EP1834920B1 - Method for automatic handling of a crane load with sway damping and path control - Google Patents

Method for automatic handling of a crane load with sway damping and path control Download PDF

Info

Publication number
EP1834920B1
EP1834920B1 EP06005296A EP06005296A EP1834920B1 EP 1834920 B1 EP1834920 B1 EP 1834920B1 EP 06005296 A EP06005296 A EP 06005296A EP 06005296 A EP06005296 A EP 06005296A EP 1834920 B1 EP1834920 B1 EP 1834920B1
Authority
EP
European Patent Office
Prior art keywords
load
hand lever
crane
luffing mechanism
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06005296A
Other languages
German (de)
French (fr)
Other versions
EP1834920A1 (en
Inventor
Oliver Sawodny
Alexander Hildebrandt
Jörg Neupert
Klaus Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Nenzing GmbH
Original Assignee
Liebherr Werk Nenzing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Nenzing GmbH filed Critical Liebherr Werk Nenzing GmbH
Priority to DE502006005975T priority Critical patent/DE502006005975D1/en
Priority to EP06005296A priority patent/EP1834920B1/en
Priority to AT06005296T priority patent/ATE455726T1/en
Priority to ES06005296T priority patent/ES2338685T3/en
Publication of EP1834920A1 publication Critical patent/EP1834920A1/en
Application granted granted Critical
Publication of EP1834920B1 publication Critical patent/EP1834920B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the invention relates to a method for handling a load suspended on a load rope of a crane or excavator, comprising a computer-controlled control for damping the load oscillation and a path planner, and more particularly to a method for automatically handling the load.
  • the invention includes load-swing damping in cranes or excavators which permits movement of the load suspended on a rope in at least three degrees of freedom.
  • Such cranes or excavators have a slewing gear, which can be mounted on a chassis, which serves for rotating the crane or excavator.
  • a luffing mechanism for erecting or tilting a boom is available.
  • the crane or excavator includes a hoist for lifting and lowering the load suspended on the rope.
  • Such cranes or excavators are used in various designs. Examples include harbor mobile cranes, ship cranes, offshore cranes, caterpillar cranes and rope excavators.
  • the DE 20 22 745 shows an arrangement for the suppression of pendulum vibrations of a load suspended by means of a rope on the cat of a crane, the drive is equipped with a speed device and a path control device, with a control arrangement, the cat taking into account the oscillation period during a first part of so accelerated and retarded during a last part of this path, that the movement of the cat and the vibration of the load at the destination immediately become zero.
  • the DE 322 83 02 To be able to transport a load body as quickly as possible from the location to the destination, the DE 322 83 02 to control the speed of the drive motor of the trolley by means of a computer so that the trolley and the load carrier are moved during the steady drive at the same speed and the pendulum damping is achieved in the shortest possible time.
  • the from the DE 322 83 02 known computer works according to a computer program to solve the differential equations applicable to the undamped two-mass vibration system formed from trolley and load body, the coulomb and speed-proportional friction of the cat or bridge drives are not taken into account.
  • the DE 691 19 913 deals with a method for controlling the adjustment of a swinging load, in which in a first control loop the deviation between the theoretical and the actual position of the load is formed. This is derived, multiplied by a correction factor and added to the theoretical position of the mobile carrier. In a second control loop, the theoretical position of the mobile carrier is compared with the actual position, multiplied by a constant and added to the theoretical speed of the mobile carrier.
  • the DE 44 02 563 deals with a method for the control of electric traction drives of hoists with a load suspended on a rope, which generates due to the dynamics descriptive equations the desired course of the speed of the trolley and gives to a speed and current regulator. Furthermore, the computing device can be extended by a position controller for the load.
  • the DE 37 10 492 requires at least the cat or bridge position as an additional sensor.
  • a method according to the preamble of claim 1 is known from WO 2004/106215 A1 known.
  • the object of the invention is to provide a method for the implementation of the so-called. Teach-in operation for cranes or excavators, especially mobile harbor cranes.
  • the fully automatic path planner is integrated into an active load swing damping system for a mobile harbor crane.
  • the requirement for the crane operator to repeatedly approach two points in the work space serves as a starting point for the development of fully automatic operation.
  • These two points are defined by the crane operator.
  • one of the two points is set as the target point.
  • the aim is to approach the target point as fast as possible and with exact position and to minimize load oscillation.
  • the target speeds for the lathes and luffing mechanism are specified by the hand lever signals.
  • the crane operator retains control of the mobile harbor crane even in fully automatic operation. Obstacles that are in the workspace can be bypassed, because the load can be moved freely in the entire workspace without being bound to a specific trajectory.
  • the active load oscillation damping ensures, as in the patent application DE 100 64 182 A1 described for minimizing the load oscillation. If it is necessary to leave the working space, the crane operator must press a corresponding key. Through this mode of operation, the so-called teach-in operation, high Achieves handling performance and minimizes the requirements placed on the crane operator. In addition, the crane behaves in fully automatic operation almost as in semi-automatic operation, in which the hand lever signal is used for crane control and the active load oscillation damping ensures the minimization of the load oscillation. Thus, the dynamic behavior of the crane remains predictable and familiar to the crane operator.
  • the control of the crane is supported by secondary vibration damping ( DE 100 64 182 A1 ) realized.
  • the substructures for the luffing and luffing mechanism essentially consist of the trajectory generation, the disturbance observers and the state controllers with precontrol (see FIG. 2 ).
  • both the lever signal ⁇ DZiel and ⁇ ALZiel and the start / end points in the working area are evaluated.
  • modified reference signals for the load speed in the direction of rotation and the radial direction are calculated.
  • target trajectories are generated from the reference signals, which are converted in the axis controllers for luffing gear and luffing gear into the corresponding drive voltages for the hydraulic drives.
  • FIG. 1 shows the two points defined by the crane operator in the working space. This allows the setpoint positions of the load to be separated into the components ⁇ D_destination and r AL_destination .
  • FIG. 2 shows the consideration of these components in the axis controllers for the luffing and luffing gear.
  • the target position set by the crane operator to the right or left is specified as the target point and separated into the components just listed.
  • the basic idea of the fully automatic path planner is the modification of the reduced hand lever signal as a function of the remaining turning range up to the target position ⁇ D_Ziel and the required braking distance. It is accelerated at a deflection of the hand lever by the crane operator first with the deposited in the path planner ramp. If the remaining range of rotation is greater than the angle of rotation required for deceleration, a phase follows in which is driven at a predetermined maximum speed. On the other hand, the acceleration phase directly follows the braking phase, if the rotation range is correspondingly small. As in FIG. 3 shown, the remaining area must first be determined by the difference between the setpoint and actual position. In order to find the right time from which to delay, the required braking distance is included.
  • the reduced hand lever signal ⁇ DZielred is not set to zero until the deceleration time is reached, but is already reduced when approaching this point in time via an adapted look-up table.
  • the direction of rotation is first determined in block "modification hand lever signal " on the basis of the sign of the reduced hand lever signal ⁇ DZielred .
  • the crane is braked even before reaching the actual deceleration time.
  • the difference between position deviation and braking distance is converted via look-up tables to factors between zero and one. If the distance to the deceleration point, which is the angle of rotation from which it must be braked to reach the target angle, is greater than 25 degrees, the reduced hand lever signal is weighted with one and converted into target trajectories in the path planner. Decreases the Distance, the hand lever signal is nonlinear reduced. If the signal diff DW negative, the factor, with which the reduced hand lever signal is weighted, zero and thus the delay time is reached.
  • the state controller for the slewing gear has no position bond, ie, the rotational angle ⁇ D is not returned, a P controller is implemented, which returns the position deviation.
  • the manipulated variable of the P controller is only applied when the destination point is passed over (see FIG. 5 ). It can thus be guaranteed for t ⁇ ⁇ reaching the target angle.
  • the gain of the P controller is determined by a fixed factor P factor weighted by the absolute value of the hand lever signal.
  • the hand lever signal is normalized from -1 to 1. This adjusts the P-controller to the dynamics of the system.
  • the basis for the calculation of the braking distance is the general solution of the state space model of the controlled subsystem slewing gear.
  • the solution of equations of state is divided into two parts, the homogeneous solution and the particulate solution.
  • the particulate solution can be approximated for the slewing gear by the relationship shown in equation (0.1).
  • the first part of the braking distance ⁇ Dbrems 1 is determined by the consideration of the measured
  • the second part of the braking distance ⁇ Dbrems 2 results from the calculation of the homogeneous solution of the controlled subsystem slewing gear.
  • a R is the system matrix of the controlled system.
  • a R 0 1 0 0 0 - 1 T D - b ⁇ k ⁇ 2 - b ⁇ k ⁇ 3 - b ⁇ k ⁇ 4 0 0 0 1 0 a T D + a ⁇ b ⁇ k ⁇ 2 - G l S + a ⁇ b ⁇ k ⁇ 3 a ⁇ b ⁇ k ⁇ 4
  • ⁇ Dhom ⁇ 11 ⁇ ⁇ D + ⁇ 12 ⁇ ⁇ ⁇ D + ⁇ 13 ⁇ ⁇ S ⁇ t + ⁇ 14 ⁇ ⁇ ⁇ S ⁇ t
  • the rotation angle ⁇ D hom is calculated dynamically and understood as an additional component ⁇ Dbrems 2 of the braking distance. Thus, it is possible to generate trajectories that lead to the correct approach of the target point.
  • the pitch angle of the jib ⁇ A is returned for the luffing gear.
  • the approach of the state controller with position binding can guarantee the achievement of the predefined position for t ⁇ ⁇ and the fully automatic path planner becomes considerably simpler (see FIG. 6 ).
  • the reduced hand lever signal ⁇ ALZielred is adapted in the block "Modification hand lever signal " so that the movement of the luffing gear is delayed at the right time to reach the target position.
  • the modified target speed profile of the load in the radial direction generated in fully automatic operation becomes as in FIG. 2 shown converted in the path planner in the target trajectory r ALref .
  • the delay time t delay is obtained by direction-dependent evaluation of the sign of the difference between the deviation from the target radius and the required braking distance (see FIG. 7 ).
  • a so-called creep zone is additionally introduced. In this range, five percent of the maximum speed are given.
  • the time t creep is based on the in FIG. 6 shown parameter d Kriech_WW determined. By adding or subtracting the parameter from the difference of Position deviation and the braking distance is obtained by means of a direction-dependent evaluation of the sign the time t creep .
  • the creep speed t creep serves as a basis for deciding when the reduced hand lever signal is changed from the predetermined maximum speed to five percent of the maximum speed. This gives you the in FIG. 8 schematically illustrated course of the modified hand lever signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

The method involves establishing the work space by selecting two points, fixing one of the two points as the target point through direction specifications by means of a hand lever, and setting the ideal speeds for the rotary and tipper mechanism through the hand lever signals. The ideal position of the load can be divided up into components which are each taken into consideration in the axle regulator for the rotary mechanism or tipper mechanism.

Description

Die Erfindung betrifft ein Verfahren zum Umschlagen von einer an einem Lastseil eines Kranes oder Baggers hängenden Last, der eine computergesteuerte Regelung zur Dämpfung der Lastpendelung und einen Bahnplaner aufweist, und insbesondere ein Verfahren zum automatischen Umschlagen der Last.The invention relates to a method for handling a load suspended on a load rope of a crane or excavator, comprising a computer-controlled control for damping the load oscillation and a path planner, and more particularly to a method for automatically handling the load.

Die Erfindung schließt eine Lastpendeldämpfung bei Kranen oder Baggern ein, die eine Bewegung der an einem Seil aufgehängten Last in mindestens drei Freiheitsgraden zuläßt. Derartige Krane oder Bagger weisen ein Drehwerk, das auf einem Fahrwerk aufgebracht sein kann, auf, welches zum Drehen des Kranes oder Baggers dient. Weiterhin ist ein Wippwerk zum Aufrichten bzw. Neigen eines Auslegers vorhanden. Schließlich umfaßt der Kran oder Bagger ein Hubwerk zum Heben bzw. Senken der an dem Seil aufgehängten Last. Derartige Kräne oder Bagger finden in verschiedenster Ausführung Verwendung. Beispielhaft sind hier Hafenmobilkräne, Schiffskräne, Offshore-Kräne, Raupenkräne bzw. Seilbagger zu nennen.The invention includes load-swing damping in cranes or excavators which permits movement of the load suspended on a rope in at least three degrees of freedom. Such cranes or excavators have a slewing gear, which can be mounted on a chassis, which serves for rotating the crane or excavator. Furthermore, a luffing mechanism for erecting or tilting a boom is available. Finally, the crane or excavator includes a hoist for lifting and lowering the load suspended on the rope. Such cranes or excavators are used in various designs. Examples include harbor mobile cranes, ship cranes, offshore cranes, caterpillar cranes and rope excavators.

Beim Umschlagen einer an einem Seil hängenden Last mittels eines derartigen Kranes oder Baggers entstehen Schwingungen, die einerseits auf die Bewegung des Kranes oder Baggers selbst oder aber auch auf äußere Störeinflüsse, wie beispielsweise Wind zurückzuführen sind. Es wurden nun bereits in der Vergangenheit Anstrengungen unternommen, um Pendelschwingungen bei Lastkranen zu unterdrücken.When handling a hanging on a rope load by means of such a crane or excavator oscillations arise, on the one hand on the movement of the crane or excavator itself or even on external disturbances, such as wind are due. Efforts have already been made in the past to suppress pendulum vibrations in load cranes.

So beschreibt die DE 127 80 79 eine Anordnung zur selbsttätigen Unterdrückung von Pendelungen einer mittels eines Seiles an einem in waagerechter Ebene bewegbaren Seilaufhängepunkt hängenden Last bei Bewegung des Seilaufhängepunktes in mindestens einer waagerechten Koordinate, bei der die Geschwindigkeit des Seilaufhängepunktes in der waagerechten Ebene durch einen Regelkreis in Abhängigkeit von einer von dem Auslenkwinkel des Lastseiles gegen das Endlot abgeleiteten Größe beeinflusst wird.That's how it describes DE 127 80 79 an arrangement for the automatic suppression of oscillations of a suspended by means of a rope at a movable level rope suspension point load on movement of Seilaufhängepunktes in at least one horizontal coordinate, wherein the speed of Seilaufhängepunktes in the horizontal plane by a control loop as a function of one of the Auslenkwinkel of the load rope against the Endlot derived size is influenced.

Die DE 20 22 745 zeigt eine Anordnung zur Unterdrückung von Pendelschwingungen einer Last, die mittels eines Seiles an der Katze eines Kranes aufgehängt ist, deren Antrieb mit einer Drehzahleinrichtung und einer Wegregeleinrichtung ausgestattet ist, mit einer Regelanordnung, die die Katze unter Berücksichtigung der Schwingungsperiode während eines ersten Teils des von der Katze zurückgelegten Weges derart beschleunigt und während eines letzten Teils dieses Weges derart verzögert, daß die Bewegung der Katze und die Schwingung der Last am Zielort gleich zu Null werden.The DE 20 22 745 shows an arrangement for the suppression of pendulum vibrations of a load suspended by means of a rope on the cat of a crane, the drive is equipped with a speed device and a path control device, with a control arrangement, the cat taking into account the oscillation period during a first part of so accelerated and retarded during a last part of this path, that the movement of the cat and the vibration of the load at the destination immediately become zero.

Aus der DE 321 04 50 ist eine Einrichtung an Hebezeugen für die selbsttätige Steuerung der Bewegung des Lastträgers mit Beruhigung des beim Beschleunigen oder Abbremsen der an ihm hängenden Last auftretenden Pendels der Last während eines Beschleunigungs- bzw. Abbremszeitintervalles bekannt geworden. Die Grundidee beruht auf dem einfachen mathematischen Pendel. Die Katz- und Lastmasse wird für die Berechnung der Bewegung nicht miteinbezogen. Coulombsche und geschwindigkeitsproportionale Reibung der Katz- oder Brückenantriebe werden nicht berücksichtigt.From the DE 321 04 50 a device has been known on hoists for the automatic control of the movement of the load carrier with reassurance of the pendulum of the load occurring during acceleration or deceleration of the load hanging on it during an acceleration or deceleration time interval. The basic idea is based on the simple mathematical pendulum. The cat and load mass is not included in the calculation of the movement. Coulombic and velocity-proportional friction of the cat or bridge drives are not considered.

Um einen Lastkörper schnellstmöglich vom Standort zum Zielort transportieren zu können, schlägt die DE 322 83 02 vor, die Drehzahl des Antriebsmotors der Laufkatze mittels eines Rechners so zu steuern, daß die Laufkatze und der Lastträger während der Beharrungsfahrt mit gleicher Geschwindigkeit bewegt werden und die Pendeldämpfung in kürzester Zeit erreicht wird. Der aus der DE 322 83 02 bekannte Rechner arbeitet nach einem Rechenprogramm zur Lösung der für das aus Laufkatze und Lastkörper gebildeten ungedämpften Zwei-Massen-Schwingungssystems geltenden Differentialgleichungen, wobei die Coulombsche und geschwindigkeitsproportionale Reibung der Katz- oder Brückenantriebe nicht berücksichtigt werden.To be able to transport a load body as quickly as possible from the location to the destination, the DE 322 83 02 to control the speed of the drive motor of the trolley by means of a computer so that the trolley and the load carrier are moved during the steady drive at the same speed and the pendulum damping is achieved in the shortest possible time. The from the DE 322 83 02 known computer works according to a computer program to solve the differential equations applicable to the undamped two-mass vibration system formed from trolley and load body, the coulomb and speed-proportional friction of the cat or bridge drives are not taken into account.

Bei dem aus der DE 37 10 492 bekannt gewordenen Verfahren werden die Geschwindigkeit zwischen den Zielorten auf dem Weg derart gewählt, daß nach Zurücklegen der Hälfte des Gesamtweges zwischen Ausgangsort und Zielort der Pendelausschlag stets gleich Null ist.In the from the DE 37 10 492 have become known methods, the speed between the destinations on the way chosen so that after covering half the total distance between the starting place and destination of the pendulum deflection is always equal to zero.

Das aus der DE 39 33 527 bekannt gewordene Verfahren zur Dämpfung von Lastpendelschwingungen umfaßt eine normale Geschwindigkeits-Positionsregelung.That from the DE 39 33 527 Known method for damping of load oscillations comprises a normal speed position control.

Die DE 691 19 913 behandelt ein Verfahren zum Steuern der Verstellung einer pendelnden Last, bei der in einem ersten Regelkreis die Abweichung zwischen der theoretischen und der wirklichen Position der Last gebildet wird. Diese wird abgeleitet, mit einem Korrekturfaktor multipliziert und auf die theoretische Position des beweglichen Trägers addiert. In einem zweiten Regelkreis wird die theoretische Position des beweglichen Trägers mit der wirklichen Position verglichen, mit einer Konstanten multipliziert und auf die theoretische Geschwindigkeit des beweglichen Trägers aufaddiert.The DE 691 19 913 deals with a method for controlling the adjustment of a swinging load, in which in a first control loop the deviation between the theoretical and the actual position of the load is formed. This is derived, multiplied by a correction factor and added to the theoretical position of the mobile carrier. In a second control loop, the theoretical position of the mobile carrier is compared with the actual position, multiplied by a constant and added to the theoretical speed of the mobile carrier.

Die DE 44 02 563 behandelt ein Verfahren für die Regelung von elektrischen Fahrantrieben von Hebezeugen mit einer an einem Seil hängenden Last, die aufgrund der Dynamik beschreibenden Gleichungen den Soll-Verlauf der Geschwindigkeit der Krankatze generiert und auf einen Geschwindigkeits- und Stromregler gibt. Des weiteren kann die Recheneinrichtung um einen Positionsregler für die Last erweitert werden.The DE 44 02 563 deals with a method for the control of electric traction drives of hoists with a load suspended on a rope, which generates due to the dynamics descriptive equations the desired course of the speed of the trolley and gives to a speed and current regulator. Furthermore, the computing device can be extended by a position controller for the load.

Die aus der DE 127 80 79 , DE 393 35 27 und DE 691 19 913 bekannt gewordenen Regelverfahren benötigen zur Lastpendeldämpfung einen Seilwinkelsensor. In der erweiterten Ausführung gemäß der DE 44 02 563 ist dieser Sensor ebenfalls erforderlich. Da dieser Seilwinkelsensor erhebliche Kosten verursacht, ist es von Vorteil, wenn die Lastpendelung auch ohne diesen Sensor kompensiert werden kann.The from the DE 127 80 79 . DE 393 35 27 and DE 691 19 913 have become known control method need for load swing damping a cable angle sensor. In the extended version according to the DE 44 02 563 this sensor is also required. Since this rope angle sensor causes considerable costs, it is advantageous if the load oscillation can be compensated without this sensor.

Das Verfahren der DE 44 02 563 in der Grundversion erfordert ebenso mindestens die Krankatzengeschwindigkeit. Auch bei der DE 20 22 745 sind für die Lastpendeldämpfung mehrere Sensoren erforderlich. So muß bei der DE 20 22 745 zumindest eine Drehzahl und Positionsmessung der Krankatze vorgenommen werden.The procedure of DE 44 02 563 in the basic version also requires at least the crane speed. Also at the DE 20 22 745 Several sensors are required for load swing damping. So must in the DE 20 22 745 at least one speed and position measurement of the trolley are made.

Auch die DE 37 10 492 benötigt als zusätzlichen Sensor zumindest die Katz- bzw. Brückenposition.Also the DE 37 10 492 requires at least the cat or bridge position as an additional sensor.

Alternativ zu diesem Verfahren schlägt ein anderer Ansatz, der beispielsweise aus der DE 32 10 450 und der DE 322 83 02 bekannt geworden ist, vor, die dem System zugrundeliegenden Differentialgleichungen zu lösen und basierend hierauf eine Steuerstrategie für das System zu ermitteln, um eine Lastpendelung zu unterdrücken, wobei im Falle der DE 32 10 450 die Seillänge und im Falle der DE 322 83 02 die Seillänge und Lastmasse gemessen wird. Bei diesen Systemen wird jedoch die im Kransystem nicht zu vernachlässigenden Reibungseffekte der Haftreibung und geschwindigkeitsproportionalen Reibung nicht berücksichtigt. Auch die DE 44 02 563 berücksichtigt keine Reibungs- und Dämpfungsterme.As an alternative to this method proposes another approach, for example, from the DE 32 10 450 and the DE 322 83 02 is known to solve the system underlying differential equations and based on a control strategy for the system to determine to suppress a load swing, in the case of DE 32 10 450 the rope length and in the case of DE 322 83 02 the rope length and load mass is measured. In these systems, however, the frictional effects of static friction and velocity-proportional friction, which are not negligible in the crane system, are not taken into account. Also the DE 44 02 563 does not consider friction and damping terms.

Um einen Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last, der die Last zumindest über drei Bewegungsfreiheitsgrade bewegen kann, derart weiterzubilden, daß die während der Bewegung aktiv auftretende Pendelbewegung der Last gedämpft werden kann und die Last so exakt auf einer vorgegebenen Bahn geführt werden kann, hat die Anmelderin bereits in ihrer DE 100 64 182 A1 vorgeschlagen, den Kran oder Bagger mit einer computergesteuerte Regelung zur Dämpfung der Lastpendelung auszustatten, die ein Bahnplanungsmodul (im folgenden kurz Bahnplaner genannt), eine Zentripetalkraftkompensationseinrichtung und zumindest einen Achsregler für das Drehwerk, einen Achsregler für das Wippwerk und einen Achsregler für das Hubwerk aufweist.In order to develop a crane or excavator for transferring from a load suspended on a load rope, which can move the load at least three degrees of freedom, so that the pendulum movement of the load actively occurring during the movement can be damped and the load so accurately on a given path the applicant already has in her DE 100 64 182 A1 proposed to equip the crane or excavator with a computer-controlled control for damping the load oscillation, the a Bahnplanungsmodul (hereinafter referred to as Bahnplaner), a Zentripetalkraftkompensationseinrichtung and at least one axis controller for the slewing, an axis controller for the luffing and an axis controller for the hoist has.

Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist aus der WO 2004/106215 A1 bekannt.A method according to the preamble of claim 1 is known from WO 2004/106215 A1 known.

Beim Umschlagen von Lasten ist es notwendig, mit dem Kran oder Bagger, beispielsweise einem Hafenmobilkran, zwei Zielpunkte möglichst schnell und positionsgenau anzufahren. Einer der Zielpunkte liegt in dem zu entladenden Objekt, der andere in dem zu beladenen Objekt. Ein weitgehend automatisierter Umschlag der Lasten wird als sog. Teach-In-Betrieb bezeichnet.When handling loads, it is necessary to use the crane or excavator, for example a mobile harbor crane, to approach two destination points as quickly as possible and in the correct position. One of the target points lies in the object to be unloaded, the other in the object to be loaded. A largely automated handling of the loads is referred to as a so-called teach-in operation.

Aufgabe der Erfindung ist es, ein Verfahren für die Umsetzung des sog. Teach-In-Betriebs für Krane oder Bagger, insbesondere Hafenmobilkrane, zu schaffen.The object of the invention is to provide a method for the implementation of the so-called. Teach-in operation for cranes or excavators, especially mobile harbor cranes.

Die Lösung ergibt sich aus der Kombination der Merkmale des Hauptanspruchs.The solution results from the combination of the features of the main claim.

Besondere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.Particular embodiments of the invention will become apparent from the dependent claims.

Der vollautomatische Bahnplaner ist eingebunden in ein aktives Lastpendeldämpfungssystem für einen Hafenmobilkran. Die Anforderung an den Kranführer mehrfach zwei Punkte im Arbeitsraum anzufahren, dient dabei als Ausgangspunkt für die Entwicklung des vollautomatischen Betriebs. Wie in Figur 1 dargestellt, werden diese zwei Punkte vom Kranführer definiert. Abhängig von der vorgegebenen Richtung durch den Handhebel wird einer der zwei Punkte als Zielpunkt festgelegt. Ziel ist es den Zielpunkt möglichst schnell und positionsgenau anzufahren und die Lastschwingung zu minimieren. Weiterhin werden durch die Handhebelsignale die Sollgeschwindigkeiten für das Dreh- und Wippwerk vorgegeben. Damit behält der Kranführer auch im vollautomatischen Betrieb die Kontrolle über den Hafenmobilkran. Hindernisse, die sich im Arbeitsraum befinden, können umfahren werden, da die Last im gesamten Arbeitsraum frei bewegt werden kann ohne an eine bestimmte Trajektorie gebunden zu sein. Dabei sorgt die aktive Lastpendeldämpfung, wie in der Patentanmeldung DE 100 64 182 A1 beschrieben, für die Minimierung der Lastschwingung. Ist es notwendig den Arbeitsraum zu verlassen, muss der Kranführer eine entsprechende Taste betätigen. Durch diesen Betriebsmodus, den so genannten Teach-In-Betrieb, werden hohe Umschlagleistungen erzielt und die Anforderungen an den Kranführer minimiert. Außerdem verhält sich der Kran im vollautomatischen Betrieb annähernd so wie im halbautomatischen Betrieb, bei dem das Handhebelsignal zur Kransteuerung genutzt wird und die aktive Lastpendeldämpfung für die Minimierung der Lastschwingung sorgt. Somit bleibt das dynamische Verhalten des Krans für den Kranführer berechenbar und gewohnt.The fully automatic path planner is integrated into an active load swing damping system for a mobile harbor crane. The requirement for the crane operator to repeatedly approach two points in the work space serves as a starting point for the development of fully automatic operation. As in FIG. 1 These two points are defined by the crane operator. Depending on the direction given by the hand lever, one of the two points is set as the target point. The aim is to approach the target point as fast as possible and with exact position and to minimize load oscillation. Furthermore, the target speeds for the lathes and luffing mechanism are specified by the hand lever signals. Thus, the crane operator retains control of the mobile harbor crane even in fully automatic operation. Obstacles that are in the workspace can be bypassed, because the load can be moved freely in the entire workspace without being bound to a specific trajectory. The active load oscillation damping ensures, as in the patent application DE 100 64 182 A1 described for minimizing the load oscillation. If it is necessary to leave the working space, the crane operator must press a corresponding key. Through this mode of operation, the so-called teach-in operation, high Achieves handling performance and minimizes the requirements placed on the crane operator. In addition, the crane behaves in fully automatic operation almost as in semi-automatic operation, in which the hand lever signal is used for crane control and the active load oscillation damping ensures the minimization of the load oscillation. Thus, the dynamic behavior of the crane remains predictable and familiar to the crane operator.

Weitere Einzelheiten und Vorteile der Erfindung werden im folgenden anhand der Figuren näher erläutert.Further details and advantages of the invention are explained below with reference to the figures.

Die Regelung des Krans wird durch unterlagerte Schwingungsdämpfung ( DE 100 64 182 A1 ) realisiert. Die Teilstrukturen für das Dreh- und Wippwerk bestehen im Wesentlichen aus der Trajektoriengenerierung, den Störbeobachtern und den Zustandsreglern mit Vorsteuerung (siehe Figur 2). Im vollautomatischen Betrieb werden sowohl das Hebelsignal ϕ̇DZiel und ALZiel als auch die Start-/Zielpunkte im Arbeitsraum ausgewertet. Mit diesen Informationen werden abgewandelte Referenzsignale für die Lastgeschwindigkeit in Drehrichtung und radialer Richtung berechnet. In den Bahnplanern werden aus den Referenzsignalen Solltrajektorien generiert, die in den Achsreglern für Dreh- und Wippwerk vorsteuernd in die entsprechenden Ansteuerspannungen für die hydraulischen Antriebe umgesetzt werden.The control of the crane is supported by secondary vibration damping ( DE 100 64 182 A1 ) realized. The substructures for the luffing and luffing mechanism essentially consist of the trajectory generation, the disturbance observers and the state controllers with precontrol (see FIG. 2 ). In fully automatic operation, both the lever signal φ̇ DZiel and ALZiel and the start / end points in the working area are evaluated. With this information, modified reference signals for the load speed in the direction of rotation and the radial direction are calculated. In the trajectory planners, target trajectories are generated from the reference signals, which are converted in the axis controllers for luffing gear and luffing gear into the corresponding drive voltages for the hydraulic drives.

Wie in Figur 1 dargestellt ist, werden die zwei durch den Kranführer festgelegten Punkte im Arbeitsraum in die ϕD -rAL -Ebene projiziert. Damit lassen sich die Sollpositionen der Last in die Komponenten ϕD_Ziel und rAL_Ziel trennen. Figur 2 zeigt die Berücksichtigung dieser Komponenten in den Achsreglern für das Dreh- und Wippwerk. Je nach Auslenkung des Handhebels wird die vom Kranführer rechts bzw. links liegende Sollposition als Zielpunkt vorgeben und in die eben aufgeführten Komponenten getrennt.As in FIG. 1 is represented, the two points defined by the crane operator in the working space are projected into the φ D -r AL plane. This allows the setpoint positions of the load to be separated into the components φ D_destination and r AL_destination . FIG. 2 shows the consideration of these components in the axis controllers for the luffing and luffing gear. Depending on the deflection of the hand lever, the target position set by the crane operator to the right or left is specified as the target point and separated into the components just listed.

Struktur und Wirkungsweise des vollautomatischen Bahnplaners für das Drehwerk:Structure and mode of operation of the fully automatic path planner for the slewing gear:

Die Grundidee des vollautomatischen Bahnplaners ist die Abwandlung des reduzierten Handhebelsignals in Abhängigkeit vom verbleibenden Drehbereich bis zur Zielposition ϕD_Ziel und dem benötigten Bremsweg. Es wird bei einer Auslenkung des Handhebels durch den Kranführer zunächst mit der im Bahnplaner hinterlegten Rampe beschleunigt. Ist der verbleibende Drehbereich größer als der zum Verzögern benötigte Drehwinkel, folgt eine Phase in der mit vorgegebener Maximalgeschwindigkeit gefahren wird. Andererseits schließt sich der Beschleunigungsphase direkt die Bremsphase an, falls der Drehbereich entsprechend klein ist. Wie in Figur 3 dargestellt, muss zunächst der verbleibende Bereich durch die Differenz zwischen Soll- und Ist-Position bestimmt werden. Um den richtigen Zeitpunkt, ab dem verzögert werden muss, zu finden, wird der benötigte Bremsweg einbezogen. Abhängig von der Drehrichtung wird die Differenz zwischen verbleibendem Drehbereich und Bremsweg genau zum richtigen Verzögerungszeitpunkt negativ bzw. positiv. Um das Verhalten des Hafenmobilkranes beim Anfahren der Zielposition zu verbessern wird das reduzierte Handhebelsignal ϕ̇DZielred nicht erst beim Erreichen des Verzögerungszeitpunktes auf Null gesetzt, sondern über eine angepaßte Look-Up-Tabelle bereits beim Nähern dieses Zeitpunktes reduziert.The basic idea of the fully automatic path planner is the modification of the reduced hand lever signal as a function of the remaining turning range up to the target position φ D_Ziel and the required braking distance. It is accelerated at a deflection of the hand lever by the crane operator first with the deposited in the path planner ramp. If the remaining range of rotation is greater than the angle of rotation required for deceleration, a phase follows in which is driven at a predetermined maximum speed. On the other hand, the acceleration phase directly follows the braking phase, if the rotation range is correspondingly small. As in FIG. 3 shown, the remaining area must first be determined by the difference between the setpoint and actual position. In order to find the right time from which to delay, the required braking distance is included. Depending on the direction of rotation, the difference between the remaining range of rotation and the braking distance becomes negative or positive at exactly the right delay time. In order to improve the behavior of the mobile harbor crane when approaching the target position, the reduced hand lever signal φ̇ DZielred is not set to zero until the deceleration time is reached, but is already reduced when approaching this point in time via an adapted look-up table.

Wie in Figur 4 dargestellt, wird zunächst im Block "Abwandlung Handhebelsignal" die Drehrichtung anhand des Vorzeichens des reduzierten Handhebelsignals ϕ̇DZielred festgelegt. Um den vollautomatischen Bahnplaner robust gegenüber Seillängenänderungen zu machen, wird der Kran schon vor dem Erreichen des eigentlichen Verzögerungszeitpunktes eingebremst. Die Differenz zwischen Positionsabweichung und Bremsweg wird dabei über Look-Up-Tabellen auf Faktoren zwischen Null und Eins umgesetzt. Ist die Entfernung bis zum Verzögerungspunkt, das ist der Drehwinkel ab dem abgebremst werden muß um den Zielwinkel zu erreichen, größer als 25 Grad wird das reduzierte Handhebelsignal mit Eins gewichtet und im Bahnplaner in Solltrajektorien umgesetzt. Verringert sich die Entfernung, wird das Handhebelsignal nichtlinear reduziert. Wird das Signal diffDW negativ wird der Faktor, mit dem das reduzierte Handhebelsignal gewichtet wird, Null und damit ist der Verzögerungszeitpunkt erreicht.As in FIG. 4 shown, the direction of rotation is first determined in block "modification hand lever signal " on the basis of the sign of the reduced hand lever signal φ̇ DZielred . In order to make the fully automatic path planner robust with respect to rope length changes, the crane is braked even before reaching the actual deceleration time. The difference between position deviation and braking distance is converted via look-up tables to factors between zero and one. If the distance to the deceleration point, which is the angle of rotation from which it must be braked to reach the target angle, is greater than 25 degrees, the reduced hand lever signal is weighted with one and converted into target trajectories in the path planner. Decreases the Distance, the hand lever signal is nonlinear reduced. If the signal diff DW negative, the factor, with which the reduced hand lever signal is weighted, zero and thus the delay time is reached.

Da der Zustandsregler für das Drehwerk keine Positionsbindung besitzt, also der Drehwinkel ϕ D nicht zurückgeführt wird, ist ein P-Regler implementiert, der die Positionsabweichung zurückführt. Die Stellgröße des P-Reglers wird allerdings nur bei Überfahren des Zielpunktes aufgeschaltet (siehe Figur 5). Es kann somit für t → ∞ das Erreichen des Zielwinkels garantiert werden. Die Verstärkung des P-Reglers wird anhand eines festen Faktors PFaktor, der mit dem Absolutwert des Handhebelsignals gewichtet ist, festgelegt. Das Handhebelsignal ist von -1 bis 1 normiert. Damit wird der P-Regler an die Dynamik des Systems angepaßt.Since the state controller for the slewing gear has no position bond, ie, the rotational angle φ D is not returned, a P controller is implemented, which returns the position deviation. However, the manipulated variable of the P controller is only applied when the destination point is passed over (see FIG. 5 ). It can thus be guaranteed for t → ∞ reaching the target angle. The gain of the P controller is determined by a fixed factor P factor weighted by the absolute value of the hand lever signal. The hand lever signal is normalized from -1 to 1. This adjusts the P-controller to the dynamics of the system.

Die Grundlage für die Berechnung des Bremsweges bildet die allgemeine Lösung des Zustandsraummodells des geregelten Teilsystems Drehwerk. Die Lösung der Zustandsgleichungen unterteilt sich in zwei Teile, die homogene Lösung und die partikuläre Lösung. Die partikuläre Lösung kann dabei für das Drehwerk durch den in Gleichung (0.1) dargestellten Zusammenhang angenähert werden. Der erste Teil des Bremsweges ϕ Dbrems1 wird durch die Berücksichtigung der gemessenenThe basis for the calculation of the braking distance is the general solution of the state space model of the controlled subsystem slewing gear. The solution of equations of state is divided into two parts, the homogeneous solution and the particulate solution. The particulate solution can be approximated for the slewing gear by the relationship shown in equation (0.1). The first part of the braking distance φ Dbrems 1 is determined by the consideration of the measured

Drehgeschwindigkeit ϕ̇D und der maximalen Beschleunigung ϕ̈ D_max berechnet. φ Dbrems 1 = φ ˙ D 2 2 φ ¨ D _max

Figure imgb0001
Rotational speed φ̇ D and the maximum acceleration φ̈ D _max calculated. φ Dbrems 1 = φ ˙ D 2 2 φ ¨ D _Max
Figure imgb0001

Der zweite Anteil des Bremsweges ϕ Dbrems2 ergibt sich aus der Berechnung der homogenen Lösung des geregelten Teilsystems Drehwerk.The second part of the braking distance φ Dbrems 2 results from the calculation of the homogeneous solution of the controlled subsystem slewing gear.

Homogene Lösung des geregelten Teilsystems Drehwerk:Homogeneous solution of the controlled subsystem Slewing:

Die für das Drehwerk implementierte Schwingungsdämpfung der Last in tangentialer Richtung führt zu Ausgleichsbewegung des Krans in Drehrichtung. Die Dynamik der Zustandsregelung, festgelegt durch die Pollagen, hat einen maßgeblichen Einfluss auf den benötigten Bremsweg des Drehwerks. Um den Drehwinkel zu bestimmen, der sich bei einer Auslenkung des geregelten Systems ergibt, wird die homogene Lösung dieses Systems berechnet. Mit der in Gleichung (0.2) dargestellten homogenen Lösung lassen sich alle Zustände durch Messen der Anfangszustände bestimmen. x ̲ hom t = e A ̲ R t - t 0 x ̲ t 0

Figure imgb0002
The vibration damping of the load in the tangential direction implemented for the slewing gear leads to compensation movement of the crane in the direction of rotation. The dynamics of the state control, defined by the pole positions, have a decisive influence on the required braking distance of the slewing gear. In order to determine the angle of rotation, which results at a deflection of the controlled system, the homogeneous solution of this system is calculated. With the homogeneous solution shown in equation (0.2) all states can be determined by measuring the initial states. x hom t = e A R t - t 0 x t 0
Figure imgb0002

Dabei ist A R die Systemmatrix des geregelten Systems. Mit den vier Zuständen Drehwinkel, Drehwinkelgeschwindigkeit, tangentialer Seilwinkel und tangentiale Seilwinkelgeschwindigkeit und der Ansteuerspannung des Proportionalventils des hydraulischen Kreislaufs als Eingang ergibt sich der Zustandsvektor und der Eingangsvektor zu x ̲ D = φ D φ ˙ D φ St φ ˙ St T ; u ̲ = u stD

Figure imgb0003
Here, A R is the system matrix of the controlled system. With the four states of rotation angle, rotational angular velocity, tangential rope angle and tangential rope angular velocity and the driving voltage of the proportional valve of the hydraulic circuit as an input, the state vector and the input vector result x D = φ D φ ˙ D φ St φ ˙ St T ; u = u Hours
Figure imgb0003

Mit diesen Definitionen lautet der Zustandsraum des Drehwerks wie folgt x ̲ ˙ D = 0 1 0 0 0 - 1 T D 0 0 0 0 0 1 0 a T D - g l s 0 A ̲ D x ̲ D + 0 b 0 - a b B ̲ D u ̲ D mit a = l A cos φ A l S und b = K V D 2 π i D V M D T D

Figure imgb0004
With these definitions, the state space of the slewing gear is as follows x ˙ D = 0 1 0 0 0 - 1 T D 0 0 0 0 0 1 0 a T D - G l s 0 } A D x D + 0 b 0 - a b } B D u D With a = l A cos φ A l S and b = K V D 2 π i D V M D T D
Figure imgb0004

Dabei ist lA die Auslegerlänge, lS die freie Pendellänge, iD ein Übersetzungsverhältnis, VMD das Schluckvolumen des Hydraulikmotoren, TD die Verzögerungszeit des Hydraulischen Antriebs, KVD die Proportionalitätskonstante zwischen Ansteuerspannung und Förderstrom der Pumpe und ϕ A der Aufrichtwinkel des Auslegers. Der Ausgang des Systems ist die Ausladung der Last. Somit ist die Ausgangsmatrix C D gegeben durch C ̲ D = 1 0 l s cos φ A 0 l A 0

Figure imgb0005
Where l A is the boom length, l S is the free pendulum length, i D is a gear ratio, V MD is the displacement of the hydraulic motor, T D is the deceleration time of the hydraulic drive, K VD is the proportionality constant between the drive voltage and flow rate of the pump and φ A is the angle of elevation of the boom , The output of the system is the unloading of the load. Thus, the output matrix C D is given by C D = 1 0 l s cos φ A 0 l A 0
Figure imgb0005

Um den Drehwinkel, der sich bei Auslenkung des geregelten Systems ergibt, berechnen zu können, muss Gleichung (0.2) für den ersten Zustand (ϕ D ) gelöst werden. Dazu wird zunächst die Systemmatrix des geregelten Systems mit der Rückführmatrix K = [0 k 2 k 3 k 4], deren Elemente durch Polvorgabe bestimmt werden, berechnet. (Gleichung (0.6)). Die erste Verstärkung der Rückführmatrix ist Null, da einer der vier Pole mit Null vorgeben ist und somit die Zustandsregelung des Drehwerks keine Positionsbindung besitzt. A ̲ R = 0 1 0 0 0 - 1 T D - b k 2 - b k 3 - b k 4 0 0 0 1 0 a T D + a b k 2 - g l S + a b k 3 a b k 4

Figure imgb0006
In order to be able to calculate the angle of rotation that results when the controlled system is deflected, equation (0.2) must be solved for the first state (φ D ). For this purpose, first the system matrix of the controlled system with the feedback matrix K = [0 k 2 k 3 k 4 ], the elements of which are determined by pole specification, is calculated. (Equation (0.6)). The first gain of the feedback matrix is Zero, since one of the four poles is set to zero and thus the state control of the slewing gear has no positional connection. A R = 0 1 0 0 0 - 1 T D - b k 2 - b k 3 - b k 4 0 0 0 1 0 a T D + a b k 2 - G l S + a b k 3 a b k 4
Figure imgb0006

Berechnet man nun die Transitionsmatrix Φ = e A R (t-t 0) und betrachtet den Grenzwert für t → ∞, ergeben sich die folgenden Elemente der ersten Zeile. ϕ 11 = 1 ϕ 12 = - l 1 l 2 T D 2 + l 1 T D + l 1 T D 2 b k 2 + l 1 l 3 T D 2 + l 2 T D + l 2 T D 2 b k 2 + l 2 l 3 T D 2 - T D 2 b 2 a k 2 k 4 + 2 T D b k 2 - T D b a k 4 + T D 2 b 2 + k 2 2 + 1 + l 3 T D + l 3 T D 2 b k 2 / l 1 l 2 l 3 T D 2 ϕ 13 = - l 1 T D k 3 + l 2 T D k 3 + k 3 + T D b k 2 k 3 + T D g l S k 4 - T D b a k 3 k 4 + l 3 T D k 3 b / l 1 l 2 l 3 T D ϕ 14 = - l 1 T D k 4 + l 2 T D k 4 + k 4 + T D b k 2 k 4 - T D k 3 - T D b a k 4 2 + l 3 T D k 4 b / l 1 l 2 l 3 T D

Figure imgb0007
Now calculate the transition matrix Φ = e A R ( tt 0 ) and considers the limit for t → ∞, the following elements of the first line result. φ 11 = 1 φ 12 = - l 1 l 2 T D 2 + l 1 T D + l 1 T D 2 b k 2 + l 1 l 3 T D 2 + l 2 T D + l 2 T D 2 b k 2 + l 2 l 3 T D 2 - T D 2 b 2 a k 2 k 4 + 2 T D b k 2 - T D b a k 4 + T D 2 b 2 + k 2 2 + 1 + l 3 T D + l 3 T D 2 b k 2 / l 1 l 2 l 3 T D 2 φ 13 = - l 1 T D k 3 + l 2 T D k 3 + k 3 + T D b k 2 k 3 + T D G l S k 4 - T D b a k 3 k 4 + l 3 T D k 3 b / l 1 l 2 l 3 T D φ 14 = - l 1 T D k 4 + l 2 T D k 4 + k 4 + T D b k 2 k 4 - T D k 3 - T D b a k 4 2 + l 3 T D k 4 b / l 1 l 2 l 3 T D
Figure imgb0007

Die drei verbleibenden Pole des geregelten Teilsystems Drehwerk, die ungleich Null sind, werden durch l 1, l 2 und l 3 symbolisiert.The three remaining poles of the controlled subsystem of rotation, which are not equal to zero, are symbolized by l 1 , l 2 and l 3 .

Mit Gleichung (0.2) und den Elementen der Transitionsmatrix läßt sich die homogene Lösung des geregelten Systems für den Drehwinkel bestimmen. In Gleichung (0.8) ist der Zusammenhang dargestellt. φ Dhom = ϕ 11 φ D + ϕ 12 φ ˙ D + ϕ 13 φ S t + ϕ 14 φ ˙ S t

Figure imgb0008
With equation (0.2) and the elements of the transition matrix, the homogeneous solution of the controlled system for the rotation angle can be determined. In equation (0.8) the relationship is shown. φ Dhom = φ 11 φ D + φ 12 φ ˙ D + φ 13 φ S t + φ 14 φ ˙ S t
Figure imgb0008

Durch diese Berechnung ist es möglich die dynamischen Eigenschaften der Drehwerksregelung bei der vollautomatischen Bahnplanung zu berücksichtigen. Der Drehwinkel ϕ Dhom wird dynamisch berechnet und als zusätzlicher Anteil ϕ Dbrems2 des Bremsweges verstanden. Somit ist es möglich Trajektorien zu generieren, die zum richtigen Anfahren des Zielpunktes führen.This calculation makes it possible to take into account the dynamic properties of the slewing gear control in fully automatic path planning. The rotation angle φ D hom is calculated dynamically and understood as an additional component φ Dbrems 2 of the braking distance. Thus, it is possible to generate trajectories that lead to the correct approach of the target point.

Struktur und Wirkungsweise des vollautomatischen Bahnplaners für das Wippwerk:Structure and mode of operation of the fully automatic path planner for the luffing gear:

Im Gegensatz zur Drehwerksregelung wird für das Wippwerk der Aufrichtwinkel des Auslegers ϕ A zurückgeführt. Damit kann durch den Ansatz des Zustandsreglers mit Positionsbindung das Erreichen der vorgegebenen Position für t→∞ garantiert werden und der vollautomatische Bahnplaner vereinfacht sich wesentlich (siehe Figur 6). Analog zum Drehwerksbahnplaner wird im Block "Abwandlung Handhebelsignal" das reduzierte Handhebelsignal ALZielred so angepaßt, daß die Bewegung des Wippwerks zum richtigen Zeitpunkt verzögert wird, um die Zielposition zu erreichen. Der im vollautomatischen Betrieb generierte abgewandelte Sollgeschwindigkeitsverlauf der Last in radialer Richtung wird wie in Figur 2 dargestellt im Bahnplaner in die Solltrajektorie r ALref umgesetzt.In contrast to the slewing gear control, the pitch angle of the jib φ A is returned for the luffing gear. Thus, the approach of the state controller with position binding can guarantee the achievement of the predefined position for t → ∞ and the fully automatic path planner becomes considerably simpler (see FIG. 6 ). Analogous to the turntable planner, the reduced hand lever signal ṙ ALZielred is adapted in the block "Modification hand lever signal " so that the movement of the luffing gear is delayed at the right time to reach the target position. The modified target speed profile of the load in the radial direction generated in fully automatic operation becomes as in FIG. 2 shown converted in the path planner in the target trajectory r ALref .

Den Verzögerungszeitpunkt tVerzögerung erhält man dabei durch Richtungsabhängige Auswertung des Vorzeichens der Differenz zwischen der Abweichung zum Zielradius und dem benötigten Bremsweg (siehe Figur 7). Um die Genauigkeit des Positionierens zu erhöhen und das Überschwingen zu minimieren wird zusätzlich ein sogenannter Kriechbereich eingeführt. In diesem Bereich werden fünf Prozent der maximalen Geschwindigkeit vorgegeben. Der Zeitpunkt tKriech wird anhand des in Figur 6 dargestellten Parameters dKriech_WW bestimmt. Durch Addition bzw. Subtraktion des Parameters von der Differenz der Positionsabweichung und des Bremsweges erhält man mit Hilfe einer richtungsabhängigen Auswertung des Vorzeichens den Zeitpunkt tKriech . The delay time t delay is obtained by direction-dependent evaluation of the sign of the difference between the deviation from the target radius and the required braking distance (see FIG. 7 ). In order to increase the accuracy of the positioning and to minimize the overshoot, a so-called creep zone is additionally introduced. In this range, five percent of the maximum speed are given. The time t creep is based on the in FIG. 6 shown parameter d Kriech_WW determined. By adding or subtracting the parameter from the difference of Position deviation and the braking distance is obtained by means of a direction-dependent evaluation of the sign the time t creep .

Der Kriechgangzeitpunkt tKriech dient als Entscheidungsgrundlage, wann das reduzierte Handhebelsignal von vorgegebener Maximalgeschwindigkeit auf fünf Prozent der Maximalgeschwindigkeit abgewandelt wird. Damit erhält man den in Figur 8 schematisch dargestellten Verlauf des abgewandelten Handhebelsignals.The creep speed t creep serves as a basis for deciding when the reduced hand lever signal is changed from the predetermined maximum speed to five percent of the maximum speed. This gives you the in FIG. 8 schematically illustrated course of the modified hand lever signal.

Der Bremsweg des Wippwerks wird durch Einbeziehen der aktuellen Geschwindigkeit und der maximalen Beschleunigung des Auslegers in radiale Richtung folgendermaßen bestimmt: r ALbrems = r ˙ A L 2 2 r A _max ¨

Figure imgb0009
The braking distance of the luffing gear is determined by including the current speed and the maximum acceleration of the boom in the radial direction as follows: r ALbrems = r ˙ A L 2 2 r A _Max ¨
Figure imgb0009

Die Berücksichtigung der Dynamik des geregelten Systems in Form der homogenen Lösung des Systems und eine über einen P-Regler zurückgeführte Positionsabweichung ist nicht notwendig, da der Achsregler des Wippwerks Positionsgebunden ist.The consideration of the dynamics of the controlled system in the form of the homogeneous solution of the system and a positional deviation due to a P-controller is not necessary as the axis controller of the luffing gear is position-bound.

Claims (6)

  1. A method for the transfer of a load hanging at a load rope of a crane or excavator comprising a slewing gear to rotate the crane or excavator, a luffing mechanism to right or incline a boom and a hoisting gear to raise or lower the load suspended at the rope, comprising a computer-controlled regulator for the damping of the load oscillation which has a trajectory planner,
    characterized by the following steps:
    - fixing the working space by selection of two points;
    - fixing of one of the two points as the destination point by direction presetting by means of a hand lever;
    - presetting of the nominal speeds for the slewing gear and luffing mechanism by hand lever signals so that the load can be moved freely in the total working space;
    - automatic modification of the desired speeds in dependence on the remaining rotational range and/or radial range up to the destination point and on the required braking distance.
  2. A method in accordance with claim 1, characterized in that both the hand lever signal and the starting points/destination points in the working space are evaluated; and in that modified reference signals are calculated on the basis of this information for the load speed in the direction of rotation and in the radial direction, wherein nominal trajectories are generated from the reference signals in the trajectory planners and are implemented in a pre-controlled manner in the axis regulators for the slewing gear and luffing mechanism into the corresponding control voltages for the drives.
  3. A method in accordance with claim 1 or 2, characterized in that the nominal position of the load can be divided into components which are each taken into account in the axis regulator for the slewing gear or the luffing mechanism.
  4. A method in accordance with claim 3, characterized in that, in the automatic trajectory planner, the reduced hand lever signal is modified in dependence on the remaining rotational range up to the destination position and on the required braking distance.
  5. A method in accordance with either of claims 3 or 4, characterized in that, in the automatic trajectory planner, the reduced hand lever signal is adapted such that the movement of the luffing mechanism is decelerated to reach the destination position.
  6. A method in accordance with claim 5, characterized in that, on the deceleration, a so-called creeping range is provided as a safety range in which the luffing mechanism is slowed down from the maximum speed to a fraction of the maximum speed.
EP06005296A 2006-03-15 2006-03-15 Method for automatic handling of a crane load with sway damping and path control Active EP1834920B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502006005975T DE502006005975D1 (en) 2006-03-15 2006-03-15 Method for automatically handling a load of a crane with load oscillation damping and path planner
EP06005296A EP1834920B1 (en) 2006-03-15 2006-03-15 Method for automatic handling of a crane load with sway damping and path control
AT06005296T ATE455726T1 (en) 2006-03-15 2006-03-15 METHOD FOR AUTOMATICALLY HANDLING A LOAD OF A CRANE WITH LOAD SWING DAMPING AND PATH PLANNER
ES06005296T ES2338685T3 (en) 2006-03-15 2006-03-15 PROCEDURE FOR THE AUTOMATIC HANDLING OF A LOAD OF A CRANE WITH AMORTIGUATION OF THE PENDULAR MOVEMENT OF THE LOAD AND PLANNING DEVICE OF THE TRAJECTORY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06005296A EP1834920B1 (en) 2006-03-15 2006-03-15 Method for automatic handling of a crane load with sway damping and path control

Publications (2)

Publication Number Publication Date
EP1834920A1 EP1834920A1 (en) 2007-09-19
EP1834920B1 true EP1834920B1 (en) 2010-01-20

Family

ID=36686067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06005296A Active EP1834920B1 (en) 2006-03-15 2006-03-15 Method for automatic handling of a crane load with sway damping and path control

Country Status (4)

Country Link
EP (1) EP1834920B1 (en)
AT (1) ATE455726T1 (en)
DE (1) DE502006005975D1 (en)
ES (1) ES2338685T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103434936A (en) * 2013-08-29 2013-12-11 徐州重型机械有限公司 Automatic control method and system for lifting operation of crane
CN103723629A (en) * 2013-12-31 2014-04-16 珠海三一港口机械有限公司 Crane and anti-swing control method for steel wire rope of crane

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007888A1 (en) 2010-02-08 2011-08-11 Wafios AG, 72764 Method and device for producing a bent part
CN102515022B (en) * 2011-12-31 2013-10-16 中联重科股份有限公司 Method and device for fixing location of crane
CN105540433B (en) * 2015-12-30 2017-12-15 中国一冶集团有限公司 One kind tilts installation site overweight equipment hanging method
CN106516980B (en) * 2016-11-25 2018-07-03 北京金自天正智能控制股份有限公司 High pedestal jib crane grab bucket method for optimizing route

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1278079C2 (en) 1964-10-26 1975-01-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt ARRANGEMENT FOR THE INDEPENDENT SUPPRESSION OF THE SWING OF A LOAD HANGING ON A ROPE, IN PARTICULAR A GRIPPER OF A LOADING DECK HANGING ON A TROLLEY
DE2022745C3 (en) 1970-05-09 1979-07-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Arrangement for suppressing pendulum oscillations of a load suspended on a rope and transported by a trolley
DE3210450A1 (en) 1982-03-22 1983-10-13 BETAX Gesellschaft für Beratung und Entwicklung technischer Anlagen mbH, 8000 München DEVICE FOR LIFTING EQUIPMENT FOR THE AUTOMATIC CONTROL OF THE MOVEMENT OF THE LOAD CARRIER WITH CALM OF THE SUSPENSION OF THE LOAD THAT HANGS ON IT
DE3228302A1 (en) 1982-07-29 1984-02-09 Fried. Krupp Gmbh, 4300 Essen Oscillation damping for cranes
DE3710492A1 (en) 1987-03-30 1988-10-20 Mannesmann Ag Method and arrangement for suppressing oscillations
DE3933527A1 (en) 1989-10-04 1991-04-18 Mannesmann Ag Crane load oscillation damping with strategic set point - involves electronic determn. of correction to target position from actual speed integral and angle of swing
FR2664885B1 (en) 1990-07-18 1995-08-04 Caillard METHOD FOR CONTROLLING THE MOVEMENT OF A PENDULUM LOAD AND DEVICE FOR ITS IMPLEMENTATION.
EP0907604A1 (en) * 1996-05-24 1999-04-14 Siemens Aktiengesellschaft Method and arrangement for preventing load swings with a suspended-load-moving apparatus performing rotational movements
DE10064182A1 (en) 2000-10-19 2002-05-08 Liebherr Werk Nenzing Crane or excavator for handling a load suspended from a load rope with load swing damping
DE10233874A1 (en) * 2002-07-25 2004-02-26 Siemens Ag Method for controlling the operation of a block traveling along a track, especially for container crane loading/unloading ship, involves continually ascertaining travel-path and/or hoisting- path braking position data
US7426423B2 (en) * 2003-05-30 2008-09-16 Liebherr-Werk Nenzing—GmbH Crane or excavator for handling a cable-suspended load provided with optimised motion guidance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103434936A (en) * 2013-08-29 2013-12-11 徐州重型机械有限公司 Automatic control method and system for lifting operation of crane
CN103434936B (en) * 2013-08-29 2015-06-17 徐州重型机械有限公司 Automatic control method and system for lifting operation of crane
CN103723629A (en) * 2013-12-31 2014-04-16 珠海三一港口机械有限公司 Crane and anti-swing control method for steel wire rope of crane

Also Published As

Publication number Publication date
DE502006005975D1 (en) 2010-03-11
EP1834920A1 (en) 2007-09-19
ES2338685T3 (en) 2010-05-11
ATE455726T1 (en) 2010-02-15

Similar Documents

Publication Publication Date Title
US7831333B2 (en) Method for the automatic transfer of a load hanging at a load rope of a crane or excavator with a load oscillation damping and a trajectory planner
EP1326798B1 (en) Crane or digger for swinging a load hanging on a support cable with damping of load oscillations
EP3649072B1 (en) Crane and method for controlling such a crane
DE102018005068A1 (en) Crane and method for controlling such a crane
DE10245868B4 (en) Method and device for positioning a load
EP1834920B1 (en) Method for automatic handling of a crane load with sway damping and path control
DE102014008094A1 (en) Method for controlling the alignment of a crane load and a jib crane
DE202008018260U1 (en) Crane control and crane
EP3409636B1 (en) Method for damping torsional vibrations of a load-bearing element of a lifting device
EP1628902A1 (en) Crane or excavator for handling a cable-suspended load provided with optimised motion guidance
EP4013713B1 (en) Crane and method for controlling such a crane
DE102009032269A1 (en) Crane control for controlling a hoist of a crane
DE102016004350A1 (en) Crane and method for controlling such a crane
DE10064182A1 (en) Crane or excavator for handling a load suspended from a load rope with load swing damping
DE102007041692A1 (en) Control device for damping oscillations of a cable-guided load
DE10029579B4 (en) Method for orienting the load in crane installations
EP3653562A1 (en) Method and oscillating regulator for regulating oscillations of an oscillatory technical system
DE102004045749A1 (en) Method for automatically turning over a load on a crane involves establishing work space by selecting two points and fixing one of these as target point and setting ideal speeds for rotary tipper mechanism
EP3428112A1 (en) Lifting device, in particular a mobile crane or a cable dredger, having a device for monitoring the alignment and depositing process of a boom system and corresponding method
EP4174013A1 (en) Method for moving a load with a crane
DE102021121818A1 (en) Tower crane, method and control unit for operating a tower crane, trolley and trolley
JP5642326B2 (en) A method of automatically transshipping a suspended load suspended from a suspended load rope by a crane or bagger
DE112019007113T5 (en) Elevator control device
DE102020126504A1 (en) Hoist such as a crane and method and device for controlling such a hoist
DD271687A1 (en) METHOD AND CIRCUIT ARRANGEMENT FOR POSITIONING THE POSITION OF A PUSHING LOAD OF A DOUBLE ANGLED TREAD CRANES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006005975

Country of ref document: DE

Date of ref document: 20100311

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338685

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

26N No opposition filed

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150323

Year of fee payment: 10

Ref country code: GB

Payment date: 20150319

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 455726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20191107

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230323

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230403

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240321

Year of fee payment: 19

Ref country code: BE

Payment date: 20240320

Year of fee payment: 19