EP0086466B1 - Durchflussregelung für den Spiralgehäuse-einlass einer Radialturbine - Google Patents

Durchflussregelung für den Spiralgehäuse-einlass einer Radialturbine Download PDF

Info

Publication number
EP0086466B1
EP0086466B1 EP83101306A EP83101306A EP0086466B1 EP 0086466 B1 EP0086466 B1 EP 0086466B1 EP 83101306 A EP83101306 A EP 83101306A EP 83101306 A EP83101306 A EP 83101306A EP 0086466 B1 EP0086466 B1 EP 0086466B1
Authority
EP
European Patent Office
Prior art keywords
flow path
rotor
volute casing
casing portion
inner flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83101306A
Other languages
English (en)
French (fr)
Other versions
EP0086466A1 (de
Inventor
Merle Lavern Kaesser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Priority to AT83101306T priority Critical patent/ATE27474T1/de
Publication of EP0086466A1 publication Critical patent/EP0086466A1/de
Application granted granted Critical
Publication of EP0086466B1 publication Critical patent/EP0086466B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/146Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by throttling the volute inlet of radial machines or engines

Definitions

  • the present invention relates to an exhaust gas turbine with variable flow, in particular for driving turbochargers of internal combustion engines with the features of the preamble of claim 1.
  • a turbine of this type is known from FR-A-1337865.
  • the exhaust gases are fed through two separate lines to a straight inlet housing, to which the inlet section belonging to the turbine housing is connected and which, up to the connection point of the spiral housing section, is curved in a direction opposite to that of the spiral housing section.
  • a dividing wall begins in the inlet housing and extends through the inlet section into the spiral housing section and each has the same straight or curved shape as the inlet housing, the inlet section or the spiral housing section.
  • This forms inner and outer flow paths for the exhaust gases, which have approximately the same and constant cross sections in the inlet housing and in the inlet section.
  • the outer flow path also maintains its cross-sectional area essentially unchanged in the volute section up to the end of the partition.
  • the dividing wall and the inner surface of the volute section each end directly on the outer circumference of a fixed, uniform guide vane section, which surrounds the rotor.
  • the guide vane ring is designed in such a way that a guide vane has an extension which runs approximately tangentially to the circumference of the rotor for the end of the dividing wall which is continuously approaching the outer circumference of the guide vane ring within the spiral housing section.
  • a switchable valve-like member with an actuating device is provided in the straight inlet housing. In one position of this link, the outer flow path is closed, so that the gases from the two exhaust gas supply lines mix and are supplied exclusively to the inner flow path.
  • the separately supplied exhaust gas flows can enter the inner or outer flow path almost unmixed. Due to the course of the partition in the volute casing section and through the guide vane ring arranged in it, it follows that the inner flow path has an abrupt change in cross-section both at the transition point between the entry section and the volute casing section and in the area of the radially outer end of each vane, so that the cross-sectional areas become increasing approach of the partition to the circumference of the guide vane ring progressively reduces the cross-sectional area on average.
  • the outer flow channel within the volute casing section also experiences an abrupt widening of the cross section where the partition ends at the circumference of the guide vane ring.
  • the cross-sectional areas of the outer flow channel are abruptly changed by the guide blades at the level of the radially outer end of each guide blade.
  • FR-A-2465069 describes an exhaust gas turbine in which the end of the dividing wall, which forms the outer and the inner flow path in the spiral housing section, is designed in the form of a guide surface tip lying approximately tangentially on the circumference of the rotor.
  • the cross-sectional area of the outer flow path delimited by the dividing wall within the volute casing decreases in width and does so steadily in the direction of increasing flow path closer to the circumference of the rotor.
  • the spiral housing section is assigned a straight inlet section, through which the partition also runs straight up to its inlet cross section.
  • a turbine is also known with a straight inlet housing section with partition and valve-like member which is assigned to the turbine housing and which is assigned to the inner flow path (cf. US-A-41 77 006).
  • the inlet section and the spiral housing section of the turbine housing have a further partition wall which extends approximately perpendicular to the partition wall separating the inner and outer flow paths and to the axis of rotation of the rotor and extends from the entrance of the inlet section to the end of the first partition wall.
  • This additional partition section keeps the separately supplied exhaust gas streams strictly separate until they hit the rotor.
  • the dividing wall delimiting the outer and inner flow path ends at a considerable distance from the outer circumference of the rotor, so that the gas flow through this dividing wall also ends at a considerable distance from the circumference of the rotor.
  • a valve is provided which can close off the inner flow path.
  • the inner flow path has a discontinuous, that is to say a cross section which is initially decreasing, then increasing and then decreasing again.
  • the cross-sectional area of the fluid flow path can be changed by adjusting the valve and changing the size of the inlet opening of the one flow channel. This makes it possible to compensate for changes in the flow speed and the pressure which can occur as a result of operating the internal combustion engine at different speeds and under different loads.
  • variable flow turbine can increase the efficiency of the internal combustion engine by using compressors. These have a high effectiveness with limited speed and load and a low effectiveness with peak torque performances of the internal combustion engine. Compensation can be achieved by changing the power of the turbine with variable flow at peak torques. Variable flow turbines are also more effective in conditions below the maximum speed and load.
  • the aim is to enable a more precise adaptation of the operation of the turbine to the need and the operation of the internal combustion engine.
  • the gas flows are forced through the partition wall in the immediate vicinity of the outer periphery of the rotor.
  • a guide vane ring is not required.
  • the valve-like member to vary the efficiency of the turbine for a predetermined torque curve and over a desired large working range of the internal combustion engine. This leads to an increase in the performance of the internal combustion engine.
  • the new design also allows the use of a compressor with high efficiency at limited engine speeds. You also get a higher torque at lower speeds.
  • European patent application EP-A-86467 (Art. 54.3), which has the same priority, relates to the casing of a turbine for similar purposes to the present turbine, but the casing is also suitable for turbines with fixed geometry and constant flow.
  • the main concern is a continuously decreasing radius of curvature of the inlet section of the housing in such a way that the relatively uniform flow profile of the gases at the inlet of the curved inlet section is converted into a predetermined vortex velocity profile at the outlet of the curved inlet section.
  • the present invention relates to a turbine with variable geometry and thus variable flow conditions and a corresponding design and arrangement of the partition wall characteristic of these turbines, which extends over the inlet section and the volute casing section.
  • valve-like member is adjustable so that the exhaust gases flowing through the secondary inner flow path can be directed against the partition wall, since the maximum radius of curvature is particularly effective even with partial flow through the inner flow path.
  • the partition is arranged so that the outer flow path or paths and the inner flow path or areas in the region of the curved inlet section in the direction from the beginning of the partition wall to the entry into the spiral housing section each have a decreasing radius of curvature.
  • the arrangement 10 shown in the figures, in particular FIG. 3, comprises a variable flow turbine 11 which is connected to a compressor 12.
  • the whole arrangement 10 forms an exhaust gas turbocharger.
  • the turbine has a housing 13 which consists of a curved inlet section 14 and a spiral housing section 16.
  • the curved housing section 14 is an arcuate part that can be flanged to the exhaust manifold of an internal combustion engine by means of a flange end 18 via bolts and bolt holes 20.
  • the curved section 14 has an angular extent of at least 30 °, preferably an extent between 30 and 180 °. The preferred range for expansion is between 45 ° and 90 °.
  • the curved section 14 has an inlet 22 at the flange end 18 and is connected to the volute section 16 at the other end 24.
  • the spiral housing section 16 has a circumferential extent of at least 270 ° and preferably of approximately 360 °.
  • the arc of the volute section 16 extends around an axis that is perpendicular to the paper of FIG. 1.
  • a connecting shaft 26 rotatably connects a rotor 28 of the turbine to a compressor wheel 30.
  • the shaft 26 rotates about the axis of the volute casing.
  • the turbine rotor 28, which is enclosed in the housing 13, has a plurality of circumferentially spaced turbine blades or blades 34 that extend radially outward from the central axis. The particular shape and shape of the blades 34 may vary in a known manner as desired.
  • the turbine housing 13 also has an outlet 32, which can be seen in FIG. 3.
  • the exhaust gases from an internal combustion engine are introduced into the turbine 11. They cause the turbine rotor 28 to rotate.
  • the compressor wheel 30 is carried along, specifically via the connecting shaft 26.
  • the compressor wheel 30 thus delivers a relatively high boost pressure for the internal combustion engine.
  • a control valve member 36 is disposed near the fluid inlet 22. This serves to control the gas flow in the turbine housing 13.
  • the control valve 36 is preferably a rotary valve which is fitted into the inner surface of the curved housing section 14.
  • the valve 36 has a valve insert 40 that is movable between an open position and a closed position to change and regulate the gas flow through the variable flow turbine. In the open position according to FIG. 2, the valve insert 40 lies flush with the inner surface of the curved housing section 14 and thus allows the exhaust gases to flow through the entire curved section 14. In the closed position, which is shown in broken lines in FIG. 2, the valve insert 40 restricts the flow path of the gases through the curved housing section 14.
  • the valve 36 is actuated by a control device 42 via pin 43 and linkage 44.
  • the control device 42 can be pivotally attached at one end 46 to a fixed support device 48, so that a linear movement of the linkage 44 is converted into a rotary movement of the control valve 36. It is noted that the control device 42 can be operated manually or automatically, as is known in the art. The control device 42 can also be designed differently, namely for essentially any linear or non-linear dependency on changes in machine parameters, e.g. B. the operating speed, the load, the manifold inlet pressure, the engine emissions, the smoke density of the exhaust gases exiting the machine and entering the atmosphere, the temperature of the exhaust gases, or any combination of these factors. In addition, the control device 42 can be set to parameters, e.g. B. the speed of the turbine rotor 28 and the throttle position.
  • a divider wall or partition wall 50 extends from the control valve 36 into both sections of the turbine housing 13.
  • the partition wall 50 terminates in a tip 52 which lies approximately tangentially on the outer circumference of the turbine rotor 28.
  • This partition 50 is an arcuate member that can be formed in one piece with the turbine housing and serves to divide the turbine housing 13 into an inner or secondary fluid channel 54 and into an outer or primary fluid channel 56.
  • the cross-sectional area of the outer fluid channel 56 is greater than the cross-sectional area of the inner fluid channel 54.
  • the cross-sectional area of the outer fluid channel 56 is approximately three times the cross-sectional area of the inner fluid channel 54.
  • the outer fluid channel 56 intersects approximately three times as much as the circumference of the turbine rotor 28 as the inner fluid channel 54.
  • the partition 50 works with a Inner surface 58 of the spiral housing section 16 together, as can be seen from FIG. 2. This results in a decreasing cross-sectional area of the outer fluid channel 56.
  • the cross-sectional areas of both fluid channels 54 and 56 preferably decrease constantly over the entire curved housing section and over the spiral housing section 14 and 16, respectively. This feature provides a relatively uniform velocity of the exhaust gases as they strike the turbine blades 34.
  • Rotating the control valve 36 from the open position to a partially closed position results in the exhaust gases being deflected outward toward the divider wall 50. This increases the velocity of the exhaust gases that flow in the two inner and outer channels 54 and 56. The increased speed combined with the increased radius of curvature of the mass flow of the exhaust gases leads to an increase in the power of the turbine 11.
  • the curved housing section 14 cooperates with an inner surface 58 of the spiral housing section 16 to form a tongue 60 with a tip 62.
  • the tip 62 lies at the opposite end 24 of the curved housing section 14, which is indicated by the dash-dotted line. It is in the immediate vicinity of the circumference of the turbine rotor 28 and preferably tangential to the outer circumference of the rotor.
  • the tongue tip 62 lies at an angular distance of approximately 90 ° from the tip 52 of the partition 50, so that approximately 75% of the peripheral region of the turbine rotor 28 is exposed to the outer fluid channel 56.
  • Tip 62 and inner surface 58 control the flow of exhaust gases between the outer periphery of turbine rotor 28 and tongue 60. Tip 62 also controls each flow of exhaust gases in a clockwise direction, which flow would have a pulsating effect on turbine rotor 28.
  • FIGS. 5 to 7. This shows an alternative embodiment for a variable flow turbine.
  • This also has a control valve 64 which is arranged across the inner flow channel 54.
  • the control valve 64 has a valve insert 67 which can be actuated within the curved housing section 14 on seals 65 via a control linkage 66 according to FIG. 7.
  • the valve insert 67 moves between the open position and the closed position. 5
  • the valve insert 67 is flush with the inner surface of the curved section 14 and permitted. that exhaust gases flow through both the inner and outer flow channels 54 and 56, respectively.
  • By rotating the valve insert 67 in the direction of the partition 51 into a partially closed position part of the inner channel 54 is blocked.
  • the alternative embodiment also shows an axial divider wall 68 which, according to FIGS. 6 and 7, is arranged approximately perpendicular to the partition wall 51 and extends inwards from the fluid inlet 22 in both sections 14 and 16 of the turbine housing 13.
  • the axial divider wall 68 divides the turbine housing 13 into two axially separated fluid flow paths 70 and 72, each of these flow paths having inner and outer flow channels 54 and 56.
  • Each of the flow paths 70 and 72 are aligned with a separate exhaust manifold to prevent the pulsating exhaust gases from mixing before striking the turbine blades 34.
  • the new turbine 11 works with the exhaust gases that are passed from the exhaust manifold of an internal combustion engine through the flow paths 54 and 56 and impinge on the blades 34 of the turbine rotor 28.
  • the turbine rotor 28 is driven at a speed that is adapted to the speed and mass flow of the exhaust gases.
  • the rotational speed of the turbine rotor 28 is related to the working conditions of the internal combustion engine, e.g. B. in terms of their speed and load.
  • the cross-sectional flow area and shape of the flow channels 54 and 56 as well as the shape of the partition 50 affect the speed of the exhaust gases and thus also have an effect on the rotational speed of the turbine rotor 28.
  • the speed of the exhaust gases that strike the blades 34 of the turbine rotor 28 can be increased by partially or fully closing the control valve 36. This in turn leads to an increase in the energy surplus on the turbine rotor 28 in accordance with the well known Euler turbine equation:
  • Partially or fully closing the control valve 36 to increase the speed of the turbocharger increases the charge air flow to the internal combustion engine. This enables more fuel to be injected into the engine to achieve higher engine torques and to improve transient responsiveness without exceeding exhaust smoke density limits.
  • the control valve 36 can be modulated so that an optimal combination of air / fuel ratio and pressure differential across the engine can be achieved with maximum engine efficiency.
  • the cross-sectional area can be increased and the average radius of curvature of the mass flow can be reduced to monitor the speed of the turbocharger and the boost pressure of the engine.
  • vane-free, nozzle-like turbines according to the invention can process flows of exhaust gases whose speeds are above Mach I without encountering shock problems. This ability to process absolute speeds that exceed supersonic speeds is not available in turbines with guide vanes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Paper (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Abgasturbine mit variabler Strömung, insb. zum Antrieb von Turboladern von Brennkraftmaschinen mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Eine Turbine dieser Art ist aus der FR-A-1337865 bekannt. Bei dieser werden die Abgase durch zwei getrennte Leitungen einem geraden Eintrittsgehäuse zugeführt, an das der zum Turbinengehäuse gehörende Einlaßabschnitt anschließt, der bis zur Anschlußstelle des Spiralgehäuseabschnittes in einer Richtung entgegengesetzt der des Spiralgehäuseabschnittes gekrümmt verläuft. Im Eintrittsgehäuse beginnt eine Trennwand, die sich durch den Eingangsabschnitt bis in den Spiralgehäuseabschnitt erstreckt und jeweils den gleichen geraden bzw. gekrümmten Verlauf aufweist wie das Einlaßgehäuse, der Eingangsabschnitt bzw. der Spiralgehäuseabschnitt. Dadurch werden innere und äußere Strömungswege für die Abgase gebildet, die im Einlaßgehäuse und im Eingangsabschnitt etwa gleiche und gleichbleibende Querschnitte aufweisen. Der äußere Strömungsweg behält auch im Spiralgehäuseabschnitt bis zum Ende der Trennwand seine Querschnittsfläche im wesentlichen unverändert bei. Im Spiralgehäuseabschnitt enden die Trennwand und die Innenfläche des Spiralgehäuseabschnittes jeweils unmittelbar am äußeren Umfang eines festen gleichförmigen Leitschaufelabschnittes, der den Rotor umgibt. Der Leitschaufelkranz ist so ausgebildet, daß eine Leitschaufel eine annähernd tangential zum Umfang des Rotors verlaufende Verlängerung für das Ende der sich innerhalb des Spiralgehäuseabschnittes stetig dem äußeren Umfange des Leitschaufelkranzes nähernden Trennwand. Im geraden Eintrittsgehäuse ist ein umschaltbares ventilartiges Glied mit einer Betätigungseinrichtung vorgesehen. In einer Stellung dieses Gliedes ist der äußere Strömungsweg abgeschlossen, so daß die Gase aus den beiden Abgaszuleitungen sich mischen und ausschließlich dem inneren Strömungsweg zugeführt werden. Bei geöffnetem Ventilglied können dagegen die getrennt zugeführten Abgasströme nahezu unvermischt in den inneren bzw. den äußeren Strömungsweg eintreten. Durch den Verlauf der Trennwand im Spiralgehäuseabschnitt und durch den in diesem angeordneten Leitschaufelkranz ergibt sich, daß der innere Strömungsweg sowohl an der Übergangsstelle zwischen Eingangsabschnitt und Spiralgehäuseabschnitt wie auch im Bereich des radial äußeren Endes jeder Leitschaufel eine abrupte Querschnittsänderung aufweist, so daß sich die Querschnittsflächen bei zunehmender Annäherung der Trennwand an den Umfang des Leitschaufelkranzes die Querschnittsfläche nur im Mittel fortschreitend verringert. Eine abrupte Querschnittserweiterung erfährt auch der äußere Strömungskanal innerhalb des Spiralgehäuseabschnittes dort, wo die Trennwand am Umfang des Leitschaufelkranzes endet. Auch hier werden durch die Leitschaufeln die Querschnittsflächen des äußeren Strömungskanals in Höhe des jeweils radial äußeren Endes jeder Leitschaufel abrupt verändert.
  • In der FR-A-2465069 ist eine Abgasturbine beschrieben, bei der das Ende der Trennwand, die im Spiralgehäuseabschnitt den äußeren und den inneren Strömungsweg bildet, in Form einer etwa tangential am Umfang des Rotors anliegenden Leitflächenspitze ausgebildet ist. Der durch die Trennwand begrenzte äußere Strömungsweg nimmt in seiner Querschnittsfläche innerhalb des Spiralgehäuses seiner Breite nach ab und zwar stetig in Richtung zunehmender Annäherung dieses Strömungsweges bis hin unmittelbar an den Umfang des Rotors. Auch bei dieser bekannten Abgasturbine ist dem Spiralgehäuseabschnitt ein gerader Eingangsabschnitt zugeordnet, durch den bis zu seinem Eintrittsquerschnitt die Trennwand ebenfalls gerade verläuft. Im Bereich des Eintrittsquerschnittes des Eingangsabschnittes liegt ein Schieber, der so angeordnet ist, daß in einer Stellung der äußere Strömungsweg abgeschlossen ist, so daß die Gase aus der Zuleitung dem inneren Strömungsweg zugeführt werden. Bei geöffnetem Schieber kann dagegen die Abgasströmung in den inneren und den äußeren Strömungsweg eintreten. Wenn auch bei dieser bekannten Abgasturbine die Querschnitte der beiden Strömungswege in Strömungsrichtung abnehmen und die Strömung in beiden Strömungswegen direkt bis zum Umfang des Rotors geführt werden, zeigt die Praxis, daß die Effektivität der Abgasturbine nur über einen sehr begrenzten' Arbeitsbereich groß ist, bei größeren Arbeitsbereichen jedoch rasch abnimmt.
  • Es ist ferner eine Turbine mit einem dem Turbinengehäuse zugeordneten geraden Eintrittsgehäuseabschnitt mit Trennwand und ventilartigem Glied bekannt, das dem inneren Strömungsweg zugeordnet ist (vgl. US-A-41 77 006). Bei dieser bekannten Anordnung weisen Eingangsabschnitt und Spiralgehäuseabschnitt des Turbinengehäuses eine weitere Trennwand auf, die sich etwa senkrecht zu der die inneren und äußeren Strömungswege trennenden Trennwand und zur Drehachse des Rotors erstreckt und sich vom Eintritt des Eingangsabschnittes bis zum Ende der ersten Trennwand reicht. Dieser zusätzliche Trennwandabschnitt hält die getrennt zugeführten Abgasströme bis zum Auftreffen auf den Rotor strikt getrennt. Bei dieser bekannten Ausbildung endet die den äußeren und inneren Strömungsweg begrenzende Trennwand in einem erheblichen Abstand vom äußeren Umfang des Rotors, so daß auch die Gasstromführung durch diese Trennwand im erheblichen Abstand vom Umfang des Rotors endet. Im Eintritt des inneren Strömungsweges ist ein Ventil vorgesehen, das den inneren Strömungsweg abschließen kann. Der innere Strömungsweg weist einen unstetigen, d. h. zunächst abnehmenden, dann zunehmenden und wieder abnehmenden Querschnitt auf.
  • Bei diesen Turbinen mit variabler Strömung kann durch Verstellung des Ventils und Veränderung der Größe der Eintrittsöffnung des einen Strömungskanals die Querschnittsfläche des Fluidströmungsweges verändert werden. Dadurch lassen sich Änderungen in der Strömungsgeschwindigkeit und des Druckes kompensieren, die durch den Betrieb der Brennkraftmaschine bei verschiedenen Drehzahlen und unter unterschiedlichen Belastungen auftreten können.
  • Eine solche Turbine mit variabler Strömung kann den Wirkungsgrad der Brennkraftmaschine durch Verwendung von Kompressoren vergrößern. Diese weisen eine hohe Effektivität bei begrenzter Geschwindigkeit und Belastung und eine geringe Effektivität bei Spitzendrehmomentleistungen der Brennkraftmaschine auf. Hier kann eine Kompensation durch die Veränderungsmöglichkeit der Leistung der Turbine mit variabler Strömung bei Spitzendrehmomenten erreicht werden. Auch sind Turbinen mit variabler Strömung effektiver bei Zuständen unterhalb der maximalen Geschwindigkeit und Belastung.
  • Es ist jedoch wünschenswert einen Turbolader in Verbindung mit einer Turbine von variabler Strömung zu erhalten, die höchste Effektivität über den gesamten Arbeitsbereich der Brennkraftmaschine aufweist.
  • Es ist daher Aufgabe der Erfindung eine Turbine mit den Merkmalen des Oberbegriffs des Anspruchs 1 so weiterzuentwickeln, daß diese den zuletzt genannten Forderungen gerecht wird, so daß die von der zugehörigen Brennkraftmaschine erbrachte Leistung vergrößert werden kann. Dabei soll eine genauere Anpassung der Arbeitsweise der Turbine an den Bedarf und die Arbeitsweise der Brennkraftmaschine ermöglicht werden.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
  • Versuche haben gezeigt, daß durch die neue gekrümmte Ausbildung des Eingangsabschnittes im Vergleich zu Turbinen mit geradem oder gegensätzlich gekrümmtem Eingangsabschnitt eine wesentlich höhere Effektivität über einen größeren Arbeitsbereich erreicht werden kann. Durch die Anordnung und den Verlauf der Trennwand im gekrümmten Eingangsgehäuseabschnitt und im Spiralgehäuseabschnitt und durch die dadurch bedingte stetige Verringerung der jeweiligen Querschnittsflächen der beiden Strömungswege läßt sich eine wesentlich genauere und effektivere Steuerung der Strömung der Gase über den gesamten Querschnitt erreichen. Durch die Verstellung des ventilartigen Gliedes kann so das Moment der Abgase genau eingestellt werden. Die Drosselverluste werden durch die neue Ausbildung wesentlich vermindert und dadurch die Effektivität der Turbine gesteigert. Auch die Strömungsgeschwindigkeit läßt sich mit hoher Genauigkeit einstellen. Wesentlich ist dabei, daß bei der neuen Ausbildung die Gasströme durch die Trennwand bis in unmittelbare Nähe des äußeren Umfanges des Rotors zwangsweise geführt werden. Ein Leitschaufelkranz ist nicht erforderlich. Insgesamt erhält man die Möglichkeit, über das ventilartige Glied den Wirkungsgrad der Turbine für eine vorbestimmte Drehmomentkurve und über einen gewünschten großen Arbeitsbereich der Brennkraftmaschine zu variieren. Damit erreicht man eine Erhöhung der Leistung der Brennkraftmaschine. Die neue Ausbildung gestattet auch die Verwendung eines Kompressors mit hohem Wirkungsgrad bei begrenzten Geschwindigkeiten der Brennkraftmaschine. Auch erzielt man ein höheres Drehmoment bei niedrigeren Geschwindigkeiten.
  • Die zeitlich gleichrangige europäische Patentanmeldung EP-A-86467 (Art. 54.3) betrifft das Gehäuse einer Turbine für ähnliche Einsatzzwecke wie die vorliegende Turbine, wobei das Gehäuse jedoch auch für Turbinen mit fester Geometrie und unveränderlicher Strömung geeignet ist. Dabei geht es vor allem um einen in Strömungsrichtung kontinuierlich abnehmenden Krümmungsradius des Einlaßabschnittes des Gehäuses in der Weise, daß das relativ gleichförmige Strömungsprofil der Gase am Einlaß des gekrümmten Einlaßabschnittes in ein vorbestimmtes Wirbelgeschwindigkeits-Profil am Auslaß des gekrümmten Einlaßabschnittes umgewandelt wird.
  • Demgegenüber betrifft die vorliegende Erfindung eine Turbine mit veränderlicher Geometrie und damit veränderlichen Strömungsverhältnissen und um eine entsprechende Ausbildung und Anordnung der für diese Turbinen charakteristischen Trennwand, die sich über den Eingangsabschnitt und den Spiralgehäuseabschnitt erstreckt.
  • Vorteilhafte Weiterbildungen der neuen Turbine ergeben sich aus den Merkmalen der Unteransprüche. Von besonderer Bedeutung ist dabei, wenn das ventilartige Glied so einstellbar ist, daß die Abgase, die durch den sekundären inneren Strömungsweg strömen gegen die Trennwand gelenkt werden können, da dabei auch bei teilweiser Durchströmung des inneren Strömungsweges der maximale Krümmungsradius besonders wirksam ist.
  • Es kommen auch besonders günstige Strömungsverhältnisse zustande, wenn die Strömungswege auch in dem gekrümmten Eingangsabschnitt vom Einlaß aus bis zum Eintritt in den Spiralgehäuseabschnitt jeweils eine stetig abnehmende Querschnittsfläche aufweisen.
  • Dabei kann es zweckmäßig sein, wenn die Trennwand so angeordnet ist, daß der oder die äußeren Strömungswege und der oder die inneren Strömungswege im Bereich des gekrümmten Eingangsabschnittes in Richtung vom Anfang der Trennwand bis zum Eintritt in den Spiralgehäuseabschnitt jeweils einen abnehmenden Krümmungsradius aufweisen.
  • Die Erfindung wird nachfolgend anhand schematischer Zeichnungen an mehreren Ausführungsbeispielen näher erläutert.
  • Es zeigen :
    • Figur 1 eine Seitenansicht einer Turbine gemäß der Erfindung.
    • Figur 2 einen Querschnitt durch die Turbine nach Figur 1.
    • Figur 3 einen Teilschnitt entlang der Schnittlinie 111-111 der Fig. 1.
    • Figur 4 eine Draufsicht auf den Fluideinlaß der Maschine mit Blickrichtung entlang der Pfeile IV-IV der Figur 2.
    • Figur 5 im Querschnitt und im Ausschnitt eine abgewandelte Ausführungsform der Turbine.
    • Figur 6 eine Stirnansicht des Einlasses mit Blickrichtung entlang der-Pfeile VI-VI der Fig. 5 und
    • Figur 7 einen Längsschnitt entlang der Schnittlinie VII-VII der Figur 5.
  • Die in den Figuren, insb. Fig. 3, gezeigte Anordnung 10 umfaßt eine Turbine 11 mit variabler Strömung, die mit einem Kompressor 12 verbunden ist. Die ganze Anordnung 10 bildet einen Abgasturbolader.
  • Die Turbine weist ein Gehäuse 13 auf, das aus einem gekrümmten Einlaßabschnitt 14 und einem Spiralgehäuseabschnitt 16 besteht. Der gekrümmte Gehäuseabschnitt 14 ist ein bogenförmiger Teil, der mittels eines Flanschendes 18 über Bolzen und Bolzenlöcher 20 an den Abgasverteiler einer Brennkraftmaschine angeflanscht werden kann. Der gekrümmte Abschnitt 14 weist eine Winkelausdehnung von wenigstens 30° auf, vorzugsweise eine Ausdehnung zwischen 30 und 180°. Der bevorzugte Bereich für die Ausdehnung liegt zwischen 45° und 90°. Der gekrümmte Abschnitt 14 weist einen Einlaß 22 am Flanschende 18 auf und ist mit dem Spiralgehäuseabschnitt 16 am anderen Ende 24 verbunden. Der Spiralgehäuseabschnitt 16 weist eine Umfangsausdehnung von wenigstens 270° und vorzugsweise von etwa 360° auf. Der Bogen des Spiralgehäuseabschnittes 16 erstreckt sich um eine Achse, die senkrecht zum Papier nach Fig. 1 verläuft. Eine Verbindungswelle 26 verbindet drehbar einen Rotor 28 der Turbine mit einem Kompressorrad 30. Die Welle 26 rotiert um die Achse des Spiralgehäuses. Der Turbinenrotor 28, der in dem Gehäuse 13 eingeschlossen ist, weist mehrere in Umfangsrichtung in Abständen angeordnete Turbinenblätter oder Schaufeln 34 auf, die sich von der zentralen Achse in radialer Richtung nach außen erstrecken. Die besondere Form und Gestalt der Schaufeln 34 kann in bekannter Weise je nach Wunsch unterschiedlich sein. Das Turbinengehäuse 13 weist auch einen Auslaß 32 auf, der in Figur 3 zu sehen ist. Die Abgase einer Brennkraftmaschine werden in die Turbine 11 eingeleitet. Sie führen dazu, daß der Turbinenrotor 28 rotiert. Wenn der Rotor 28 umläuft wird das Kompressorrad 30 mitgenommen, und zwar über die Verbindungswelle 26. Das Kompressorrad 30 liefert auf diese Weise einen relativ hohen Ladedruck für die Brennkraftmaschine.
  • Nahe dem Fluideinlaß 22 ist ein Steuerventilglied 36 angeordnet. Dieses dient zur Steuerung der Gasströmung in dem Turbinengehäuse 13. Das Steuerventil 36 ist vorzugsweise ein Drehventil, das in der Innenfläche des gekrümmten Gehäuseabschnittes 14 eingepaßt ist. Das Ventil 36 weist einen Ventileinsatz 40 auf, der zwischen einer Offenstellung und einer geschlossenen Stellung bewegbar ist, um die Gasströmung durch die Turbine von variabler Strömung zu verändern und zu regeln. In der Offenstellung gemäß Fig. 2 liegt der Ventileinsatz 40 bündig mit der Innenfläche des gekrümmten Gehäuseabschnittes 14 und gestattet es so, daß die Abgase durch den gesamten gekrümmten Abschnitt 14 strömen. In der geschlossenen Stellung, die in Fig. 2 gestrichelt dargestellt ist, schränkt der Ventileinsatz 40 den Strömungsweg der Gase durch den gekrümmten Gehäuseabschnitt 14 ein. Das Ventil 36 wird durch eine Steuereinrichtung 42 über Stift 43 und Gestänge 44 betätigt. Die Steuereinrichtung 42 kann schwenkbar an einem Ende 46 an einer festen Stützeinrichtung 48 befestigt sein, so daß eine lineare Bewegung des Gestänges 44 in eine Drehbewegung des Steuerventils 36 umgesetzt wird. Es wird bemerkt, daß die Steuereinrichtung 42 manuell oder automatisch betätigt werden kann, wie dies im Stand der Technik bekannt ist. Die Steuereinrichtung 42 kann auch unterschiedlich ausgebildet werden, und zwar für im wesentlichen jede lineare oder nicht lineare Abhängigkeit auf Veränderungen von Maschinenparametern, z. B. der Arbeitsgeschwindigkeit, der Belastung, den Verteilereinlaßdruck, den Maschinenemissionen, der Rauchdichte der Abgase, welche die Maschine verlassen und in die Atmosphäre gelangen, von der Temperatur der Abgase oder von jeder Kombination dieser Faktoren. Zusätzlich kann die Steuereinrichtung 42 auf Parameter abgestellt werden, z. B. die Geschwindigkeit des Turbinenrotors 28 und auf die Drosselstellung.
  • Von dem Steuerventil 36 erstreckt sich in beide Abschnitte des Turbinengehäuses 13 eine Teilerwand oder Trennwand 50. Die Trennwand 50 läuft in eine Spitze 52 aus, die annähernd tangential am äußeren Umfang des Turbinenrotors 28 liegt. Diese Trennwand 50 ist ein bogenförmiges Glied, das einstückig mit dem Turbinengehäuse ausgebildet sein kann und dazu dient das Turbinengehäuse 13 in einen inneren oder sekundären Fluidkanal 54 und in einen äußeren oder primären Fluidkanal 56 zu unterteilen. Vorzugsweise ist die Querschnittsfläche des äußeren Fluidkanals 56 größer als die Querschnittsfläche des inneren Fluidkanals 54. Insbesondere wird bevorzugt, wenn die Querschnittsfläche des äußeren Fluidkanals 56 annähernd dreimal so groß ist wie die Querschnittsfläche des inneren Fluidkanals 54. Wenn die Querschnittsfläche des inneren und des äußeren Fluidkanals 54 bzw. 56 annähernd im Verhältnis von 1 : 3 stehen, schneidet der äußere Fluidkanal 56 annähernd dreimal so viel des Umfanges des Turbinenrotors 28 wie der innere Fluidkanal 54. Zusätzlich zu dieser Größendifferenz der Fluidkanäle 54 und 56 arbeitet die Trennwand 50 mit einer Innenfläche 58 des Spiralgehäuseabschnittes 16 zusammen, wie dies aus Figur 2 ersichtlich ist. Damit ergibt sich eine abnehmende Querschnittsfläche des äußeren Fluidkanals 56. Vorzugsweise nehmen die Querschnittsflächen beider Fluidkanäle 54 und 56 über den ganzen gekrümmten Gehäuseabschnitt und über den Spiralgehäuseabschnitt 14 bzw. 16 konstant ab. Dieses Merkmal liefert eine relativ gleichförmige Geschwindigkeit der Abgase beim Auftreffen auf die Turbinenschaufeln 34. Ein Drehen des Steuerventils 36 aus der Offenstellung zu einer teilweise geschlossenen Stellung führt dazu, daß die Abgase nach außen in Richtung auf die Teilerwand 50 abgelenkt werden. Dadurch steigert sich die Geschwindigkeit der Abgase, die in den beiden inneren und äußeren Kanälen 54 und 56 strömen. Die vergrößerte Geschwindigkeit kombiniert mit dem vergrößerten Krümmungsradius der Massenströmung der Abgase führt zu einer Vergrößerung der Leistung der Turbine 11.
  • Eine weitere Drehung des Steuerventils 36 in die voll geschlossene Stellung, wie sie gestrichelt in Fig. 2 gezeigt ist, leitet alle strömenden Abgase durch den äußeren Kanal 56. Dies führt zu einer weiteren Vergrößerung sowohl der Geschwindigkeit als auch des durchschnittlichen Krümmungsradius der Massenströmung der Abgase und maximiert die Ausgangsleistung der Turbine 11.
  • Der gekrümmte Gehäuseabschnitt 14 wirkt mit einer Innenfläche 58 des Spiralgehäuseabschnittes 16 zusammen, um eine Zunge 60 mit einer Spitze 62 zu bilden. Die Spitze 62 liegt am entgegengesetzten Ende 24 des gekrümmten Gehäuseabschnittes 14, die durch die strichpunktierte Linie angedeutet ist. Sie liegt in unmittelbarer Nähe des Umfanges des Turbinenrotors 28 und vorzugsweise tangential zu dem äußeren Umfang des Rotors. Die Zungenspitze 62 liegt in einem Winkelabstand von etwa 90° von der Spitze 52 der Trennwand 50, so daß etwa 75 % des Umfangsbereiches des Turbinenrotors 28 zum äußeren Fluidkanal 56 hin freiliegt. Die Spitze 62 und die Innenfläche 58 steuern die Strömung der Abgase zwischen dem äußeren Umfang des Turbinenrotors 28 und der Zunge 60. Die Spitze 62 kontrolliert außerdem jede Strömung der Abgase im Uhrzeigersinne, welche Strömung pulsierende Wirkung auf den Turbinenrotor 28 hätte.
  • Es wird nunmehr bezug genommen auf die Figuren 5 bis 7. In diesen ist eine alternative Ausführungsform für eine Turbine mit variabler Strömung gezeigt. Diese weist ebenfalls ein Steuerventil 64 auf, welches quer über den inneren Strömungskanal 54 angeordnet ist. Das Steuerventil 64 weist einen Ventileinsatz 67 auf, der innerhalb des gekrümmten Gehäuseabschnittes 14 auf Dichtungen 65 über ein Steuergestänge 66 nach Fig. 7 betätigbar ist. Wenn das Steuerventil 64 gedreht wird, bewegt sich der Ventileinsatz 67 zwischen der Offenstellung und der geschlossenen Stellung. In der Offenstellung nach Fig. 5 ist der Ventileinsatz 67 bündig mit der Innenfläche des gekrümmten Abschnittes 14 und gestattet. daß Abgase durch sowohl den inneren als auch den äußeren Strömungskanal 54 bzw. 56 strömen. Durch Drehung des Ventileinsatzes 67 in Richtung auf die Trennwand 51 in eine teilweise geschlossene Stellung wird ein Teil des inneren Kanals 54 gesperrt. In der voll geschlossenen Stellung, die durch gestrichelte Linien in Fig. 5 angedeutet ist, blockiert der Ventileinsatz 67 die Abgase gegenüber dem inneren Fluidkanal 54 vollständig. Dies ermöglicht sowohl eine Zunahme der Gasgeschwindigkeit als auch eine Zunahme des durchschnittlichen Krümmungsradius der Massenströmung der Abgase. Dadurch wird die Ausgangsleistung der Turbine 11 erhöht. Die alternative Ausführungsform zeigt auch eine axiale Teilerwand 68, die nach Fig. 6 und 7 annähernd senkrecht zu der Trennwand 51 angeordnet ist und sich vom Fluideinlaß 22 in beiden Abschnitten 14 und 16 des Turbinengehäuses 13 nach innen erstreckt. Die axiale Teilerwand 68 unterteilt das Turbinengehäuse 13 in zwei axial getrennte Fluidströmungswege 70 und 72, wobei jeder dieser Strömungswege innere und äußere Strömungskanäle 54 und 56 aufweisen. Jeder der Strömungswege 70 und 72 ist in Fluchtung mit einer getrennten Abgasverteilerleitung, um zu verhindern, daß die pulsierenden Abgase sich mischen können, bevor sie auf die Turbinenschaufeln 34 auftreffen.
  • Die neue Turbine 11 arbeitet mit den Abgasen, die von dem Abgasverteiler einer Brennkraftmaschine durch die Strömungswege 54 und 56 geleitet werden und auf die Schaufeln 34 des Turbinenrotors 28 auftreffen. Der Turbinenrotor 28 wird mit einer Geschwindigkeit angetrieben, die an die Geschwindigkeit und die Massenströmung der Abgase angepaßt ist. Die Drehgeschwindigkeit des Turbinenrotors 28 wird in Bezug gesetzt zu den Arbeitsbedingungen der Brennkraftmaschine, z. B. in Bezug auf deren Geschwindigkeit und Belastung. Die Querschnittsströmungsfläche und Form der Strömungskanäle 54 und 56 ebenso wie die Form der Trennwand 50 beeinflußt die Geschwindigkeit der Abgase und hat somit auch eine Wirkung auf die Drehgeschwindigkeit des Turbinenrotors 28. Durch eine Bemessung der Querschnittsströmungsfläche des äußeren Kanals 56 auf annähernd das Dreifache der Querschnittsströmungsfläche des inneren Kanals 54 und durch Verwendung eines gekrümmten Gehäuseabschnittes 14 in Strömungsrichtung vor dem Spiralgehäuseabschnitt 16 erhält man eine bessere Steuerung der Geschwindigkeit der Abgase. Durch Schließen des Steuerventils 36 kann eine hohe Strömungsgeschwindigkeit der Gase durch den äußeren Kanal 56 bei relativ niedrigen Arbeitsgeschwindigkeiten der Brennkraftmaschine erzielt werden. Wenn der innere Strömungskanal 54 blockiert ist muß die gesamte Gasströmung durch den äußeren Strömungskanal 56 passieren. Dies stellt sicher, daß eine ausreichende Gasgeschwindigkeit erzielt wird, um den Turbinenrotor 28 mit einer ausreichenden Geschwindigkeit anzutreiben, so daß das Kompressorrad 30 den Ladedruck für die Brennkraftmaschine steigern kann. Wenn die Geschwindigkeit oder die Belastung der Brennkraftmaschine zunehmen, nehmen auch die Geschwindigkeit und die Massenströmung der Abgase zu. An einem oberen Punkt der Drehmomentkurve der Maschine führen Geschwindigkeit und Massenströmung der Abgase dazu, daß der Turbinenrotor 28 so schnell dreht, daß entweder eine Komponente des Turboladers 10 kritische Arbeitsgrenzen überschreiten könnte und ausfällt oder der Turbolader könnte Ladedrücke erzeugen, die die Arbeitsgrenzen der Brennkraftmaschine übersteigen. Bevor irgend eines dieser Ereignisse auftritt wird das Steuerventil 36 in Richtung auf die Offenstellung gedreht, um zu ermöglichen, daß die eintretenden Abgase durch sowohl den inneren als auch den äußeren Strömungskanal 54 bzw. 56 fließen.
  • Durch teilweises Schließen des Steuerventils 36 wird die Gasströmung weiter weg von der zentralen Achse des Turbinenrotors 28 gelenkt. Dadurch wird der durchschnittliche Krümmungsradius der Massenströmung vergrößert. Die Geschwindigkeit nimmt ebenfalls zu aufgrund der Abnahme der Querschnittsfläche des gekrümmten Abschnittes 14. In jeder Stellung des Steuerventils 36 führt die Gasgeschwindigkeit senkrecht zum Krümmungsradius unmittelbar stromabwärts von dem Steuerventil 36 zu einem bestimmten Winkelmoment. Durch Schließen des Steuerventils 36 kann der Krümmungsradius des Massenflusses und die Geschwindigkeit der Abgasströmung vergrößert werden, so daß auch das Winkelmoment zunimmt. Diese Zunahme der durchschnittlichen Massengeschwindigkeit wird stromabwärts am Umfang des Turbinenrotors 28 annähernd gemäß folgender Formel festgestellt :
    Figure imgb0001
  • In dieser Gleichung bedeuten :
    • c die durchschnittliche Massengeschwindigkeit der Abgase.
    • K einen konstanten Wert, der durch die Werte c und R unmittelbar stromab des Steuerventils bestimmt wird und die den gewünschten Wert von c am Umfang des Turbinenrotors erzeugt, und
    • R der durchschnittliche Krümmungsradius der Massenströmung für die Abgase.
  • Die oben gegebene Gleichung läßt sich auf alle Turbinen anwenden, welche einen Spiralgehäuseabschnitt aufweisen, in dem Reibung und Kompressibilität vernachlässigbar sind.
  • Durch teilweises oder volles Schließen des Steuerventils 36 kann die Geschwindigkeit der Abgase, die auf die Schaufeln 34 des Turbinenrotors 28 treffen, vergrößert werden. Dies wiederum führt zu einer Vergrößerung des Energieüberschusses auf den Turbinenrotor 28 in Übereinstimmung mit der gut bekannten Turbinengleichung von Euler :
    Figure imgb0002
  • In dieser Gleichung bedeuten :
    • H die Energie, die pro Masseneinheit der Abgase auf den Turbinenrotor übertragen wird ;
    • U1 die Geschwindigkeit der Turbinenschaufeln 34 am Umfang des Rotors 28 ;
    • CU1 die Geschwindigkeit der Abgase tangential zum Umfang des Turbinenrotors 28 ;
    • Cu2 die durchschnittliche tangentiale Massengeschwindigkeit der Abgase bei Verlassen des Rotors 28 ;
    • U2 die Geschwindigkeit der Turbinenschaufeln 34 im Bereich des durchschnittlichen Massenradius der strömenden Abgase bei Verlassen des Rotors 28 und
    • gc die Schwerkraftkonstante.
  • Teilweise oder volles Schließen des Steuerventils 36 zur Vergrößerung der Geschwindigkeit des Turboladers vergrößert die Ladeluftströmung zur Brennkraftmaschine. Dies ermöglicht, daß mehr Kraftstoff in die Brennkraftmaschine zur Erzielung höherer Maschinendrehmomente und zur Verbesserung der Übergangsansprechempfindlichkeit injeziert werden kann, ohne daß die Abgasrauchdichtgrenzen überschritten werden. Für Maschinenbelastungen unterhalb der maximalen Drehmomentkurve kann das Steuerventil 36 so moduliert werden, daß eine optimale Kombination von Luft/Kraftstoffverhältnis und Druckdifferential über die Maschine bei maximaler Brennkraftmaschinenwirksamkeit erzielt werden kann. In gleicher Weise kann durch teilweise oder volles Öffnen des Steuerventils 36 bei hohen Maschinengeschwindigkeiten und Belastungen die Querschnittsfläche vergrößert und der durchschnittliche Krümmungsradius der Massenströmung verringert werden, um die Geschwindigkeit des Turboladers und den Ladedruck der Maschine zu überwachen.
  • Es sollte bemerkt werden, daß die leitschaufelfreien, düsenartigen Turbinen nach der Erfindung Strömungen von Abgasen verarbeiten können, deren Geschwindigkeiten oberhalb Mach I liegen, ohne daß Stoßprobleme auftreten. Diese Fähigkeit, absolute Geschwindigkeiten verarbeiten zu können, welche Überschallgeschwindigkeiten überschreiten, ist bei Turbinen mit Leitschaufeln nicht vorhanden.

Claims (12)

1. Abgasturbine mit variabler Strömung, insb. zum Antrieb von Turboladern von Brennkraftmaschinen, bestehend aus einem um eine Achse drehbarem Rotor (28) mit einer Mehrzahl von im gegenseitigen Umfangsabstand angeordneten Rotorblättern (34), aus einem Turbinengehäuse (13), in dem der Rotor drehbar ist und das einen zum Rotor koaxialen Auslaß (32), einen Spiralgehäuseabschnitt (16) und einen gekrümmten Eingangsabschnitt (14) mit im Abstand von der Achse angeordnetem Einlaß (22) aufweist, aus einer Trennwand, die im Eingangsabschnitt (14) und im Spiralgehäuseabschnitt (16) einen äußeren und einen inneren Strömungsweg (56, 54) bildet, innerhalb des Spiralgehäuseabschnittes (16) im gleichen Sinne wie dieser Spiralgehäuseabschnitt gekrümmt ist und so im Spiralgehäuseabschnitt (16) angeordnet ist, daß eine etwa tangential am äußeren Umfang des Rotors (28) liegende, den äußeren und den inneren Strömungsweg getrennt haltende feste Leitflächenspitze (52) gebildet wird und der innere Strömungsweg (54) innerhalb des Spiralgehäuseabschnittes (16) bis unmittelbar zum Umfang des Rotors (28) hin eine bei zunehmender Annäherung dieses Strömungsweges (54) an den Rotor abnehmende Querschnittsfläche aufweist, sowie aus einem ventilartigen Glied (36) mit Betätigungseinrichtung zur Veränderung des Einströmquerschnittes eines der beiden Strömungswege im Eingangsabschnitt (14), dadurch gekennzeichnet, daß der sich zwischen seinem Anschluß (18) an den Abgasverteiler der Brennkraftmaschine und dem Anschluß an den Spiralgehäuseabschnitt (16) erstreckende Eingangsabschnitt (14) und der im Eingangsabschnitt (14) liegende Teil der Trennwand (50) im gleichen Sinne gekrümmt sind, wie der Spiralgehäuseabschnitt (16), daß die Trennwand (50) sich in dem Spiralgehäuseabschnitt (16) so erstreckt, daß ihr Ende selbst die etwa tangential am Umfang des Rotors (28) liegende Leitflächenspitze (52) bildet und die Querschnittsflächen des äußeren Strömungsweges (56) wie auch die des inneren Strömungsweges (54) innerhalb des Spiralgehäuses bis hin unmittelbar an den Umfang des Rotors (28) heran in Richtung zunehmender Annäherung des Strömungsweges an den Rotor (28) stetig abnehmen, und daß das ventilartige Glied (36) dem inneren Strömungsweg (54) so zugeordnet ist, daß bei Bewegen des ventilartigen Gliedes (36) in Richtung auf die den inneren Strömungsweg (54) abschließende Stellung sowohl der durchschnittliche Krümmungsradius der Massenströmung als auch die Strömungsgeschwindigkeit der Abgase zunehmen.
2. Turbine nach Anspruch 1, dadurch gekennzeichnet, daß im Eingangsabschnitt (14) die Querschnittsfläche des äußeren Strömungsweges (56) größer als die des inneren Strömungsweges (54) ist.
3. Turbine nach Anspruch 2, dadurch gekennzeichnet, daß im Eingangsabschnitt (14) die Querschnittsfläche des äußeren Strömungsweges (56) etwa dreimal so groß ist wie die Strömungsfläche des inneren Strömungsweges (54).
4. Turbine nach Anspruch 3, dadurch gekennzeichnet, daß der äußere Strömungsweg (56) annähernd dreimal so viel vom Umfang des Rotors (28) schneidet wie der innere Strömungsweg (54).
5. Turbine nach Anspruch 1, dadurch gekennzeichnet, daß der gekrümmte Eingangsabschnitt (24) sich über einen Bogenwinkel, gemessen entlang der Krümmung des Eingangsabschnittes (14), zwischen etwa 30° und etwa 180° erstreckt.
6. Turbine nach Anspruch 5, dadurch gekennzeichnet, daß der gekrümmte Eingangsabschnitt (14) sich über einen Bogenwinkel zwischen etwa 45° und etwa 90° erstreckt, und zwar gemessen entlang der Krümmung des Eingangsabschnittes (14).
7. Turbine nach Anspruch 1, dadurch gekennzeichnet, daß die Innenfläche (40) des gekrümmten Eingangsabschnittes (14) und die Innenfläche (58) des Spiralgehäuseabschnittes (26) eine Zunge (60) am Eintritt in den Spiralgehäuseabschnitt (16) bilden, die sich etwa tangential zum Rotorumfang erstreckt und die mit Ihrer Spitze (62) etwa am äußeren Rotorumfang anliegt, und daß sich der gekrümmte Eingangsabschnitt (14) über einen Bogenwinkel von mindestens 30°, gemessen entlang der Krümmung des Eingangsabschnittes (14),' und der Spiralgehäuseabschnitt (26) über eine Bogenlänge von mindestens 270°, gemessen entlang der Krümmung des Spiralgehäuseabschnittes, erstreckt, und daß die beiden Innenflächen (40, 48) konvergieren und die Spitze (52) der Trennwand (50) um eine Bogenlänge, gemessen entlang der Krümmung des Spiralgehäuseabschnittes, von etwa 90° gegenüber dem Ende (62) der Zunge (60) versetzt ist.
8. Turbine nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß das ventilartige Glied (36 bzw. 64) in jede Stellung zwischen einer ersten Stellung, in der der innere Strömungsweg (54) für die Fluidströmung voll geöffnet ist, und einer zweiten Stellung einstellbar ist, in der der innere Strömungsweg (54) gegenüber der Fluidströmung abgesperrt ist.
9. Turbine nach Anspruch 8, dadurch gekennzeichnet, daß das ventilartige Glied (36 bzw. 64) so einstellbar ist, daß die Abgase, die durch den sekundären inneren Strömungsweg (54) strömen, gegen die Trennwand (50, 51) gelenkt werden.
10. Turbine nach Anspruch 4, dadurch gekennzeichnet, daß ein zusätzlicher Trennwandabschnitt (68) vorgesehen ist, der sich etwa senkrecht zur der Trennwand (50) bzw. (61) erstreckt und vom Einlaß aus in das Gehäuse ragt, um dieses in zwei axial nebeneinanderliegende und voneinander getrennte Strömungswege zu unterteilen, deren jeder einen äußeren Strömungsweg und einen inneren Strömungsweg aufweisen.
11. Turbine nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Strömungswege auch in dem gekrümmten Eingangsabschnitt (14) vom Einlaß (22) aus bis zum Eintritt in den Spiralgehäuseabschnitt (16) jeweils eine stetig abnehmende Querschnittsfläche aufweisen.
12. Turbine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der oder die äußeren Strömungswege und der oder die inneren Strömungswege im Bereich des gekrümmten Eingangsabschnittes (14) in Richtung vom Anfang des Trennwand (50, 51) bis zum Eintritt in den Spiralgehäuseabschnitt (16) jeweils einen abnehmenden Krümmungsradius aufweisen.
EP83101306A 1982-02-16 1983-02-11 Durchflussregelung für den Spiralgehäuse-einlass einer Radialturbine Expired EP0086466B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83101306T ATE27474T1 (de) 1982-02-16 1983-02-11 Durchflussregelung fuer den spiralgehaeuse-einlass einer radialturbine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34928382A 1982-02-16 1982-02-16
US349283 1982-02-16

Publications (2)

Publication Number Publication Date
EP0086466A1 EP0086466A1 (de) 1983-08-24
EP0086466B1 true EP0086466B1 (de) 1987-05-27

Family

ID=23371688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101306A Expired EP0086466B1 (de) 1982-02-16 1983-02-11 Durchflussregelung für den Spiralgehäuse-einlass einer Radialturbine

Country Status (10)

Country Link
EP (1) EP0086466B1 (de)
JP (1) JPS58150028A (de)
AT (1) ATE27474T1 (de)
AU (1) AU550503B2 (de)
BR (1) BR8300621A (de)
CA (1) CA1206419A (de)
DE (1) DE3371804D1 (de)
ES (1) ES519793A0 (de)
MX (1) MX156452A (de)
ZA (1) ZA831015B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932843B2 (en) 2011-06-10 2018-04-03 Borgwarner Inc. Double flow turbine housing turbocharger

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144101U (ja) * 1983-03-18 1984-09-26 株式会社小松製作所 可変式ベ−ンレスハウジングの切換装置
JPS60128931A (ja) * 1983-12-16 1985-07-10 Mazda Motor Corp 排気タ−ビン過給装置
DE29716357U1 (de) 1997-09-11 1998-02-12 Ohra Regalanlagen GmbH, 50169 Kerpen Stahlbaubühne
DE102006060907A1 (de) 2006-12-20 2008-06-26 Mp-Engineering Gmbh Abgasturbolader
US7694518B2 (en) * 2007-08-14 2010-04-13 Deere & Company Internal combustion engine system having a power turbine with a broad efficiency range
DE102008020406A1 (de) * 2008-04-24 2009-10-29 Daimler Ag Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs und Brennkraftmaschine
DE102009056632A1 (de) * 2009-12-02 2011-06-09 Continental Automotive Gmbh Turbolader
KR101051016B1 (ko) 2010-12-14 2011-07-21 한국기계연구원 흡기분리형 터빈
CN103557069A (zh) * 2013-11-13 2014-02-05 中国北方发动机研究所(天津) 一种可切换双入口非对称涡轮箱
US10267318B2 (en) 2014-03-21 2019-04-23 Fluid Equipment Development Company, Llc Method and system for tuning a turbine using a secondary injection valve
US10301952B2 (en) * 2014-05-19 2019-05-28 Borgwarner Inc. Dual volute turbocharger to optimize pulse energy separation for fuel economy and EGR utilization via asymmetric dual volutes
WO2024179520A1 (en) * 2023-02-28 2024-09-06 Wuxi Cummins Turbo Technologies Company Ltd. Turbine housing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1337864A (fr) * 1962-08-07 1963-09-20 Snecma Mode de régulation des turbo-compresseurs de suralimentation et dispositif de mise en oeuvre

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH239435A (de) * 1942-05-23 1945-10-15 Buechi Alfred Freifliegend gelagerte Turbine, insbesondere für heisse Gase.
CA1026234A (en) * 1972-12-06 1978-02-14 Cummins Engine Company Turbine housing
US4027994A (en) * 1975-08-08 1977-06-07 Roto-Master, Inc. Partially divided turbine housing for turbochargers and the like
US4177006A (en) * 1977-09-29 1979-12-04 The Garrett Corporation Turbocharger control
JPS5849682B2 (ja) * 1977-10-05 1983-11-05 三菱重工業株式会社 タ−ビンケ−シングの製造方法
DE2934041C2 (de) * 1979-08-23 1983-08-11 Günther Prof. Dr.-Ing. 5100 Aachen Dibelius Gesteuerte Abgasturboladerturbine
JPS591332B2 (ja) * 1979-09-17 1984-01-11 石川島播磨重工業株式会社 過給機用タ−ビン車室
DE3034271C2 (de) * 1979-09-17 1982-11-11 Ishikawajima-Harima Jukogyo K.K., Tokyo Turbinengehäuse für Turbolader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1337864A (fr) * 1962-08-07 1963-09-20 Snecma Mode de régulation des turbo-compresseurs de suralimentation et dispositif de mise en oeuvre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932843B2 (en) 2011-06-10 2018-04-03 Borgwarner Inc. Double flow turbine housing turbocharger

Also Published As

Publication number Publication date
DE3371804D1 (en) 1987-07-02
ES8402637A1 (es) 1984-02-01
CA1206419A (en) 1986-06-24
BR8300621A (pt) 1983-11-08
JPS58150028A (ja) 1983-09-06
EP0086466A1 (de) 1983-08-24
MX156452A (es) 1988-08-23
ES519793A0 (es) 1984-02-01
ZA831015B (en) 1984-09-26
ATE27474T1 (de) 1987-06-15
AU550503B2 (en) 1986-03-20
AU9165882A (en) 1983-08-25

Similar Documents

Publication Publication Date Title
DE4242494C1 (en) Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
DE112015005540B4 (de) Abgasturbolader mit kombinierter Einstelleinrichtung für Bypassventil und Flutenverbindung
DE3346472C2 (de) Radialturbine mit veränderlicher Leistung
DE2506500C2 (de) Turbofan-Triebwerk
EP3051099B1 (de) Verdichter mit variabler anströmgeometrie
EP0243596B1 (de) Axialdrallregler für einen Abgasturbolader für Verbrennungsmotoren
EP1488084B1 (de) Variabler abgasturbolader
EP0086466B1 (de) Durchflussregelung für den Spiralgehäuse-einlass einer Radialturbine
DE4232400C1 (de)
DE3034271A1 (de) Turbinengehaeuse fuer turbolader
EP0093462A1 (de) Abgasturbolader mit verstellbarem Ringschieber
DE19924228A1 (de) Mehrflutiger, regelbarer Abgasturbolader
EP3542069B1 (de) Verdichter, abgasturbolader und brennkraftmaschine
DE2500496A1 (de) Kompressorvorrichtung
EP0735253A2 (de) Verfahren und Vorrichtung zur Registeraufladung einer Brennkraftmaschine
WO2014095003A1 (de) Abgasf?hrungsabschnitt für eine turbine und verfahren zur regelung einer turbine
WO2020120254A1 (de) Abgasturbine mit variabler geometrie für einen abgasturbolader
EP1530671B1 (de) Abgasturbolader für eine Brennkraftmaschine
DE69318242T2 (de) Einlassregelanlage einer Turbomaschine
DE112014005008T5 (de) Turbine mit variabler Eintrittsquerschnittsfläche
EP1673525B1 (de) Verdichter im ansaugtrakt einer brennkraftmaschine
DE60305011T2 (de) Verbesserte schaufelausführung zur verwendung in turboladern mit variabler geometrie
DE102011120167A1 (de) Verdichter für einen Abgasturbolader,insbesondere eines Kraftwagens
DE3132134A1 (de) Verfahren und vorrichtung zur verminderung des stroemungsquerschnitts des auspuffgases im leitkranz eines turbokompressors fuer einen verbrennungsmotor
EP0130408B1 (de) Einrichtung zur Verstellung des Turbinenzuströmquerschnittes eines Abgasturboladers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19830922

ITCL It: translation for ep claims filed

Representative=s name: LENZI & C.

EL Fr: translation of claims filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 27474

Country of ref document: AT

Date of ref document: 19870615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3371804

Country of ref document: DE

Date of ref document: 19870702

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910207

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910211

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910418

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920229

Ref country code: CH

Effective date: 19920229

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83101306.5

Effective date: 19920904