the fact that it is necessary to provide cooling tubes in contact with the sheaths for passage of the components and in contact with the bottom flange. which supports very important constraints. These cooling pipes must pass through the radial stiffeners in which numerous openings must be provided.

Le but de l'invention est donc de proposer une dalle de fermeture annulaire de la cuve d'un réacteur nucléaire à neutrons rapides dont la structure en béton comporte un puits de cuve cylindrique à axe vertical sur la partie supérieure duquel repose horizontalement la dalle constituée par une structure composite en acier et en béton qui elle-même porte la cuve suspendue à sa partie inférieure et qui comporte une enveloppe annulaire constituée par deux viroles cylindriques coaxiales et deux semelles annulaires reliées entre elles directement et par l'intermédiaire d'un ensemble de raidissement, remplie de béton à l'exception d'espaces cylindriques d'axes parallèles à l'axe des viroles et traversant la dalle sur toute son épaisseur pour le passage des composants du réacteur plongeant dans la cuve, cette dalle présentant une grande résistance et une grande rigidité malgré une structure simple, une plus grande facilité de réalisation et une masse moins importante.The object of the invention is therefore to propose an annular closure slab for the vessel of a fast neutron nuclear reactor, the concrete structure of which comprises a cylindrical vessel well with a vertical axis on the upper part of which the slab constituted horizontally rests. by a composite steel and concrete structure which itself carries the tank suspended from its lower part and which comprises an annular envelope constituted by two coaxial cylindrical ferrules and two annular flanges connected to each other directly and by means of an assembly stiffening, filled with concrete with the exception of cylindrical spaces with axes parallel to the axis of the ferrules and passing through the slab over its entire thickness for the passage of the components of the reactor plunging into the tank, this slab having great resistance and great rigidity despite a simple structure, greater ease of production and less mass.

Dans ce but, la dalle comporte, à l'intérieur de l'enveloppe, comme élément de raidissement, au moins une virole tronconique coaxiale aux viroles limitant la dalle reliée par soudure à l'enveloppe le long de sa petite base, au voisinage de la partie supérieure de cette enveloppe et le long de sa grande base, au voisinage de la partie inférieure de celle-ci, percée d'ouvertures pour le passage des composants et partageant le volume interne de l'enveloppe en deux parties superposées.For this purpose, the slab comprises, inside the envelope, as a stiffening element, at least one frustoconical ferrule coaxial with the ferrules limiting the slab connected by welding to the envelope along its small base, in the vicinity of the upper part of this envelope and along its large base, in the vicinity of the lower part thereof, pierced with openings for the passage of components and dividing the internal volume of the envelope into two superimposed parts.

Selon un mode de réalisation préférentiel de l'invention, la partie supérieure du volume interne de l'enveloppe, au-dessus de la virole tronconique, est remplie de béton incorporant des armatures métalliques de renforcement et constituant une structure résistante continue sur toute la périphérie de la dalle.According to a preferred embodiment of the invention, the upper part of the internal volume of the envelope, above the frustoconical shell, is filled with concrete incorporating metal reinforcements for reinforcement and constituting a continuous resistant structure over the entire periphery of the slab.

Afin de bien faire comprendre l'invention, on va maintenant décrire à titre d'exemples non limitatifs, en se référant aux figures jointes en annexe, un mode de réalisation d'une dalle suivant l'art antérieur et un mode de réalisation d'une dalle suivant l'invention.

  • La fig. 1 représente, dans une vue en coupe par un plan vertical, suivant AA de la fig. 2, une dalle suivant l'art antérieur en position sur un réacteur nucléaire à neutrons rapides.
  • La fig. 2 représente une demi-vue de dessus de la dalle représentée à la fig. 1.
  • La fig. 3 représente une vue en coupe, suivant BB de la fig. 4, d'une dalle suivant l'invention en position sur le puits de cuve d'un réacteur nu'-' cléaire à neutrons rapides.
  • La fig. 4 représente une demi-vue de dessus de la dalle représentée à la fig. 3.
In order to clearly understand the invention, we will now describe, by way of nonlimiting examples, with reference to the attached figures, an embodiment of a slab according to the prior art and an embodiment of a slab according to the invention.
  • Fig. 1 shows, in a sectional view through a vertical plane, along AA in FIG. 2, a slab according to the prior art in position on a fast neutron nuclear reactor.
  • Fig. 2 shows a half top view of the slab shown in FIG. 1.
  • Fig. 3 shows a sectional view, along BB of FIG. 4, of a slab according to the invention in position on the vessel well of a nu'- 'key fast neutron reactor.
  • Fig. 4 shows a half top view of the slab shown in FIG. 3.

Sur la fig. 1 on voit le puits de cuve 1 d'un réacteur nucléaire à neutrons rapides comportant à sa partie supérieure un dispositif d'ancrage 2 d'une virole de support 4 dont le diamètre correspond au diamètre intérieur du puits de cuve et au diamètre extérieur de la dalle 3.In fig. 1 we see the tank well 1 of a fast neutron nuclear reactor comprising at its upper part an anchoring device 2 of a support shell 4 whose diameter corresponds to the inside diameter of the tank well and to the outside diameter of slab 3.

Ainsi qu'il est visible sur les fig. 1 et 2, la dalle comporte une virole externe 5 de même diamètre que la virole de support 4 sur laquelle elle est fixée par soudure et une virole interne 7 coaxiale à la virole 5. Ces viroles 5 et 7 sont reliées par soudure à une semelle supérieure annulaire 8 et à une semelle inférieure annulaire 9, l'ensemble des viroles 5 et 7 et des semelles 8 et 9 constituant l'enveloppe de la dalle.As can be seen in FIGS. 1 and 2, the slab comprises an outer ferrule 5 of the same diameter as the support ferrule 4 on which it is fixed by welding and an internal ferrule 7 coaxial with the ferrule 5. These ferrules 5 and 7 are connected by welding to a sole upper annular 8 and a lower annular sole 9, all of the ferrules 5 and 7 and the soles 8 and 9 constituting the envelope of the slab.

Les viroles cylindriques et les semelles sont également reliées entre elles par des raidisseurs verticaux 10 de direction radiale.The cylindrical ferrules and the flanges are also connected to each other by vertical stiffeners 10 in the radial direction.

Le volume interne de l'enveloppe est rempli par du béton 14 à l'exception d'espaces verticaux cylindriques 12 ménagés grâce à des fourreaux cylindriques 15 à l'intérieur de l'enveloppe de la dalle. Ces espaces cylindriques 12 traversant toute l'épaisseur de la dalle permettent le passage des composants du réacteur nucléaire plongeant dans la cuve, tels que les pompes ou les échangeurs intermédiaires. Les fourreaux 15 sont reliés par soudure aux semelles 8 et 9 qui comportent des ouvertures circulaires correspondant à ces fourreaux et à la virole externe 5, par l'intermédiaire de raidisseurs verticaux de direction radiale 11.The internal volume of the envelope is filled with concrete 14 with the exception of vertical cylindrical spaces 12 formed by cylindrical sleeves 15 inside the envelope of the slab. These cylindrical spaces 12 crossing the entire thickness of the slab allow the passage of the components of the nuclear reactor immersed in the tank, such as pumps or intermediate exchangers. The sleeves 15 are connected by welding to the flanges 8 and 9 which have circular openings corresponding to these sleeves and to the outer shell 5, by means of vertical stiffeners of radial direction 11.

L'ensemble des raidisseurs 10, des fourreaux 15 et des raidisseurs 11 assure le raidissement de l'enveloppe de la dalle.The set of stiffeners 10, sleeves 15 and stiffeners 11 ensures the stiffening of the envelope of the slab.

On voit que le volume interne de cette dalle est fortement morcelé et que le béton 14 ne peut ainsi constituer une structure résistante sur toute la périphérie de la dalle.It can be seen that the internal volume of this slab is highly fragmented and that the concrete 14 cannot thus constitute a resistant structure over the entire periphery of the slab.

D'autre part, les tubes de refroidissement 6 des fourreaux 15 et de la semelle inférieure 9 doivent traverser de nombreux raidisseurs verticaux lors de leur parcours.On the other hand, the cooling tubes 6 of the sleeves 15 and of the lower flange 9 must pass through numerous vertical stiffeners during their journey.

La cuve principale 16 et la cuve de sécurité 17 du réacteur sont constitué par une virole cylindrique de grand diamètre dont la partie supérieure visible sur la fig. 1 est fixée à l'intérieur de la dalle pour la suspension de ces cuves et par un fond bombé comportant plusieurs éléments de forme sphérique.The main tank 16 and the safety tank 17 of the reactor are constituted by a cylindrical shell of large diameter whose upper part visible in FIG. 1 is fixed inside the slab for the suspension of these tanks and by a curved bottom comprising several elements of spherical shape.

La partie inférieure de la virole cylindrique et les fonds bombés des cuves n'ont pas été représentés sur la fig. 1 à l'intérieur du puits de cuve.The lower part of the cylindrical shell and the domed bottoms of the tanks have not been shown in FIG. 1 inside the tank well.

Sur la fig. 3 on voit une dalle selon l'invention 20 reposant sur la partie supérieure du puits de cuve 21.In fig. 3 shows a slab according to the invention 20 resting on the upper part of the tank well 21.

Ainsi qu'il est visible sur les fig. 3 et 4, cette dalle 20 comporte une enveloppe constituée par une virole externe 25 et une virole interne 27 coaxiales, une semelle supérieure 28 et une semelle inférieure 29. Des fourreaux de passage des composants 24 sont disposés à l'intérieur de cette enveloppe au niveau d'ouvertures 22 prévues dans les semelles supérieure et inférieure de l'enveloppe.As can be seen in FIGS. 3 and 4, this slab 20 comprises an envelope constituted by an outer ferrule 25 and an inner ferrule 27 coaxial, an upper sole 28 and a lower sole 29. Sheaths for the passage of the components 24 are disposed inside this envelope at the level of openings 22 provided in the upper and lower soles of the envelope.

L'ensemble de raidissement de l'enveloppe est constitué par une simple virole tronconique 30 coaxiale aux viroles 25 et 27.The stiffening assembly of the envelope is constituted by a simple frustoconical ferrule 30 coaxial with the ferrules 25 and 27.

La virole tronconique 30 est reliée par soudure le long de sa petite base à la virole cylindrique interne 27, au voisinage de la partie supérieure de la dalle. La virole 30 est également reliée par soudure le long de sa grande base à la virole externe 25, au voisinage de la partie inférieure de la dalle.The frustoconical shell 30 is connected by welding along its small base to the internal cylindrical shell 27, in the vicinity of the upper part of the slab. The ferrule 30 is also connected by welding along its large base to the outer ferrule 25, in the vicinity of the lower part of the slab.

La virole 30 est percée d'ouvertures permettant le passage des fourreaux 24 et soudée à ces fourreaux 24 suivant le contour de ces ouvertures.The ferrule 30 is pierced with openings allowing the passage of the sleeves 24 and welded to these sleeves 24 along the outline of these openings.

La virole tronconique 30 sépare le volume interne de l'enveloppe de la dalle en deux parties superposées, l'une se trouvant en dessous de la virole 30 et l'autre au-dessus de cette virole. La partie située en dessous de la virole 30 est remplie par du béton de protection radiologique 34 grâce à des ouvertures de remplissage traversant la virole 30.The frustoconical ferrule 30 separates the internal volume of the envelope of the slab into two superimposed parts, one located below the ferrule 30 and the other above this ferrule. The part situated below the shell 30 is filled with radiological protection concrete 34 thanks to filling openings passing through the shell 30.

La partie supérieure du volume interne de l'enveloppe, au-dessus de la virole tronconique 30, est remplie par du béton incorporant des armatures métalliques 33 disposées en particulier suivant des parcours concentriques dans tout le volume interne de la dalle. De cette façon, le béton armé remplissant cette partie de la dalle participe de façon importante à la résistance de celle-ci.The upper part of the internal volume of the envelope, above the frustoconical shell 30, is filled with concrete incorporating metal reinforcements 33 arranged in particular along concentric paths throughout the internal volume of the slab. In this way, the reinforced concrete filling this part of the slab plays an important role in the resistance of the latter.

La virole externe 25 est renforcée à sa partie inférieure 35 où se raccorde la grande base de la virole tronconique 30.The outer shell 25 is reinforced at its lower part 35 where the large base of the frustoconical shell 30 is connected.

Sur la surface extérieure de cette partie renforcée de la virole 25 est fixée une structure de support 37 constituée par une ceinture annulaire à section carrée. Cette structure annulaire 37 est constituée par une enveloppe en acier soudée sur la virole externe 25 dans sa partie renforcée, remplie de béton. La structure de support 37 repose sur un appui glissant 38 porté par la partie supérieure du puits de cuve 21.On the outer surface of this reinforced part of the shell 25 is fixed a support structure 37 constituted by an annular belt with a square section. This annular structure 37 consists of a steel casing welded to the outer ring 25 in its reinforced part, filled with concrete. The support structure 37 rests on a sliding support 38 carried by the upper part of the tank well 21.

La cuve principale 40 et la cuve de sécurité 39 sont fixées par leur partie supérieure sur la virole tronconique 30, si bien qu'elles sont suspendues sous la dalle 20.The main tank 40 and the safety tank 39 are fixed by their upper part to the frustoconical shell 30, so that they are suspended under the slab 20.

Lorsque la dalle est chargée à sa partie centrale, dans le puits ménagé par la virole 27 où l'on dispose le grand bouchon tournant, la charge due à ce bouchon tournant et aux dispositifs de manutention des assemblages combustibles qu'il supporte, la répartition des contraintes dans la dalle est très différente de la répartition dans le cas d'une dalle selon l'art antérieur telle que représentée sur la fig. 1. En effet, le poids du grand bouchon tournant et des composants portés par la dalle se traduit par des forces de compression s'exerçant sur la semelle supérieure de la dalle et sur la partie supérieure de la virole tronconique alors que les forces de traction s'exerçant sur la partie inférieure de la virole tronconique sont reprises par la partie renforcée de la virole externe 25 et par la structure d'appui 37.When the slab is loaded at its central part, in the well formed by the ferrule 27 where the large rotating plug is placed, the load due to this rotating plug and to the devices for handling the fuel assemblies that it supports, the distribution stresses in the slab is very different from the distribution in the case of a slab according to the prior art as shown in FIG. 1. Indeed, the weight of the large rotating plug and of the components carried by the slab translates into compression forces exerted on the upper sole of the slab and on the upper part of the frustoconical shell whereas the traction forces acting on the lower part of the frustoconical shell are taken up by the reinforced part of the external shell 25 and by the support structure 37.

D'autre part, les forces de traction s'exerçant sur la semelle inférieure de la dalle sont de très faible amplitude.On the other hand, the traction forces exerted on the lower sole of the slab are of very low amplitude.

La partie de la dalle se trouvant en dessous de la virole tronconique 30 subit des contraintes très faibles et dans cette zone le volume interne de l'enveloppe de la dalle est rempli par du béton de protection radiologique.The part of the slab located below the frustoconical shell 30 undergoes very low stresses and in this zone the internal volume of the envelope of the slab is filled with radiological protective concrete.

En revanche, la partie du volume interne de l'enveloppe de la dalle située au-dessus de la virole tronconique 30 est remplie par du béton incorporant des armatures métalliques disposées en particulier de façon concentrique dans la dalle.On the other hand, the part of the internal volume of the envelope of the slab situated above the frusto-conical shell 30 is filled with concrete incorporating metal reinforcements arranged in particular concentrically in the slab.

Ce béton armé assure la tenue mécanique de la dalle en même temps que les viroles, les semelles, les fourreaux et la virole tronconique servant de raidisseur.This reinforced concrete ensures the mechanical strength of the slab at the same time as the ferrules, the soles, the sheaths and the frustoconical ferrule serving as a stiffener.

Il est donc possible de diminuer l'épaisseur des éléments métalliques constituant l'enveloppe de la dalle et en particulier de diminuer l'épaisseur de la semelle inférieure qui ne subit que des contraintes de faible amplitude.It is therefore possible to reduce the thickness of the metal elements constituting the envelope of the slab and in particular to reduce the thickness of the lower sole which is only subjected to stresses of small amplitude.

La virole tronconique 30 qui est noyée dans le béton de protection ne peut pas se déformer par flambage si bien qu'il est possible d'utiliser pour sa fabrication une tôle d'épaisseur modérée et qu'on peut éviter de la renforcer.The frustoconical shell 30 which is embedded in the protective concrete cannot be deformed by buckling so that it is possible to use for its manufacture a sheet of moderate thickness and which can be avoided to reinforce it.

Le fait de renforcer la virole externe 25 dans sa. partie inférieure et d'entourer cette virole par la structure d'appui 37 permet de reprendre les efforts radiaux et d'avoir la ligne neutre des déformations de la dalle le plus près possible des appuis.Reinforcing the outer shell 25 in its. lower part and surround this ferrule by the support structure 37 allows to take up the radial forces and to have the neutral line of the deformations of the slab as close as possible to the supports.

Enfin, le fait de souder les fourreaux 24 à la virole tronconique 30, celle-ci étant elle-même fixée sur les viroies externe et interne 25 et 27, permet de reprendre une partie des efforts de cisaillement.Finally, the fact of welding the sleeves 24 to the frusto-conical ferrule 30, the latter being itself fixed to the external and internal viroies 25 and 27, makes it possible to take up part of the shearing forces.

Les principaux avantages de la dalle suivant l'invention sont de permettre d'obtenir une grande résistance mécanique et une grande rigidité de celle-ci avec une structure beaucoup plus simple, plus facile à réaliser et d'un poids moins important.The main advantages of the slab according to the invention are that it makes it possible to obtain great mechanical strength and great rigidity thereof with a much simpler structure, easier to produce and of less weight.

D'autre part, la nouvelle structure de la dalle suivant l'invention permet de faire reposer celle-ci sur la partie supérieure du puits de cuve et d'éviter de la relier à une virole de support solidaire du puits de cuve, par une soudure exposée à la chaleur du fluide primaire.On the other hand, the new structure of the slab according to the invention makes it possible to rest it on the upper part of the tank well and to avoid connecting it to a support ferrule secured to the tank well, by a solder exposed to the heat of the primary fluid.

Une partie du béton de remplissage de la dalle participe à l'obtention d'une bonne résistance mécanique et d'une grande rigidité de celle-ci.Part of the concrete filling the slab contributes to obtaining good mechanical strength and great rigidity thereof.

Le fait d'éviter l'utilisation de raidisseurs verticaux de direction radiale sur toute la hauteur de la dalle permet de disposer les tubes de refroidissement de la semelle inférieure et des fourreaux de passage des composants facilement, sans avoir à prévoir des perforations dans les raidisseurs.The fact of avoiding the use of vertical stiffeners of radial direction over the entire height of the slab makes it possible to arrange the cooling tubes of the lower flange and of the sheaths for passage of the components easily, without having to provide for perforations in the stiffeners .

L'invention ne se limite pas au mode de réalisation qui vient d'être décrit; c'est ainsi que la virole tronconique peut être soudée à ses extrémités sur les semelles supérieure et inférieure au lieu d'être soudée sur les viroles externe et interne.The invention is not limited to the embodiment which has just been described; this is how the frusto-conical shell can be welded at its ends on the upper and lower flanges instead of being welded on the external and internal ferrules.

La virole tronconique peut être soudée à l'une de ses extrémités sur l'une des semelles et à son autre extrémité sur l'une des viroles.The frustoconical ferrule can be welded at one of its ends on one of the flanges and at its other end on one of the ferrules.

Il est également possible d'utiliser à la place d'une virole tronconique unique un ensemble constitué par au moins deux viroles tronconiques coaxiales séparées par une distance constante soudées aux viroles ou aux semelles.It is also possible to use, in place of a single frusto-conical ferrule, a set consisting of at least two coaxial frusto-conical ferrules separated by a constant distance welded to the ferrules or to the flanges.

On peut également imaginer un ensemble raidisseur constitué par au moins deux viroles tronconiques coaxiales et séparées par une distance constante c'est-à-dire ayant un même angle au sommet, et reliées entre elles par des entretoises. On peut également imaginer une ou plusieursviro- les tronconiques comportant des renforts pour éviter leur flambage, bien que le béton entourant ces viroles de raidissement en empêche pratiquement la déformation.One can also imagine a stiffener assembly consisting of at least two coaxial frustoconical ferrules and separated by a constant distance, that is to say having the same angle at the top, and connected together by spacers. One can also imagine one or more frusto-conical rotors having reinforcements to prevent their buckling, although the concrete surrounding these stiffening ferrules practically prevents their deformation.

Enfin, la dalle suivant l'invention s'applique à tous les réacteurs nucléaires à neutrons rapides comportant une dalle annulaire dont la partie centrale supporte un ensemble pesant tel qu'un bouchon tournant de manutention des assemblages combustibles.Finally, the slab according to the invention applies to all fast neutron nuclear reactors comprising an annular slab whose central part supports a heavy assembly such as a rotating plug for handling fuel assemblies.

Claims (8)

1. Annular closure slab for the vessel of a fast- neutron nuclear reactor the concrete structure of which incorporates a cylindrical vessel well (21) with a vertical axis on the upper part of which rests horizontally the slab (20) consisting of a composite structure made of steel and concrete which itself carries the vessel (40) suspended from its lower part and which comprises an annular enclosure consisting of two coaxial cylindrical shells (25, 27) and two annular sole-plates (28, 29) joined together directly and through the inter- mediacy of a stiffening assembly, filled with concrete except for cylindrical spaces (24) with axes parallel to the axis of the shells (25, 27) and passing through the slab (20) over its entire thickness, for the passage of the reactor components immersed in the vessel (40), characterised in that it comprises, inside the enclosure, as a stiffening member, at least one frustoconical shell (30) coaxial with the shells (25, 27) bounding the slab (20) and connected by welding to the enclosure along its small base, in the vicinity of the upper part of this enclosure and along its large base, in the vicinity of the lower part of the latter, pierced with openings (22) for the passage of the components and dividing the inner volume of the casing into two superposed parts.
2. Closure slab according to Claim 1, characterised in that the upper part of the enclosure above the frustoconical shell (30) is filled with concrete incorporating metal strengthening frames (33) and forming a continuous strong structure over the whole periphery of the slab (20).
3. Closure slab according to either of Claims 1 and 2, characterised in that the frustoconical shell (30) is fixed at its lower part on the lower surface of the outer shell (25) of the enclosure, in a part (35) of the latter which is strengthened and surrounded externally by a strengthening and supporting structure (37) enabling the slab (20) to rest on the upper part of the vessel well (21).
4. Closure slab according to any one of Claims 1, 2 and 3, modified in that the stiffening member (30) consists of at least two frustoconical shells with the same angle which are arranged coaxially with a constant spacing.
5. Closure slab according to Claim 4, characterised in that braces or reinforcements are arranged between the frustoconical shells.
6. Closure slab according to any one of Claims 1, 2 and 3, characterised in that the frustoconical shell (30) is welded at its lower end to the outer shell (25) of the enclosure and at its upper end to the inner shell (27) of the latter.
7. Closure slab according to any one of Claims 1, 2 and 3, characterised in that the frustoconical shell (30) is welded at its lower end to the lower sole plate (20) and at its upper end to the upper sole plate (28) of the enclosure.
8. Closure slab according to any one of Claims 1, 2 and 3, characterised in that the frustoconical shell is welded at one of its ends to one of the cylindrical shells (25, 27) of the enclosure and at its other end to one of the sole plates (28, 29) of this enclosure.
EP83400712A 1982-04-08 1983-04-08 Annular closure slab for a fast neutron nuclear reactor vessel Expired EP0092461B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8206125 1982-04-08
FR8206125A FR2525016A1 (en) 1982-04-08 1982-04-08 ANNULAR CLOSURE SLAB OF THE TANK OF A NUCLEAR NEUTRON REACTOR

Publications (2)

Publication Number Publication Date
EP0092461A1 EP0092461A1 (en) 1983-10-26
EP0092461B1 true EP0092461B1 (en) 1985-08-14

Family

ID=9272883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400712A Expired EP0092461B1 (en) 1982-04-08 1983-04-08 Annular closure slab for a fast neutron nuclear reactor vessel

Country Status (5)

Country Link
US (1) US4534140A (en)
EP (1) EP0092461B1 (en)
JP (1) JPS58187893A (en)
DE (1) DE3360554D1 (en)
FR (1) FR2525016A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1172947B (en) * 1983-12-20 1987-06-18 Nira Spa NUT CAP OF A FAST NUCLEAR REACTOR INTEGRATED INTO THE SMALL ROTATING CAP OF THE SAME
US5754612A (en) * 1995-04-24 1998-05-19 General Electric Company Joint for interfacing steel head closure and prestressed concrete reactor vessel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1364660A (en) * 1963-05-08 1964-06-26 Commissariat Energie Atomique Prestressed concrete box
AT282888B (en) * 1964-03-06 1970-07-10 Siemens Ag Process for the production of a pressure vessel for pressurized water-cooled nuclear reactors from prestressed concrete
GB1106078A (en) * 1964-06-17 1968-03-13 Atomic Energy Authority Uk Improvements in or relating to prestressed concrete pressure vessels
GB1184456A (en) * 1967-05-18 1970-03-18 Lionel Bellamy Improved System of Building Construction and Precast Blocks for the same
FR1536347A (en) * 1967-07-03 1968-08-10 Commissariat Energie Atomique Prestressed concrete casing for nuclear reactor
US3568379A (en) * 1967-12-11 1971-03-09 Atomenergi Ab Prestressed concrete pressure vessel
GB1161670A (en) * 1968-07-17 1969-08-20 Rolls Royce Improvements in or relating to Pressure Vessels

Also Published As

Publication number Publication date
EP0092461A1 (en) 1983-10-26
JPS58187893A (en) 1983-11-02
DE3360554D1 (en) 1985-09-19
FR2525016B1 (en) 1984-07-27
FR2525016A1 (en) 1983-10-14
US4534140A (en) 1985-08-13

Similar Documents

Publication Publication Date Title
US4767593A (en) Multiple shell pressure vessel
EP0092461B1 (en) Annular closure slab for a fast neutron nuclear reactor vessel
EP0055963B1 (en) Liquid metal cooled nuclear reactor comprising a main vessel cooled at the bottom
EP0126674B1 (en) Closure for the vessel of a fast breeder reactor
EP0049197B1 (en) Device for the heat insulation of the upper region of the ring-shaped space between the main container and the safety container of a nuclear reactor
EP0018262B1 (en) Fast neutron nuclear reactor with an internal cylindrical vessel
EP0117191A1 (en) Steam generator for a liquid metal-cooled nuclear reactor
EP0258131B1 (en) Emergency cooling arrangement for fast neutron reactor
EP0156689B1 (en) Fast nuclear reactor with suspended main vessel and lid
EP0048672A1 (en) Nuclear reactor with integrated heat exchangers
EP0095428B1 (en) Cooling device using gas for the vessel cover of a nuclear reactor
FR2589615A1 (en) NUCLEAR REACTOR INSTALLATION WITH REAR-SUPPORTED REACTOR TANK
EP0091872B1 (en) Liquid metal coolant collecting and separating device in a fast neutrons nuclear reactor
EP0064920B1 (en) Apparatus for steam generation and heat exchange in a fast breeder reactor
EP0246143B1 (en) Support device of a discharge chamber associated with a suspended pump of a nuclear reactor
EP0065912B1 (en) Inner vessel for fast breeder reactors
EP0090743B1 (en) Protection device against heat and radiation for an intermediate heat exchanger immersed inside the vessel of a nuclear reactor
EP0144256B1 (en) Thermal protection device for a fast neutrons nuclear reactor component
FR2680597A1 (en) Internal structure of a fast neutron nuclear reactor
EP0119125B1 (en) Vessel of a fast breeder reactor
FR2724754A1 (en) Transport and storage of reactor internals on removal from PWR
EP0128801B1 (en) Structure supporting device on a supporting socle
FR2524685A1 (en) Core support for fast neutron nuclear reactor - using circular rows of vertical tubes producing support with low overall height and reduced wt.
FR2563040A1 (en) CAP-COVER OF THE HEART OF A NUCLEAR REACTOR
FR2542909A1 (en) NUCLEAR REACTOR WITH INTEGRATED FAST NEUTRONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19831025

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 3360554

Country of ref document: DE

Date of ref document: 19850919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870430

Year of fee payment: 5

BERE Be: lapsed

Owner name: NOVATOME

Effective date: 19880430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890430