EP0089662B1 - Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load - Google Patents

Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load Download PDF

Info

Publication number
EP0089662B1
EP0089662B1 EP83102780A EP83102780A EP0089662B1 EP 0089662 B1 EP0089662 B1 EP 0089662B1 EP 83102780 A EP83102780 A EP 83102780A EP 83102780 A EP83102780 A EP 83102780A EP 0089662 B1 EP0089662 B1 EP 0089662B1
Authority
EP
European Patent Office
Prior art keywords
load
acceleration
load carrier
movement
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83102780A
Other languages
German (de)
French (fr)
Other versions
EP0089662A1 (en
Inventor
Hans Tax
Herbert Dipl. Ing. Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VULKAN KOCKS GESELLSCHAFT MIT BESCHRAENKTER HAFTUN
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Publication of EP0089662A1 publication Critical patent/EP0089662A1/en
Application granted granted Critical
Publication of EP0089662B1 publication Critical patent/EP0089662B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • the invention relates to a method for automatically controlling the movement of the load carrier of a hoist with calming of the oscillation of the load occurring during acceleration or deceleration of the load hanging on the load carrier during an acceleration or deceleration time interval, using a signal transmitter for emitting load carrier movement control signals for movement control of a load carrier traversing motor, the signal profile corresponding to a cosine-shaped load carrier acceleration profile symmetrical with the center of the interval with constant basic acceleration.
  • a method of this type known from FR-A-2 399 378 is concerned with the special case of pendulum calming with constant tensile force. From the cited document it can be seen that the pendulum period and thus also the load carrier acceleration is dependent on the mass ratio. When the load mass changes, a new pendulum period and thus a new load carrier acceleration curve must be determined.
  • DE-B-1 2 09 266 is concerned with how a load that has already started to oscillate can be braked and calmed down. This is achieved by waiting for the moment of maximum pendulum deflection and then carrying out a cosine-shaped load carrier acceleration or deceleration. This document does not provide any information on how to prevent the load from swinging when accelerating or braking.
  • the invention is based on the object of specifying a formula for the load carrier acceleration and for the pendulum period which is independent of the mass ratio for a method of the type mentioned at the outset.
  • the period can therefore be chosen to be larger or smaller than the period in the previously known special case; in the case of shorter acceleration times, there is a correspondingly increased maximum value of the tensile force, namely in the middle of the period; the trolley motor must therefore be designed stronger.
  • the signal curve generated by the signal transmitter is the same in each case. This measure considerably simplifies the method, since a single acceleration curve with a single period is now used for braking or accelerating practically any load mass.
  • the load carrier is referred to as a cat, which explains the index K.
  • other load carriers are also possible, such as. B. Outrigger.
  • the index L denotes the load hanging on the cat on a rope or the like.
  • the parameter denoted by b L in FIG. 1A is therefore the load acceleration.
  • FIG. 1B shows the speed v K and V L of the cat and the load during the time interval T.
  • FIG. 1C the respective currently traveled horizontal path s K and S L of the cat and the load, respectively specified.
  • Fig. 1 D one can see the time course of the traction force P to be used by the trolley motor to accelerate the cat and load
  • V N is the difference between the speeds after and before acceleration or deceleration
  • L stands for the pendulum length, g for the acceleration due to gravity and n for an integer with the values 1, 2, 3 .... etc
  • T o is the period (natural oscillation time of the pendulum) for which the following relationship applies:
  • the cat speed can be determined from the expression for the cat acceleration b k by integration as follows:
  • a load 10 can be seen, which hangs on a trolley 14 via a suspension cable 12 of length L. This can be moved along a horizontal rail 16, wherein it is driven by an electric traction motor 18.
  • the traction motor 18 is driven by a controllable energy supply 20, to which it is connected via lines 22 indicated by dash-dotted lines.
  • the energy supply 20 is controlled by a signal generator 24, to which it is connected via control lines 26.
  • the signal generator 24 specifies the trolley acceleration signal b K shown in FIG. 1A, whereupon the energy supply 20 supplies the traction motor 18 with electrical energy such that it accelerates the trolley 14 accordingly. Since such a traction motor control system often uses an actual position value (e.g.
  • the motion control of the trolley can also be based on the speed profile v K according to FIG. 1 B or the travel path s K according to FIG. 1C. Since the pendulum movement is, to a first approximation, independent of the load mass m, the same desired movement curve (b K or v K or SK ) can generally be specified for the different load masses that occur. If the load mass is known, there is also the possibility of controlling the tractive force P (ie total force minus the forces to be overcome to overcome the driving resistances) of the traction motor 18 according to the assigned curve (FIG. 1D).
  • P total force minus the forces to be overcome to overcome the driving resistances
  • the acceleration curve with the shortest time interval T 1 is denoted by b K1 , the next one with the time interval T 2 by b K2 etc. to b K6 .
  • a special case is the curve b K4 with a horizontal course, which results when
  • the load acceleration increases from zero to a maximum value in the middle of the period, which, after multiplication with the load mass m L generally exceeding the cat mass m K , leads to a correspondingly high traction contribution in the middle of the period.
  • the portion of the tensile force originating from the cat is correspondingly reduced by appropriate selection of the cat acceleration b K and, in the example shown, is even reversed.
  • acceleration curve b K could be selected from the assigned family of curves which leads to constant traction P 0 , which in turn leads to particularly smooth running of the cat would result.
  • the acceleration curve b K can also be kept unchanged in many cases, which then leads to this. that the tensile force P drops towards the middle of the period. This is shown in Fig. 1D with a dash-dotted line, in the event that the load mass m K is only about 410 kg.
  • the period T 0 also decreases according to equation B: the amplitude of the cat acceleration b K increases accordingly.
  • a step-by-step course of the control of the drive motor 18 can also be used as is indicated by the curve b K7 in FIG. 2B.

Description

Die Erfindung betrifft ein Verfahren zur selbsttätigen Steuerung der Bewegung des Lastträgers eines Hebezeugs mit Beruhigung des beim Beschleunigen oder Abbremsen der am Lastträger hängenden Last auftretenden Pendelns der Last während eines Beschleunigungs- bzw. Abbremszeitintervalls, unter Verwendung eines Signalgebers zur Abgabe von Lastträger-Bewegungssteuersignalen zur Bewegungssteuerung eines Lastträger-Verfahrmotors, wobei der Signalverlauf einem zur Intervallmitte symmetrischen, kosinusförmigem Lastträger-Beschleunigungsverlauf mit konstanter Grundbeschleunigung entspricht.The invention relates to a method for automatically controlling the movement of the load carrier of a hoist with calming of the oscillation of the load occurring during acceleration or deceleration of the load hanging on the load carrier during an acceleration or deceleration time interval, using a signal transmitter for emitting load carrier movement control signals for movement control of a load carrier traversing motor, the signal profile corresponding to a cosine-shaped load carrier acceleration profile symmetrical with the center of the interval with constant basic acceleration.

Ein aus der FR-A-2 399 378 bekanntes Verfahren dieser Art befaßt sich mit dem Spezialfall der Pendelberuhigung bei konstanter Zugkraft. Der genannten Druckschrift ist zu entnehmen, daß die Pendelperiode und damit auch die Lastträger-Beschleunigung vom Massenverhältnis abhängig ist. Bei einer Änderung der Lastmasse muß folglich eine neue Pendelperiode und damit ein neuer Lastträger- - Beschleunigungsverlauf bestimmt werden.A method of this type known from FR-A-2 399 378 is concerned with the special case of pendulum calming with constant tensile force. From the cited document it can be seen that the pendulum period and thus also the load carrier acceleration is dependent on the mass ratio. When the load mass changes, a new pendulum period and thus a new load carrier acceleration curve must be determined.

Die DE-B-1 2 09 266 befaßt sich damit, wie eine bereits in Pendelbewegung geratene Last abgebremst und beruhigt werden kann. Dies wird dadurch erreicht, daß der Moment maximaler Pendelauslenkung abgewartet wird und dann eine kosinusförmige Lastträger-Beschleunigung bzw. -Abbremsung vorgenommen wird. Ein Hinweis darauf, wie ein Pendeln der Last bei der Beschleunigung bzw. Abbremsung von vorneherein vermieden wird, ist dieser Druckschrift nicht zu entnehmen.DE-B-1 2 09 266 is concerned with how a load that has already started to oscillate can be braked and calmed down. This is achieved by waiting for the moment of maximum pendulum deflection and then carrying out a cosine-shaped load carrier acceleration or deceleration. This document does not provide any information on how to prevent the load from swinging when accelerating or braking.

Der Erfindung liegt die Aufgabe zugrunde, für ein Verfahren der eingangs genannten Art eine vom Massenverhältnis unabhängige Formel für die Lastträger-Beschleunigung sowie für die Pendelperiode anzugeben.The invention is based on the object of specifying a formula for the load carrier acceleration and for the pendulum period which is independent of the mass ratio for a method of the type mentioned at the outset.

Zur Lösung dieser Aufgabe wird vorgeschlagen, daß für den Lastträger-Beschleunigungsverlauf bK die Beziehung gilt :

Figure imgb0001
wobei VN die Differenz der Lastgeschwindigkeiten nach und vor dem Beschleunigen bzw. Abbremsen, L die Pendellänge, g die Erdbeschleunigung, n eine ganze Zahl und To die Pendelperiode bezeichnen mit
Figure imgb0002
und wobei der Fall konstanter Zugkraft des Lastträger-Verfahrmotors ausgenommen ist.To solve this problem it is proposed that the relationship applies to the load carrier acceleration curve b K :
Figure imgb0001
where VN is the difference between the load speeds after and before acceleration or deceleration, L the pendulum length, g the gravitational acceleration, n an integer and T o the pendulum period
Figure imgb0002
and the case of constant tensile force of the load carrier traveling motor is excluded.

Gemäß der Erfindung kann also die Periode größer oder auch kleiner als die Periode im vorbekannten Spezialfall gewählt werden ; im Falle kürzerer Beschleunigungszeiten ergibt sich dann ein dementsprechend erhöhter Maximalwert der Zugkraft, und zwar in der Periodenmitte ; der Katzmotor ist dementsprechend stärker auszulegen. In einer Weiterbildung der Erfindung ist vorgesehen, daß bei im wesentlichen konstanter Pendellänge für unterschiedliche Lastmassen der vom Signalgeber erzeugte Signalverlauf jeweils derselbe ist. Diese Maßnahme vereinfacht das Verfahren beträchtlich, da nunmehr eine einzige Beschleunigungskurve mit einer einzigen Periode für das Abbremsen bzw. Beschleunigen praktisch beliebiger Lastmassen eingesetzt wird.According to the invention, the period can therefore be chosen to be larger or smaller than the period in the previously known special case; in the case of shorter acceleration times, there is a correspondingly increased maximum value of the tensile force, namely in the middle of the period; the trolley motor must therefore be designed stronger. In a further development of the invention it is provided that, with a substantially constant pendulum length for different load masses, the signal curve generated by the signal transmitter is the same in each case. This measure considerably simplifies the method, since a single acceleration curve with a single period is now used for braking or accelerating practically any load mass.

Die Erfindung wird im folgenden anhand der Zeichnung an Ausführungsbeispielen erläutert.The invention is explained below with the aid of exemplary embodiments.

Es zeigt :

  • Figur 1A bis 1D den Verlauf der Bewegungsparameter bei konstanter Zugkraft, nämlich
  • Figur 1A die Beschleunigung,
  • Figur 1 B die Geschwindigkeit,
  • Figur 1C den Weg und
  • Figur 1D die Zugkraft ;
  • Figur 2A eine Schar von kosinusförmigen Lastträgerbeschleunigungskurven ;
  • Figur 2B eine stufenförmige Lastträgerbeschleunigungskurve ; und
  • Figur 3 eine stark vereinfachte Ansicht eines Lastträgers mit Last und gesteuertem Fahrmotor.
It shows :
  • Figure 1A to 1D, the course of the movement parameters with constant tensile force, namely
  • 1A shows the acceleration,
  • FIG. 1B the speed,
  • Figure 1C the way and
  • Figure 1D the tensile force;
  • FIG. 2A shows a family of cosine-shaped load carrier acceleration curves;
  • FIG. 2B shows a step-shaped load carrier acceleration curve; and
  • Figure 3 is a greatly simplified view of a load carrier with a load and controlled drive motor.

In den Fig. und 2 ist mit t die Zeit und T bzw. T, bis T6 das Beschleunigungszeitintervall angegeben ; bK ist die Lastträgerbeschleunigung. Im nachfolgend beschriebenen Beispiel wird der Lastträger als Katze bezeichnet, was den Index K erklärt. Es kommen natürlich auch andere Lastträger in Frage, wie z. B. Ausleger. Dementsprechend bezeichnet der Index L die an der Katze an einem Seil oder dergl. hängende Last. Der in Fig. 1A mit bL bezeichnete Parameter ist also die Lastbeschleunigung.In FIGS. 2 and 2, t is the time and T and T to T 6 the acceleration time interval; b K is the load carrier acceleration. In the example described below, the load carrier is referred to as a cat, which explains the index K. Of course, other load carriers are also possible, such as. B. Outrigger. Accordingly, the index L denotes the load hanging on the cat on a rope or the like. The parameter denoted by b L in FIG. 1A is therefore the load acceleration.

Fig. 1B zeigt die Geschwindigkeit vK und VL von Katze und Last während des Zeitintervalls T. In Fig. 1C ist der jeweilige momentan zurückgelegte horizontale Weg sK und SL von Katze bzw. Last angegeben. In Fig. 1 D erkennt man den zeitlichen Verlauf der vom Laufkatzenmotor zur Beschleunigung von Katze und Last aufzuwendenden Zugkraft P.FIG. 1B shows the speed v K and V L of the cat and the load during the time interval T. In FIG. 1C, the respective currently traveled horizontal path s K and S L of the cat and the load, respectively specified. In Fig. 1 D one can see the time course of the traction force P to be used by the trolley motor to accelerate the cat and load

Es läßt sich nachweisen, daß man einen der Beziehung

Figure imgb0003
gehorchenden Verlauf der Lastbeschleunigung (bzw. -verzögerung erhält (C ist eine Konstante), wobei Katze und Last sowohl zum Zeitpunkt t = 0 als auch zum Zeitpunkt
Figure imgb0004
senkrecht übereinanderstehen, wenn für die Katzbeschleunigung bK folgende Beziehung gilt :
Figure imgb0005
It can be shown that one of the relationship
Figure imgb0003
obeying the course of the load acceleration (or deceleration) (C is a constant), the cat and the load both at time t = 0 and at the time
Figure imgb0004
Stand vertically one above the other if the following relationship applies to the cat acceleration b K :
Figure imgb0005

Hierbei ist VN die Differenz der Geschwindigkeiten nach und vor dem Beschleunigen bzw. Abbremsen ; L steht für die Pendellänge, g für die Erdbeschleunigung und n für eine ganze Zahl mit den Werten 1, 2, 3.... usw ; To ist die Periode (Eigenschwingzeit des Pendels), für die folgende Beziehung gilt :

Figure imgb0006
Here V N is the difference between the speeds after and before acceleration or deceleration; L stands for the pendulum length, g for the acceleration due to gravity and n for an integer with the values 1, 2, 3 .... etc; T o is the period (natural oscillation time of the pendulum) for which the following relationship applies:
Figure imgb0006

Hierin ist mit bK (0) der Wert der Katzbeschleunigung zum Zeitpunkt t = 0 bezeichnet, welcher gleich dem Beschleunigungsmaximalwert ist.Herein, b K (0) denotes the value of the cat acceleration at time t = 0, which is equal to the maximum acceleration value.

Aus dem Ausdruck für die Katzbeschleunigung bk läßt sich durch Integration die Katzgeschwindigkeit wie folgt ermitteln :

Figure imgb0007
The cat speed can be determined from the expression for the cat acceleration b k by integration as follows:
Figure imgb0007

Eine weitere Integration ergibt folgende Beziehung für den Katzweg :

Figure imgb0008
Another integration results in the following relationship for the Katzweg:
Figure imgb0008

Um einer Last eine bestimmte Geschwindigkeitsänderung aufzuprägen, ohne daß anschließend die Last weiterpendelt, ist es also lediglich erforderlich, die Bewegung der Katze durch Vorgabe eines der drei Bewegungsparameter bK, vK oder sK (Gleichung A oder C oder D) unter Berücksichtigung der Periode To (Gleichung B) zu steuern.In order to impose a certain speed change on a load without the load then swinging further, it is only necessary to take into account the movement of the cat by specifying one of the three movement parameters b K , v K or s K (equation A or C or D) To control period T o (equation B).

In der schematischen Darstellung gemäß Fig. 3 sind diese Parameter eingetragen. Man erkennt eine Last 10, die über ein Tragseil 12 der Länge L an einer Laufkatze 14 hängt. Diese ist längs einer horizontalen Schiene 16 verfahrbar, wobei sie von einem elektrischen Fahrmotor 18 angetrieben wird. Der Fahrmotor 18 wird von einer steuerbaren Energieversorgung 20 angetrieben, mit der er über strichpunktiert angedeutete Leitungen 22 verbunden ist. Die Energieversorgung 20 wird von einem Signalgeber 24 gesteuert, mit dem sie über Steuerleitungen 26 verbunden ist. Der Signalgeber 24 gibt das in Fig. 1A dargestellte Katzbeschleunigungssignal bK vor, woraufhin die Energieversorgung 20 den Fahrmotor 18 derart elektrische Energie zuführt, daß dieser die Laufkatze 14 entsprechend beschleunigt. Da man bei einer derartigen Fahrmotorsteuerung häufig (z. B. bei den Stellmotoren) von einem Lage-Istwert ausgeht und diesen Lage-Istwert entweder unmittelbar mit einem Lage-Sollwert vergleicht oder nach zeitlicher Differenzierung mit einem Geschwindigkeits-Sollwert vergleicht oder, wie im vorliegendem Falle. nach einer zweiten zeitlichen Differenzierung mit einem Beschleunigungs-Sollwert vergleicht, kann man der Bewegungsregelung der Laufkatze auch den Geschwindigkeitsverlauf vK gemäß Fig. 1 B bzw. den Laufweg sK gemäß Fig. 1C zugrundelegen. Da die Pendelbewegung von der Lastmasse m, in erster Näherung unabhängig ist, kann für die vorkommenden unterschiedlichen Lastmassen in der Regel die gleiche Bewegungssollkurve (bK oder vK oder SK) vorgegeben werden. Bei bekannter Lastmasse besteht darüber hinaus auch die Möglichkeit, die zum Beschleunigen von Katze und Last aufzuwendende Zugkraft P (d. h. Gesamtkraft abzüglich der zur Überwindung der Fahrwiderstände aufzuwendenden Kräfte) des Fahrmotors 18 gemäß der zugeordneten Kurve (Fig. 1D) zu steuern.These parameters are entered in the schematic representation according to FIG. 3. A load 10 can be seen, which hangs on a trolley 14 via a suspension cable 12 of length L. This can be moved along a horizontal rail 16, wherein it is driven by an electric traction motor 18. The traction motor 18 is driven by a controllable energy supply 20, to which it is connected via lines 22 indicated by dash-dotted lines. The energy supply 20 is controlled by a signal generator 24, to which it is connected via control lines 26. The signal generator 24 specifies the trolley acceleration signal b K shown in FIG. 1A, whereupon the energy supply 20 supplies the traction motor 18 with electrical energy such that it accelerates the trolley 14 accordingly. Since such a traction motor control system often uses an actual position value (e.g. for the servomotors) and either compares this actual position value directly with a desired position value or compares it with a desired speed value after time differentiation or, as in the present case Cases. after a second time differentiation with an acceleration target value, the motion control of the trolley can also be based on the speed profile v K according to FIG. 1 B or the travel path s K according to FIG. 1C. Since the pendulum movement is, to a first approximation, independent of the load mass m, the same desired movement curve (b K or v K or SK ) can generally be specified for the different load masses that occur. If the load mass is known, there is also the possibility of controlling the tractive force P (ie total force minus the forces to be overcome to overcome the driving resistances) of the traction motor 18 according to the assigned curve (FIG. 1D).

Fig. 2A zeigt 6 Beschleunigungskurven bK1 bis bK6 aus der einer bestimmten Pendellänge 1 und einer bestimmten Geschwindigkeitsdifferenz v, zugeordneten Kurvenschar mit n = 1. Aus der Anfangsbeschleunigung bK(O) ergibt sich gemäß vorstehender Gleichung B die Periode To sowie gemäß vorstehender Gleichung A der Verlauf der Katzbeschleunigung bK. Man erkennt, daß die Periode To in einem weiten Bereich variiert werden kann und damit das Zeitintervall T = n To (n = 1 in Fig. 2). Die Beschleunigungskurve mit dem kürzesten Zeitintervall T1 ist mit bK1 bezeichnet, die nächstfolgende mit dem Zeitintervall T2 mit bK2 usw. bis bK6. Ein Sonderfall ist die Kurve bK4 mit horizontalem Verlauf, die sich dann ergibt, wenn2A shows 6 acceleration curves b K1 to b K6 from the family of curves assigned to a specific pendulum length 1 and a specific speed difference v with n = 1. From the initial section Acceleration b K (O) gives the period T o according to equation B above and the course of the cat acceleration b K according to equation A above. It can be seen that the period T o can be varied within a wide range and thus the time interval T = n To (n = 1 in FIG. 2). The acceleration curve with the shortest time interval T 1 is denoted by b K1 , the next one with the time interval T 2 by b K2 etc. to b K6 . A special case is the curve b K4 with a horizontal course, which results when

Figure imgb0009
Figure imgb0009

Die Kurven bK5 und bK6 mit negativem Faktor vor der Kosinusfunktion in Gleichung A scheiden im Normalfalle aus, da diese zu einem unerwünschten Spitzenwert der vom Fahrmotor 18 aufzubringenden Zugkraft in der Periodenmitte führen. Für die vom Fahrmotor aufzubringende Beschleunigungs-Zugkraft P gilt nämlich folgende Beziehung :

Figure imgb0010
The curves b K5 and b K6 with a negative factor in front of the cosine function in equation A are normally excluded because they lead to an undesirable peak value of the traction force to be applied by the traction motor 18 in the middle of the period. The following relationship applies to the acceleration / traction force P to be applied by the traction motor:
Figure imgb0010

Wie Fig. 1A zeigt, steigt die Lastbeschleunigung ausgehend von Null auf einen Maximalwert in der Periodenmitte, was nach Multiplikation mit der im allgemeinen die Katzmasse mK übersteigenden Lastmasse mL zu einem entsprechend hohen Zugkraftbeitrag in der Periodenmitte führt. Um eine entsprechende Zugkraftspitze in der Periodenmitte zu vermeiden, wird durch entsprechende Wahl der Katzbeschleunigung bK der von der Katze herrührende Anteil an der Zugkraft entsprechend reduziert und im dargestellten Beispiel sogar auf umgekehrtes Vorzeichen gebracht.As shown in FIG. 1A, the load acceleration increases from zero to a maximum value in the middle of the period, which, after multiplication with the load mass m L generally exceeding the cat mass m K , leads to a correspondingly high traction contribution in the middle of the period. In order to avoid a corresponding tensile force peak in the middle of the period, the portion of the tensile force originating from the cat is correspondingly reduced by appropriate selection of the cat acceleration b K and, in the example shown, is even reversed.

Man kann nun bei gegebenem Massenverhältnis mK : mL gerade diejenige Katzbeschleunigungskurve aus der Kurvenschar auswählen, die zu konstanter Zugkraft P während der gesamten Periode führt. Es läßt sich zeigen, daß die mit Po bezeichnete konstante Zugkraft folgenden Wert annimmt :

Figure imgb0011
With a given mass ratio m K : m L, it is now possible to select the cat acceleration curve from the family of curves that leads to constant traction P during the entire period. It can be shown that the constant tensile force designated P o takes the following value:
Figure imgb0011

Für den Periodenanfangspunkt gilt :

Figure imgb0012
woraus die Anfangsbeschleunigung bK (0) resultiert, die in die Gleichungen A und B einzusetzen ist, woraus sich die Kurvenform bK gemäß Fig.lA ergibt. Den Fig.lA bis 1B liegen folgende Werte zugrunde :

  • L = 24,85 m,
  • bK (0) = 1,22 m/sec2,
  • mL = 1 000 kg,
  • mK = 427 kg,
  • VN = 2 m/sec,
  • n = 1
The following applies to the period start point:
Figure imgb0012
which results in the initial acceleration b K (0), which is to be used in equations A and B, from which the curve shape b K according to FIG. 1A results. The FIGS. 1A to 1B are based on the following values:
  • L = 24.85 m,
  • b K (0) = 1.22 m / sec 2 ,
  • m L = 1 000 kg,
  • m K = 427 kg,
  • V N = 2 m / sec,
  • n = 1

Es ergibt sich eine Schwingungsperiode To von 5,47 sec ; die konstante Zugkraft P0 beträgt 522· 9,81 N. Soll für die vorgegebene Lastmasse von 1 000 kg ein Fahrmotor mit optimal angepaßter maximaler Zugkraft gewählt werden, so ist dies ein Fahrmotor, der für eine Zugkraft von 522 - 9,81 N zuzüglich der zur Überwindung der Fahrwiderstände aufzubringenden Kraft ausgelegt ist. Der Fahrmotor kann dann über die gesamte Beschleunigung bzw. Abbremsstrecke mit im wesentlichen gleichem Antriebsmoment fahren.An oscillation period T o of 5.47 sec results; the constant tractive force P 0 is 522 · 9.81 N. If a traction motor with an optimally adapted maximum tractive force is to be selected for the specified load mass of 1,000 kg, this is a traction motor that also has a tractive force of 522 - 9.81 N. the force to be applied to overcome the driving resistance. The traction motor can then drive with essentially the same drive torque over the entire acceleration or deceleration distance.

Wird nun bei unveränderter Pendellänge L und Katzmasse mK eine geringere Lastmasse mL angehängt, so könnte für dieses neue Massenverhältnis wiederum diejenige Beschleunigungskurve bK aus der zugeordneten Kurvenschar ausgewählt werden, die zu konstanter Zugkraft P0 führt, was wiederum besonders gleichmäßigen Lauf der Katze zur Folge hätte. Der Einfachheit halber kann man jedoch auch in vielen Fällen die Beschleunigungskurve bK unverändert beibehalten, was dann dazu führt. daß die Zugkraft P zur Periodenmitte hin abfällt. Dies ist in Fig. 1D mit einer strichpunktierten Linie dargestellt, für den Fall, daß die Lastmasse mK nurmehr etwa 410 kg beträgt.If, with the pendulum length L and the cat's mass m K unchanged, a lower load mass m L is added, then for this new mass ratio that acceleration curve b K could be selected from the assigned family of curves which leads to constant traction P 0 , which in turn leads to particularly smooth running of the cat would result. For the sake of simplicity, however, the acceleration curve b K can also be kept unchanged in many cases, which then leads to this. that the tensile force P drops towards the middle of the period. This is shown in Fig. 1D with a dash-dotted line, in the event that the load mass m K is only about 410 kg.

Mit abnehmender Pendellänge L nimmt auch die Periode T0 gemäß Gleichung B ab : dementsprechend wächst die Amplitude der Katzbeschleunigung bK. Um weiterhin zu vermeiden, daß die maximale Zugkraft überschritten wird, ist es zweckmäßig, das Beschleunigen bzw. Abbremsen während wenigstens zweier aufeinanderfolgender Perioden vorzunehmen, wobei dann n = 2 in die Gleichungen A und B einzusetzen wäre. Die gesamte Beschleunigungs- oder Verzögerungszeit T ist das n-fache. also das zweifache der Periode To gemäß Gleichung B mit n = 2 bzw. das etwa 1,586-fache der Periode To gemäß Gleichung B mit n = 1.As the pendulum length L decreases, the period T 0 also decreases according to equation B: the amplitude of the cat acceleration b K increases accordingly. In order to further avoid that the maximum tractive force is exceeded, it is expedient to accelerate or brake during at least two successive periods, in which case n = 2 would have to be used in equations A and B. The total acceleration or deceleration time T is n times. thus twice the period T o according to equation B with n = 2 or approximately 1.586 times the period T o according to Equation B with n = 1.

Näherungsweise kann anstelle eines kontinuierlichen Verlaufes der Katzbeschleunigung bK auch ein stufenweiser Verlauf der Steuerung des Fahrmotors 18 zugrundegelegt werden wie dies durch die Kurve bK7 in Fig. 2B angedeutet ist. Man erkennt jeweils 3 Stufen links und rechts von der Intervallmitte T7/2, die zur Intervallmitte hin in gleicher Weise abfallen und zur Intervallmitte symmetrisch sind.Approximately, instead of a continuous course of the cat acceleration b K , a step-by-step course of the control of the drive motor 18 can also be used as is indicated by the curve b K7 in FIG. 2B. One can see 3 steps to the left and right of the center of the interval T 7/2 , which drop in the same way towards the center of the interval and are symmetrical to the center of the interval.

Vorstehend wurde anhand der Fig. 1A bis 1 D zwar lediglich der Anfahrvorgang erläutert, bei dem die Lastgeschwindigkeit vom Werte 0 auf den Wert VN gebracht wird ; es ist jedoch klar, daß der Abbremsvorgang in gleicher Weise vonstatten geht, wobei lediglich die Beschleunigungskurve bK gemäß Fig. 1A jedoch mit umgekehrtem Vorzeichen vom Signalgeber 24 der Motorsteuerung zugrundezulegen ist. Um an einen definierten Lastabladepunkt zu gelangen, muß dementsprechend der Abbremsvorgang in einer Entfernung so von diesem Punkt eingeleitet werden, die der in Fig. 1C eingezeichneten Anfahrbeschleunigungsstrecke so entspricht.1A to 1 D, only the starting process in which the load speed is brought from the value 0 to the value VN was explained above; However, it is clear that the braking process takes place in the same way, only the acceleration curve b K according to FIG. 1A, but with the opposite sign from the signal generator 24, to be used as the basis for the engine control. In order to reach a defined Lastabladepunkt, the braking at a distance s o must be initiated from that point, accordingly, that corresponds to the indicated in Fig. 1C Anfahrbeschleunigungsstrecke s o.

Claims (2)

1. Method for the automatic control of the movement of the load carrier (14) of a hoist with stilling of the oscillation of the load (10) occurring in the acceleration or braking of the load (10) suspended from the load carrier (14), during an acceleration or braking time interval (T), using a signal emitter (24) for the emission of load carrier movement control signals for the control of movement of a load carrier movement motor (18), where the signal course corresponds to a load carrier acceleration course (bK) of cosine form, symmetrical in relation to the middle (T/2) of the interval, with constant basic acceleration, characterised in that the following equation is valid for the load carrier acceleration course (bK) :
Figure imgb0015
wherein : VN signifies the difference of the load speeds after and before the acceleration and braking, L the pendulum length, g gravity, n a whole number and To the pendulum period, with
Figure imgb0016
and wherein the case of constant traction force of the load carrier movement mortor (18) is excepted.
2. Method according to Claim 1. characterised in that in the case of a substantially constant pendulum length (L), for different load masses (mL) the signal course produced by the signal emitter (24) is in each case the same.
EP83102780A 1982-03-22 1983-03-21 Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load Expired EP0089662B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3210450 1982-03-22
DE19823210450 DE3210450A1 (en) 1982-03-22 1982-03-22 DEVICE FOR LIFTING EQUIPMENT FOR THE AUTOMATIC CONTROL OF THE MOVEMENT OF THE LOAD CARRIER WITH CALM OF THE SUSPENSION OF THE LOAD THAT HANGS ON IT

Publications (2)

Publication Number Publication Date
EP0089662A1 EP0089662A1 (en) 1983-09-28
EP0089662B1 true EP0089662B1 (en) 1986-12-30

Family

ID=6158945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102780A Expired EP0089662B1 (en) 1982-03-22 1983-03-21 Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load

Country Status (3)

Country Link
US (1) US4603783A (en)
EP (1) EP0089662B1 (en)
DE (1) DE3210450A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147728A (en) * 1983-02-15 1984-08-24 Komatsu Ltd Automatic palletizing device
DE3513007A1 (en) * 1984-04-11 1985-12-19 Hitachi, Ltd., Tokio/Tokyo Method and arrangement for the automatic control of a crane
FR2571867B1 (en) * 1984-10-11 1987-01-09 Bertin & Cie METHOD AND DEVICE FOR LIMITING THE SWING OF A FREELY SUSPENDED LOAD UNDER A MOBILE SUPPORT.
JPS6241189A (en) * 1985-08-16 1987-02-23 株式会社日立製作所 Crane control system
JPS6317793A (en) * 1986-07-11 1988-01-25 株式会社日立製作所 Control system of crane
DE3842918A1 (en) * 1988-12-21 1990-06-28 Asea Brown Boveri Method of controlling the sequence of movement of a load held in a pendulous manner
US4997095A (en) * 1989-04-20 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Methods of and system for swing damping movement of suspended objects
SE502609C2 (en) * 1990-03-28 1995-11-20 Asea Brown Boveri Moving of goods with container cranes
FR2664885B1 (en) * 1990-07-18 1995-08-04 Caillard METHOD FOR CONTROLLING THE MOVEMENT OF A PENDULUM LOAD AND DEVICE FOR ITS IMPLEMENTATION.
FI91058C (en) * 1991-03-18 1996-01-10 Kci Kone Cranes Int Oy Procedure for controlling a crane
FI91517C (en) * 1992-11-17 1994-07-11 Kimmo Hytoenen Method for controlling a harmonically oscillating load
US5806696A (en) * 1993-02-01 1998-09-15 Hytonen; Kimmo Method and equipment for controlling the operations of a crane
GB2280045A (en) * 1993-07-15 1995-01-18 Daewoo Engineering Company Anti-swing automatic control systems for unmanned overhead cranes
US5443566A (en) * 1994-05-23 1995-08-22 General Electric Company Electronic antisway control
DE19510167C2 (en) * 1995-03-21 1997-04-10 Stahl R Foerdertech Gmbh Suspension with swing damping
US5960969A (en) * 1996-01-26 1999-10-05 Habisohn; Chris Xavier Method for damping load oscillations on a crane
US5908122A (en) * 1996-02-29 1999-06-01 Sandia Corporation Sway control method and system for rotary cranes
US5785191A (en) * 1996-05-15 1998-07-28 Sandia Corporation Operator control systems and methods for swing-free gantry-style cranes
US6050429A (en) * 1996-12-16 2000-04-18 Habisohn; Chris X. Method for inching a crane without load swing
DE19907989B4 (en) * 1998-02-25 2009-03-19 Liebherr-Werk Nenzing Gmbh Method for controlling the path of cranes and device for path-accurate method of a load
DE10029579B4 (en) 2000-06-15 2011-03-24 Hofer, Eberhard P., Prof. Dr. Method for orienting the load in crane installations
US7831333B2 (en) 2006-03-14 2010-11-09 Liebherr-Werk Nenzing Gmbh Method for the automatic transfer of a load hanging at a load rope of a crane or excavator with a load oscillation damping and a trajectory planner
EP1834920B1 (en) 2006-03-15 2010-01-20 Liebherr-Werk Nenzing GmbH Method for automatic handling of a crane load with sway damping and path control
US20090211998A1 (en) * 2008-02-25 2009-08-27 Gm Global Technology Operations, Inc. Intelligent controlled passive braking of a rail mounted cable supported object
KR101144863B1 (en) * 2009-06-09 2012-05-14 최기윤 Method for measuring hoist length for input shaping
US9802793B2 (en) * 2013-01-22 2017-10-31 National Taiwan University Fast crane and operation method for same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1172413B (en) * 1959-10-03 1964-06-18 Demag Ag Equipment on hoists for the automatic electrical control of the movement of the load carrier to calm the load hanging on it
DE1209266B (en) * 1962-06-22 1966-01-20 Bbc Brown Boveri & Cie Control method to bring about the freedom of oscillation of the load in travel drives of trolleys
GB1132967A (en) * 1964-12-08 1968-11-06 Davy And United Instr Ltd Control systems for preventing swinging of suspended loads
US3517830A (en) * 1967-10-10 1970-06-30 Vilkko Antero Virkkala Cranes
NL7014339A (en) * 1970-09-30 1972-04-05
JPS5414389B2 (en) * 1973-04-02 1979-06-06
JPS5322250A (en) * 1976-08-13 1978-03-01 Yaskawa Electric Mfg Co Ltd Rope steady rest con trol system for crane
JPS53111957A (en) * 1977-03-10 1978-09-29 Mitsubishi Heavy Ind Ltd Device for preventing luggage from swinging for turning crane
LU77931A1 (en) * 1977-08-05 1979-05-23 J Casteran METHOD AND DEVICE FOR COMPENSATION OF THE OSCILLATIONS OF THE LOAD OF A CABLE LIFTING MACHINE
DE3005461A1 (en) * 1980-02-14 1981-09-24 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8500 Nürnberg Motor control circuit for crane - uses reference generator taking into account load wt. cable length and angle of swing

Also Published As

Publication number Publication date
DE3210450C2 (en) 1992-09-10
DE3210450A1 (en) 1983-10-13
US4603783A (en) 1986-08-05
EP0089662A1 (en) 1983-09-28

Similar Documents

Publication Publication Date Title
EP0089662B1 (en) Arrangement on cranes for the automatic control of load carrier movements with stabilisation of the oscillations of the suspended load
DE3722738C2 (en)
DE2856538C2 (en) Thyristor converter arrangement
DE3728574C1 (en) Device for regulating the drive torque of a motor vehicle
DE2802091A1 (en) METHOD FOR DAMPING VEHICLE VIBRATIONS OF A MAGNETIC LIFT WITH INDUCTION REPULSION
DE3929497C2 (en)
DE4312949A1 (en) Method for controlling and regulating an electric drive of a vehicle
DE19510786C2 (en) Hoist with undercarriage and low oscillation when braking
DE3714570C2 (en) Control of load swing damping for a suspended crane
EP1010567B1 (en) Method for controlling vehicle cruise speed
DE19510167C2 (en) Suspension with swing damping
DE2055922C3 (en) Method for controlling an elevator for medium to high travel speed and control device for carrying out the method
EP0159284A1 (en) Control method for the drive or brake power of the traction motor of an electric traction vehicle without running axles at the static friction limit of the wheels
DE1438816C3 (en) Cruise control device for electric locomotives
DE2002366B1 (en) Sinusoidal mold movement during continuous casting
DE3924256C2 (en) Method for the suppression of oscillations
DE3001778A1 (en) METHOD AND DEVICE FOR CONTROLLING A POSITION DRIVE
DE2551974C3 (en) Towing cable device for portable devices
DE2641983C2 (en) Method for delaying the start of braking in regulated transport drives and a device for their implementation
DE3228772A1 (en) Device for controlling the speed of an electromagnetically supported vehicle
DE2711718C2 (en) Device for determining a maximum permissible vehicle speed
DE1513641A1 (en) Driving and braking control device with target braking, especially for electric traction vehicles
DE10034455C2 (en) Controlled drive system for driving cats for cranes
DE2825580A1 (en) Gantry crane cable truck equipment - uses linear motors with pole pitches and grooves to suit garland positions
DE2445964A1 (en) CONTROL OF A SPEED

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT NL

17P Request for examination filed

Effective date: 19840307

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRIED. KRUPP GESELLSCHAFT MIT BESCHRAENKTER HAFTUN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930305

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930331

Year of fee payment: 11

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;VULKAN KOCKS GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: VULKAN KOCKS GESELLSCHAFT MIT BESCHRAENKTER HAFTUN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940321

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST