EP0086337B1 - Process for the control of excess air in firing equipments and control equipment for the realization of the process - Google Patents

Process for the control of excess air in firing equipments and control equipment for the realization of the process Download PDF

Info

Publication number
EP0086337B1
EP0086337B1 EP83100320A EP83100320A EP0086337B1 EP 0086337 B1 EP0086337 B1 EP 0086337B1 EP 83100320 A EP83100320 A EP 83100320A EP 83100320 A EP83100320 A EP 83100320A EP 0086337 B1 EP0086337 B1 EP 0086337B1
Authority
EP
European Patent Office
Prior art keywords
input
control device
load
excess air
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83100320A
Other languages
German (de)
French (fr)
Other versions
EP0086337A1 (en
Inventor
Paul Prof. Dr. Ing. Profos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROGRAMMELECTRONIC ENGINEERING AG
Original Assignee
PROGRAMMELECTRONIC ENGINEERING AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6154711&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0086337(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by PROGRAMMELECTRONIC ENGINEERING AG filed Critical PROGRAMMELECTRONIC ENGINEERING AG
Priority to AT83100320T priority Critical patent/ATE26166T1/en
Publication of EP0086337A1 publication Critical patent/EP0086337A1/en
Application granted granted Critical
Publication of EP0086337B1 publication Critical patent/EP0086337B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen

Definitions

  • the present invention relates to a method for regulating the excess air in a furnace, in which, based on the measurement of the excess air in the flue gas after a target / actual value comparison of the excess air in a control device, a corrective intervention on the air flow and / or fuel flow takes place, depending on the proportional gain of the control device is varied by the load level, and at least some of the time parameters of the control device are automatically adapted to the load level of the furnace, the excess air setpoint supplied to a controller of the control device being changed as a function of the load level, and a control device for executing the Method with a first input for a load-dependent signal, a second input for an air excess-dependent signal, a controller, the first input being operatively connected to a differential unit via a function generator and the second input n are and at least one circuit is provided for adapting at least some of the time constants of the control device to the degree of load, which circuit has an adaptation input which is acted upon as a function of the signal at the first input
  • Compound controls of furnaces are known, primary air or fuel controls, in which the fuel flow and the air flow as a function of the load level ⁇ specified by the operator or a fire power controller, defined as the amount of fuel burned per unit time, based on the maximum combustible fuel amount per unit time two interlinked control devices, one in the fuel and one in the air supply, can be adjusted.
  • Other primary controls for air and fuel are also known, e.g. B.
  • Compound regulations in which the amount of air and the fuel are regulated to a value corresponding to the degree of loading ⁇ or ratio arrangements in which the degree of loading ⁇ is checked and regulated for a constant fuel-air ratio.
  • the present invention now aims to improve a method of the type mentioned in terms of its effect.
  • a control device for executing the above-mentioned method is distinguished by the wording of claim 6.
  • the proposed method and the proposed control device for executing the method take into account the difficult properties of the controlled system and the high demands that must be placed on the control quality for economic, ecological and safety reasons. They can be used above all on burner furnaces for solid, liquid and gaseous fuels, as well as on mixed burner furnaces, but also on grate furnaces.
  • FIG. 1 shows a furnace 1 with a fuel supply line 2 and an air supply line 3.
  • the furnace shown is controlled by a common control system 4 of the usual type.
  • the representation of the invention in connection with a combustion plant with compound control is not intended to imply any restriction on the usability of the method according to the invention and the control device for this. Rather, the invention can be connected to all variants of primary controls and / or controls, by means of which the air supply and / or fuel supply for the firing system is intervened as a function of the load degree ⁇ .
  • the compound controller 4 acts via actuators 5 and. 6 corresponding to the fuel supply in line 2 respectively.
  • the air supply in line 3. 7 shows an adjusting element, by means of which the load level ⁇ for the furnace can be set.
  • the units on the furnace described so far correspond to the conventional equipment of a furnace.
  • the control device now relates to the rest of the device shown in the block diagram according to FIG. 1, with a dashed border.
  • a measuring element 8 is arranged at a suitable point in the flue gas duct la and continuously measures the excess air. This is preferably done by measuring the residual oxygen content in the flue gas.
  • the measuring element 8 emits a control signal x which is significant for the excess air.
  • the signal at the output of the adjusting unit 7 corresponding to the set degree of load ß, for the sake of simplicity also designated ß, is fed to an input E ß of the control device.
  • the signal ⁇ is fed therein to a first function generator 9, at the output of which the signal w appears as a reference variable of the control device.
  • This signal w is fed as a signal w 'to a controller 11 via a reference variable signal filter 10 with the transfer function G (p), together with the controlled variable x.
  • This in turn acts on a motor controller 12, which forms the corresponding signals S for forward or backward running of a correction servomotor 13.
  • the signal S r fed back from the servomotor 13 to the motor controller 12 ensures a proportional association between changes in the manipulated variable y and those of the motor stroke H on the output side of the servomotor 13.
  • the stroke H as a mechanical signal, is superimposed on a mechanical superposition unit 14 of known type 14 over the actuating stroke h output by the composite controller 4.
  • the controller 11 respectively. its transfer function are by a gain K R and by a or several time constants T R are determined.
  • the controller 11 has adaptation inputs, also referred to below as control inputs E K , E T , for controlling these time constants.
  • the load level signal ⁇ is transmitted via one or more function generators 15a, b to the control inputs E K , E T provided as signals A K, respectively. AT supplied.
  • the transfer function G (p) of the guide signal filter 10 is determined by one or more filter time constants T F.
  • the filter now has one or more adaptation or control inputs E TF , at which the characteristic time constants T F can be adjusted.
  • the load level signal ⁇ is passed through one or more function generators 16, the output signals A Tl -A Tx of which are connected to the control inputs E TF provided on the filter 10.
  • the load level signal ⁇ is connected to a function generator 17, the output signal A 17 of which acts directly on the motor control 12, whereby load-dependent precontrol of the function of the correction servomotor 13 in the sense of a feedforward control is achieved.
  • the function generators 9, 15, 16, 17 can preferably be adjusted with regard to their function course, as shown with the correspondingly indicated intervention signals P.
  • FIG. 2 A preferred form of implementation of the control device described is shown in FIG. 2.
  • An oxygen measuring probe 21 placed in the flue gas stream generates an electrical potential difference corresponding to the 0 2 content, which is evaluated in a function generator 22 by delogarithming and amplified in an amplifier 23 to the electrical signal of the controlled variable x.
  • This signal acts on one input of a differential amplifier 24, on the other input of which the command variable w 'acts.
  • the command variable signal w ' is generated as a function of the load degree ⁇ by the function generator 25 and passed through an electronic filter 26, preferably with a low-pass characteristic, as the step response shown shows.
  • the control deviation signal ⁇ x is fed to a controller 28, in which it is multiplied in an electronic multiplier 29 by a signal A K derived from the load level signal ⁇ by means of a function generator 30.
  • the multiplication unit 29 achieves the load-dependent adaptation of the controller gain K R by modulating the control deviation signal ⁇ x with the signal A K generated by the function generator 30.
  • the output of the multiplier 29 is the one hand, fed directly to a summing amplifier 31, on the other hand to a further multiplying unit 32, in which it is multiplied by a, depending on the load signal ⁇ in a function generator 33 generated signal T A.
  • the output signal of the multiplication unit 32 is fed to an integration unit 34 and its output signal in turn is fed to the summing amplifier 31.
  • the controller 28 shown here as a PI controller is modulated depending on the load level of the multiplier 32nd
  • the load level signal ⁇ is further passed to a function generator 35 and its output signal A 35 in the sense of a disturbance variable feed back to the summing amplifier 31.
  • the load level signal ⁇ is passed to the function generator 37, the output signals A TF of which are passed to the corresponding control inputs E TF on the filter 26.
  • all time constants of the filter are modulated in the same way.
  • the output of the summing amplifier 31 with the signal A 3 influences control relays 38 and 39, which in turn cause the servomotor 40 to run forwards or backwards.
  • the movements of the servomotor 40 are, by the superposition device 41, as already explained with reference to FIG. 1, the air flap actuating stroke h by a conventional control or. Regulation overlaid.
  • the load level signal ⁇ is finally set, for example, by a potentiometer 42.
  • the position control of the servomotor 40 takes place via a potentiometer 44, to which the mechanical output movement of the motor is transmitted and which feeds an electrical signal S r back to the summing amplifier 31.
  • the function generators can in the usual way, such. B. be implemented with diode networks, its function course is preferably adjustable via interventions P. However, it goes without saying that the entire control device can be constructed digitally, analogously or hybrid.
  • control device can of course only achieve the desired optimal control effect if it is also set according to the static and dynamic properties of the controlled system.
  • the control theory does not provide any information.
  • the setting of the function generator 25, respectively. 9 has to be carried out on the basis of attempts to optimize the furnace, which have to be carried out on a case-by-case basis.
  • the setting of the disturbance variable function generator 35 and. 17 results from the load-dependent steady-state positions of the correction servo motor 40, respectively. 13, which must also be determined experimentally on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Capacitors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

1. A process for controlling the excess air in a furnace in which the air flow and/or fuel flow is corrected on the basis of measurement of the excess air in the flue gas after a prescribed value/actual value comparison of the excess air in a control device, the proportional sensitivity (gain) of the control device being varied according to the load rate (beta), and at least some of the time parameters of the control device are automatically adapted to the load rate (beta) of the furnace, the prescribed excess air value (w, w') fed as command variable (reference variable) to a controller (11, 28) of the control device being varied according to the load rate (beta), characterized in that the prescribed excess air value (w, w') is fed to the controller (11, 28) through a signal filter (10, 26) having at least one time constant, at least one of the time constants (TF ) being varied according to the load rate (beta).

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Regelung des Luftüberschusses an einer Feuerung, bei welchem aufgrund der Messung des Luftüberschusses im Rauchgas nach einem Soll/Ist-Wertvergleich des Luftüberschusses in einer Regeleinrichtung ein korrigierender Eingriff auf den Luftstrom und/oder Brennstoffstrom erfolgt, wobei in Abhängigkeit vom Lastgrad die Proportionalverstärkung der Regeleinrichtung variiert wird, und mindestens ein Teil von Zeitparametern der Regeleinrichtung automatisch dem Lastgrad der Feuerung angepasst wird, wobei der einem Regler der Regeleinrichtung als Führungsgrösse zugeführte Luftüberschuss-Sollwert in Abhängigkeit vom Lastgrad verändert wird, sowie eine Regeleinrichtung zur Ausführung des Verfahrens mit einem ersten Eingang für ein lastgradabhängiges Signal, einem zweiten Eingang für ein luftüberschussabhängiges Signal, einem Regler, wobei der erste Eingang über einen Funktionsgenerator und der zweite Eingang mit einer Differenzeinheit wirkverbunden sind und mindestens eine Schaltung zur Anpassung zumindest eines Teils der Zeitkonstanten der Regeleinrichtung an den Lastgrad vorgesehen ist, welche Schaltung einen in Abhängigkeit vom Signal am ersten Eingang beaufschlagten Adaptionseingang aufweist.The present invention relates to a method for regulating the excess air in a furnace, in which, based on the measurement of the excess air in the flue gas after a target / actual value comparison of the excess air in a control device, a corrective intervention on the air flow and / or fuel flow takes place, depending on the proportional gain of the control device is varied by the load level, and at least some of the time parameters of the control device are automatically adapted to the load level of the furnace, the excess air setpoint supplied to a controller of the control device being changed as a function of the load level, and a control device for executing the Method with a first input for a load-dependent signal, a second input for an air excess-dependent signal, a controller, the first input being operatively connected to a differential unit via a function generator and the second input n are and at least one circuit is provided for adapting at least some of the time constants of the control device to the degree of load, which circuit has an adaptation input which is acted upon as a function of the signal at the first input.

Es sind Verbundsteuerungen von Feuerungen bekannt, primäre Luft- bzw. Brennstoffsteuerungen, bei denen der Brennstoffstrom und der Luftstrom in Abhängigkeit des vom Operateur oder einem Feuerleistungsregler vorgegebenen Belastungsgrades β, definiert als verbrannte Brennstoffmenge pro Zeiteinheit, bezogen auf die maximale verbrennbare Brennstoffmenge pro Zeiteinheit, durch zwei miteinander gekoppelte Steuereinrichtungen, je eine in der Brennstoff- und eine in der Luftzuführung, verstellt werden. Es sind auch andere primäre Steuerungen oder Regelungen von Luft und Brennstoff bekannt, z. B. Verbundregelungen, bei denen je die Luft- und die Brennstoffmenge auf einen dem Belastungsgrad β entsprechenden Wert geregelt werden oder Verhältnisregelungen, bei denen nach Massgabe des Belastungsgrades β auf konstantes Brennstoff-Luft-Verhältnis geprüft und geregelt wird.Compound controls of furnaces are known, primary air or fuel controls, in which the fuel flow and the air flow as a function of the load level β specified by the operator or a fire power controller, defined as the amount of fuel burned per unit time, based on the maximum combustible fuel amount per unit time two interlinked control devices, one in the fuel and one in the air supply, can be adjusted. Other primary controls for air and fuel are also known, e.g. B. Compound regulations in which the amount of air and the fuel are regulated to a value corresponding to the degree of loading β or ratio arrangements in which the degree of loading β is checked and regulated for a constant fuel-air ratio.

Abgesehen von Sonderfällen können weder Brennstoffnoch Luftstrom durch solche primäre Steuer- bzw. Regeleinrichtungen fehlerfrei eingestellt und gehalten werden, da immer noch zahlreiche zufällige Störwirkungen diesbezüglich Einfluss nehmen. Beim Brennstoffstrom sind dies z. B. Schwankungen von Temperatur, Zähigkeit, Dichte, Brennstoffzusammensetzung etc., beim Luftstrom Schwankungen von Druck, Temperatur und Feuchte, die Abweichungen vom gewünschten Wert bewirken. Dazu kommen noch gerätetechnische Unvollkommenheiten. Aus diesem Grund ist es weiter bekannt geworden, durch Messung des tatsächlichen Luftüberschusses im Rauchgas und eine daraus abgeleitete, durch einen Regler bewirkte Korrektur des Luftstromes und/oder des Brennstoffstroms die Wirkungen solcher Störeinflüsse zu beseitigen, womit bei lastabhängig angepasstem Luft-Ueberschuss-Sollwert theoretisch optimale Verbrennungsverhältnisse eingehalten werden können.Apart from special cases, neither fuel nor air flow can be set and maintained without errors by such primary control or regulating devices, since numerous random interference effects still have an influence in this regard. In the fuel flow, these are e.g. B. fluctuations in temperature, toughness, density, fuel composition etc., in the airflow fluctuations in pressure, temperature and humidity, which cause deviations from the desired value. There are also device-technical imperfections. For this reason, it has become known to eliminate the effects of such interferences by measuring the actual excess air in the flue gas and a correction of the air flow and / or the fuel flow derived therefrom, thus theoretically with an air-excess setpoint value which is adapted as a function of the load optimal combustion conditions can be maintained.

Nun ist immer wieder versucht worden, eine solche Luft-Ueberschussregelung unter Verwendung handelsüblicher Proportional-, Integral- Proportional-Integral- oder PID-Reglern mit festen Zeit-Einstellwerten zu verwirklichen, in den allermeisten Fällen jedoch mit unbefriedigendem Ergebnis. Vor allem immer dann, wenn der Lastgrad über einen weiten Bereich verändert wurde, ergaben sich auch bei sorgfältiger Reglereinstellung entweder Stabilitätsprobleme - Pendeln der Regelung - oder träge Regelwirkung, verbunden mit grossen vorübergehenden und/oder bleibenden Regelabweichungen oder sogar beides zugleich. Dies hat seine Ursachen in den dynamischen Eigenschaften der Regelstrecke, bestehend aus Feuerungsanlage, einschliesslich Rauchgaskanal bis zum Messort des Luftüberschusses - deren statische und dynamische Parameter im Betrieb grossen Aenderungen unterliegen.Attempts have been made again and again to implement such an air excess control using commercially available proportional, integral, proportional-integral or PID controllers with fixed time setting values, but in most cases with unsatisfactory results. Above all, whenever the load level was changed over a wide range, there were either stability problems - pendulum control - or sluggish control effects, even with careful control adjustment, combined with large temporary and / or permanent control deviations or even both at the same time. This is due to the dynamic properties of the controlled system, consisting of the combustion system, including the flue gas duct up to the measuring point of the excess air - the static and dynamic parameters of which are subject to major changes during operation.

Eine weitere Schwierigkeit liegt darin begründet, dass ein auch nur kurzfristiges Unterschreiten der minimalen Luftzufuhr wegen der sofort einsetzenden Rauchbildung sowie aus Sicherheitsgründen nicht toleriert werden kann. Ein solches ist aber mit einem Luftüberschuss-Regler üblicher Bauart namentlich bei schnellen und grossen Laständerungen unvermeidlich, da die Regelung nicht schnell genug einzugreifen vermag.Another difficulty lies in the fact that even short-term falls below the minimum air supply cannot be tolerated due to the immediate onset of smoke formation and for safety reasons. However, this is unavoidable with an excess air regulator of the usual type, particularly in the case of rapid and large load changes, since the regulation cannot intervene quickly enough.

Im weiteren sind aus der DE-OS 2 753 520 und DE-OS 1 526 277 Verfahren zur Regelung des Luftüberschusses an Feuerungen bekannt geworden, bei welchen aufgrund der Messung des Luftüberschusses im Rauchgas ein korrigierender Eingriff auf den Luftstrom erfolgt. Dabei wird eine lastabhängige Verstellung der Proportional-Verstärkung des offenen Regelkreises vorgenommen. Es ist aber bekannt, dass die Uebertragungskennwerte einer Feuerungsanlage einschliesslich Rauchgaskanal zum Messort des Luftüberschusses an einer Feuerungsanlage, im Betrieb der Anlage grossen Aenderungen unterliegen. Dies trifft insbesondere auch für die Zeitparameter resp. Zeitkonstanten einer solchen Strecke zu. Durch alleinige, lastabhängige Verstellung der Proportionalverstärkung des offenen Regelkreises kann somit eine auch nur angenähert optimale dynamische Regelwirkung im Betrieb nicht sichergestellt werden, denn durch die lastabhängige Variation der Streckenzeitkonstanten verändert sich der Frequenzgang des offenen Regelkreises wie dessen kritische Frequenz und die dort vorliegende Phasenreserve.Furthermore, from DE-OS 2 753 520 and DE-OS 1 526 277 methods for regulating the excess air in furnaces are known, in which a corrective intervention on the air flow takes place on the basis of the measurement of the excess air in the flue gas. A load-dependent adjustment of the proportional gain of the open control loop is carried out. However, it is known that the transmission parameters of a combustion system including the flue gas duct to the measuring point of the excess air in a combustion system are subject to major changes in the operation of the system. This is especially true for the time parameters resp. Time constants of such a route. Solely, load-dependent adjustment of the proportional gain of the open control loop cannot ensure an even optimally optimal dynamic control effect during operation, because the load-dependent variation of the system time constant changes the frequency response of the open control loop as well as its critical frequency and the phase reserve there.

Nun ist es weiter aus dem Art. « Adaptiv-Steuerungen der Reglereinstellung mit einfachen Mitteln von W. Peinke, in Regelungstechnik, Heft 6 (1966), Seiten 274 ff. bekannt geworden, dass die Kennwerte verfahrenstechnischer Regelstrecken - am Beispiel einer Analyse-Regelstrecke gezeigt, worunter auch Regelungen des Luftüberschusses an Feuerungen fallen - oft vom Durchfluss, wie vom Lastgrad abhängen. Darauf basierend wird dort vorgeschlagen, die Nachstellzeit eines Reglers in Funktion des Durchflusses, somit im Falle einer Luftüberschussregelung, in Funktion des Lastgrades, zu verstellen. Ebenso ist in « Regelung der Verbrennung mittels Prozessrechner aus Gas/Erdgas, Zeitschrift des DVGW Deutscher Verein des Gas- und Wasserfaches, Jahrgang 1980, Heft 4, Seiten 141 ff. ausgeführt, dass zur Verbesserung der Regelgüte die Steuerung der Reglerkennwerte, in Abhängigkeit von der Prozess-Eingangsgrösse empfohlen wird.Now it is known from Art. «Adaptive controls of controller setting with simple means by W. Peinke, in Control Technology, Volume 6 (1966), pages 274 ff. That the characteristic values of process control systems - using the example of an analysis control system shown, which also includes regulations for excess air in furnaces - often on the flow rate and on the load level depend. Based on this, it is proposed there to adjust the readjustment time of a controller as a function of the flow, that is, in the case of excess air control, as a function of the degree of load. Likewise, in «Regulation of combustion by means of a gas / natural gas process computer, magazine of the DVGW German Association of the Gas and Water Industry, year 1980, issue 4, pages 141 ff the process input size is recommended.

Da bei derartigen Regelungen der Luftüberschuss-Sollwert mit dem Lastgrad verändert werden muss, ist auch im letztgenannten Artikel vorgeschlagen, den Luftüberschuss-Sollwert mit der Brennerleistung bzw. dem Lastgrad funktionell zu verknüpfen.Since in such regulations the excess air setpoint must be changed with the degree of load, it is also proposed in the last-mentioned article to functionally link the excess air setpoint with the burner output or the degree of load.

Die vorliegende Erfindung bezweckt nun ein Verfahren eingangs genannter Art bezüglich seiner Wirkung weiter zu verbessern.The present invention now aims to improve a method of the type mentioned in terms of its effect.

Dies wird durch das Verfahren gemäss Anspruch 1 erreicht.This is achieved by the method according to claim 1.

Durch Einführung eines Signalfilters, woran mindestens ein Teil der Zeitkonstanten, in Abhängigkeit vom Lastgrad, verstellt wird, nebst dem bekannten Vorsehen einer Regeleinrichtung, woran, in Abhängigkeit vom Lastgrad, die Proportionalverstärkung und mindestens ein Teil der Zeitparameter verstellt werden, wird grundsätzlich der Freiheitsgrad an der vorgesehenen Regelung zur Optimierung ihres Verhaltens erhöht, woraus ohne weiteres ersichtlich ist, dass mehr Optimierungskriterien, unabhängig voneinander, erfüllt werden können.By introducing a signal filter, which is used to adjust at least some of the time constants, depending on the degree of load, in addition to the known provision of a control device, by means of which, depending on the degree of load, the proportional gain and at least some of the time parameters are adjusted, the degree of freedom is basically changed the proposed regulation for optimizing their behavior is increased, from which it is readily apparent that more optimization criteria can be met independently of one another.

Die Probleme, die mit schnellen Laständerungen verknüpft sind, werden weiter dadurch berücksichtigt, dass die Regelwirkung durch eine Aufschaltung des Lastgrades als Störgrösse ergänzt wird.The problems associated with rapid load changes are further taken into account in that the control effect is supplemented by the load level being applied as a disturbance variable.

Eine Regeleinrichtung zur Ausführung des genannten Verfahrens zeichnet sich nach dem Wortlaut des Anspruchs 6 aus.A control device for executing the above-mentioned method is distinguished by the wording of claim 6.

Das vorgeschlagene Verfahren und die vorgeschlagene Regeleinrichtung zur Ausführung des Verfahrens tragen den schwierigen Eigenschaften der Regelstrecke und den zugleich hohen Anforderungen, die aus ökonomischen, ökologischen und sicherheitstechnischen Gründen an die Regelgüte gestellt werden müssen, Rechnung. Sie lassen sich vor allem auf Brennerfeuerungen für feste, flüssige und gasförmige Brennstoffe anwenden, sowie auf Misch-Brenner-Feuerungen, aber auch auf Rostfeuerungen.The proposed method and the proposed control device for executing the method take into account the difficult properties of the controlled system and the high demands that must be placed on the control quality for economic, ecological and safety reasons. They can be used above all on burner furnaces for solid, liquid and gaseous fuels, as well as on mixed burner furnaces, but also on grate furnaces.

Weitere Merkmale der Erfindung werden im Zusammenhang mit der Figurenbeschreibung ersichtlich,Further features of the invention will become apparent in connection with the description of the figures,

Die Erfindung wird anschliessend beispielsweise anhand von Figuren erläutert. Es zeigen :

  • Figur 1 ein Blockschema der Regeleinrichtung an einer Feuerung, beispielsweise mit Verbundsteuerung,
  • Figur 2 eine bevorzugte Realisierungsform der Regeleinrichtung gemäss Fig. 1.
The invention is subsequently explained, for example, using figures. Show it :
  • FIG. 1 shows a block diagram of the control device on a furnace, for example with a composite control,
  • FIG. 2 shows a preferred embodiment of the control device according to FIG. 1.

In Fig. 1 ist eine Feuerungsanlage 1 mit einer Brennstoffzufuhrleitung 2 und einer Luftzufuhrleitung 3 dargestellt. Die dargestellte Feuerungsanlage sei durch eine Verbundsteuerung 4 üblicher Bauart gesteuert. Die Darstellung der Erfindung im Zusammenhang mit einer Feuerungsanlage mit Verbundsteuerung soll keinerlei Einschränkung auf die Verwendbarkeit des erfindungsgemässen Verfahrens und der Regeleinrichtung hierzu bedeuten. Vielmehr kann die Erfindung mit allen Varianten von primären Steuerungen und/oder Regelungen verbunden werden, mit deren Hilfe in Abhängigkeit des Lastgrades β auf die Luftzufuhr und/oder Brennstoffzufuhr für die Feuerungsanlage eingegriffen wird.1 shows a furnace 1 with a fuel supply line 2 and an air supply line 3. The furnace shown is controlled by a common control system 4 of the usual type. The representation of the invention in connection with a combustion plant with compound control is not intended to imply any restriction on the usability of the method according to the invention and the control device for this. Rather, the invention can be connected to all variants of primary controls and / or controls, by means of which the air supply and / or fuel supply for the firing system is intervened as a function of the load degree β.

Die Verbundsteuerung 4 wirkt über Stellorgane 5 resp. 6 entsprechend auf die Brennstoffzufuhr in Leitung 2 resp. die Luftzufuhr in Leitung 3 ein. Mit 7 ist ein Einstellorgan dargestellt, mit dessen Hilfe der Lastgrad β für die Feuerung einstellbar ist.The compound controller 4 acts via actuators 5 and. 6 corresponding to the fuel supply in line 2 respectively. the air supply in line 3. 7 shows an adjusting element, by means of which the load level β for the furnace can be set.

Die bis anhin beschriebenen Aggregate an der Feuerung entsprechen der konventionellen Ausrüstung einer Feuerungseinrichtung.The units on the furnace described so far correspond to the conventional equipment of a furnace.

Die erfindungsgemässe Regeleinrichtung bezieht sich nun auf den Rest der im Blockschema gemäss Fig. 1 dargestellten Einrichtung, gestrichelt umrandet. Ein Messorgan 8 ist an passender Stelle im Rauchgaskanal la angeordnet und misst kontinuierlich den Luftüberschuss. Dies erfolgt vorzugsweise über eine Messung des Restsauerstoffgehaltes im Rauchgas. Das Messorgan 8 gibt an seinem Ausgang ein für den Luftüberschuss signifikantes Regelsignal x ab. Das dem eingestellten Lastgrad ß entsprechende Signal am Ausgang der Verstelleinheit 7, der Einfachheit halber ebenfalls mit ß bezeichnet, wird einem Eingang Eß der Regeleinrichtung zugeführt. Das Signal β wird darin einem ersten Funktionsgenerator 9 zugeführt, an dessen Ausgang das Signal w als Führungsgrösse der Regeleinrichtung erscheint. Dieses Signal w wird über ein Führungsgrössen-Signalfilter 10 mit der Uebertragungsfunktion G(p) als Signal w' einem Regler 11 zugeleitet, zusammen mit der Regelgrösse x. Im Regler 11 wird zunächst die Regelabweichung Δx = x-w' und daraus entsprechend dem gewählten Regelalgorithmus, vorzugsweise mit PI-Verhalten, die Stellgrösse y gebildet. Diese wirkt ihrerseits auf eine Motorsteuerung 12, welche daraus entsprechende Signale S für Vorwärts- bzw. Rückwärtslauf eines Korrektur-Stellmotors 13 bildet. Durch das vom Stellmotor 13 auf die Motorsteuerung 12 rückgeführte Signal Sr wird hierbei eine proportionale Zuordnung zwischen Aenderungen der Stellgrösse y und solchen des Motorhubes H, ausgangsseitig des Stellmotors 13, sichergestellt. Der Hub H, als mechanisches Signal, wird an einer mechanischen Ueberlagerungseinheit bekannter Bauart 14 dem von der Verbundsteuerung 4 ausgegebenen Stellhub h überlagert.The control device according to the invention now relates to the rest of the device shown in the block diagram according to FIG. 1, with a dashed border. A measuring element 8 is arranged at a suitable point in the flue gas duct la and continuously measures the excess air. This is preferably done by measuring the residual oxygen content in the flue gas. At its output, the measuring element 8 emits a control signal x which is significant for the excess air. The signal at the output of the adjusting unit 7 corresponding to the set degree of load ß, for the sake of simplicity also designated ß, is fed to an input E ß of the control device. The signal β is fed therein to a first function generator 9, at the output of which the signal w appears as a reference variable of the control device. This signal w is fed as a signal w 'to a controller 11 via a reference variable signal filter 10 with the transfer function G (p), together with the controlled variable x. In the controller 11, the control deviation Δx = xw 'and, based on the selected control algorithm, preferably with a PI behavior, the manipulated variable y are formed. This in turn acts on a motor controller 12, which forms the corresponding signals S for forward or backward running of a correction servomotor 13. The signal S r fed back from the servomotor 13 to the motor controller 12 ensures a proportional association between changes in the manipulated variable y and those of the motor stroke H on the output side of the servomotor 13. The stroke H, as a mechanical signal, is superimposed on a mechanical superposition unit 14 of known type 14 over the actuating stroke h output by the composite controller 4.

Der Regler 11 resp. seine Uebertragungsfunktion sind durch eine Verstärkung KR sowie durch eine oder mehrere Zeitkonstanten TR bestimmt. Der Regler 11 weist Adaptionseingänge, im weiteren auch Steuereingänge EK, ET genannt auf, für die Steuerung dieser Zeitkonstanten. Das Lastgradsignal ß wird über einen oder mehrere Funktionsgeneratoren 15a, b den vorgesehenen Steuereingängen EK, ET als Signale AK resp. AT zugeführt.The controller 11 respectively. its transfer function are by a gain K R and by a or several time constants T R are determined. The controller 11 has adaptation inputs, also referred to below as control inputs E K , E T , for controlling these time constants. The load level signal β is transmitted via one or more function generators 15a, b to the control inputs E K , E T provided as signals A K, respectively. AT supplied.

Die Uebertragungsfunktion G(p) des Führungssignalfilters 10 ist bestimmt durch einen oder mehrere Filterzeitkonstanten TF. Das Filter weist nun einen oder mehrere Adaptions- bzw. Steuereingänge ETF auf, an welchen die charakteristischen Zeitkonstanten TF verstellt werden können. Das Lastgradsignal ß wird zu diesem Zweck über einen oder mehrere Funktionsgeneratoren 16 geführt, deren Ausgangssignale ATl-ATx auf die vorgesehenen Steuereingänge ETF am Filter 10 geschaltet sind.The transfer function G (p) of the guide signal filter 10 is determined by one or more filter time constants T F. The filter now has one or more adaptation or control inputs E TF , at which the characteristic time constants T F can be adjusted. For this purpose, the load level signal β is passed through one or more function generators 16, the output signals A Tl -A Tx of which are connected to the control inputs E TF provided on the filter 10.

Schliesslich ist das Lastgradsignal β auf einen Funktionsgenerator 17 geschaltet, dessen Ausgangssignal A17 direkt auf die Motorsteuerung 12 einwirkt, womit eine lastabhängige Vorsteuerung der Funktion des Korrekturstellmotors 13 im Sinne einer Störgrössenaufschaltung erzielt wird.Finally, the load level signal β is connected to a function generator 17, the output signal A 17 of which acts directly on the motor control 12, whereby load-dependent precontrol of the function of the correction servomotor 13 in the sense of a feedforward control is achieved.

Zur Anpassung der Regeleinrichtung an eine konkrete Feuerungsanlage sind die Funktionsgeneratoren 9, 15, 16, 17 vorzugsweise bezüglich ihres Funktionsverlaufes, wie mit den entsprechend indizierten Eingriffsignalen P dargestellt, einstellbar.In order to adapt the control device to a specific firing system, the function generators 9, 15, 16, 17 can preferably be adjusted with regard to their function course, as shown with the correspondingly indicated intervention signals P.

Eine bevorzugte Realisationsform der beschriebenen Regeleinrichtung ist in Fig. 2 dargestellt. Eine im Rauchgasstrom plazierte Sauerstoffmessonde 21 erzeugt eine dem 02-Gehalt entsprechende elektrische Potentialdifferenz, die in einem Funktionsgenerator 22 durch Delogarithmierung ausgewertet und in einem Verstärker 23 zum elektrischen Signal der Regelgrösse x verstärkt wird. Dieses Signal wirkt auf den einen Eingang eines Differenzverstärkers 24, auf dessen anderen Eingang die Führungsgrösse w' einwirkt. Das Führungsgrössen-Signal w' wird als Funktion des Lastgrades ß durch den Funktionsgenerator 25 erzeugt und über ein elektronisches Filter 26, vorzugsweise mit Tiefpasscharakteristik, wie die gezeigte Schrittantwort zeigt, geleitet. Das Regelabweichungssignal Δx wird einem Regler 28 zugeführt, worin es in einer elektronischen Multipliziereinheit 29 mit einem, vom Lastgradsignal β mittels eines Funktionsgenerators 30 abgeleiteten Signal AK multipliziert wird. Durch die Multipliziereinheit 29 wird die lastabhängige Anpassung der Reglerverstärkung KR erreicht, indem das Regelabweichungssignal Δx mit dem vom Funktionsgenerator 30 generierten Signal AK moduliert wird. Der Ausgang der Multipliziereinheit 29 wird einerseits direkt auf einen Summierverstärker 31 geführt, anderseits auf eine weitere Multipliziereinheit 32, in welcher es mit einem, abhängig vom Lastsignal β in einem Funktionsgenerator 33 generierten Signal AT multipliziert wird. Das Ausgangssignal der Multipliziereinheit 32 wird einer Integrationseinheit 34 zugeleitet und deren Ausgangssignal wiederum dem Summierverstärker 31 zugeführt. Mit dem Signal AT wird an der Multipliziereinheit 32 die Nachstellzeit T, des hier als PI-Regler dargestellten Reglers 28 lastgradabhängig moduliert.A preferred form of implementation of the control device described is shown in FIG. 2. An oxygen measuring probe 21 placed in the flue gas stream generates an electrical potential difference corresponding to the 0 2 content, which is evaluated in a function generator 22 by delogarithming and amplified in an amplifier 23 to the electrical signal of the controlled variable x. This signal acts on one input of a differential amplifier 24, on the other input of which the command variable w 'acts. The command variable signal w 'is generated as a function of the load degree β by the function generator 25 and passed through an electronic filter 26, preferably with a low-pass characteristic, as the step response shown shows. The control deviation signal Δx is fed to a controller 28, in which it is multiplied in an electronic multiplier 29 by a signal A K derived from the load level signal β by means of a function generator 30. The multiplication unit 29 achieves the load-dependent adaptation of the controller gain K R by modulating the control deviation signal Δx with the signal A K generated by the function generator 30. The output of the multiplier 29 is the one hand, fed directly to a summing amplifier 31, on the other hand to a further multiplying unit 32, in which it is multiplied by a, depending on the load signal β in a function generator 33 generated signal T A. The output signal of the multiplication unit 32 is fed to an integration unit 34 and its output signal in turn is fed to the summing amplifier 31. With the signal A T is the integral time T, the controller 28 shown here as a PI controller is modulated depending on the load level of the multiplier 32nd

Das Lastgradsignal β ist weiter auf einen Funktionsgenerator 35 geführt und dessen Ausgangssignal A35 im Sinne einer Störgrössenaufschaltung wiederum auf den Summierverstärker 31.The load level signal β is further passed to a function generator 35 and its output signal A 35 in the sense of a disturbance variable feed back to the summing amplifier 31.

Zur Steuerung der Zeitkonstanten TF am Filter 26 und Anpassung seines Uebertragungsverhaltens ist das Lastgradsignal β auf den Funktionsgenerator 37 geführt, dessen Ausgangssignale ATF auf die entsprechenden Steuereingänge ETF am Filter 26 geführt sind. Hier werden alle Zeitkonstanten des Filters gleich moduliert.To control the time constant T F on the filter 26 and adapt its transmission behavior, the load level signal β is passed to the function generator 37, the output signals A TF of which are passed to the corresponding control inputs E TF on the filter 26. Here all time constants of the filter are modulated in the same way.

Der Ausgang des Summierverstärkers 31 mit dem Signal A3, beeinflusst Steuerrelais 38 und 39, welche ihrerseits den Stellmotor 40 zu Vorwärts- oder Rückwärtslauf veranlassen. Die Bewegungen des Stellmotors 40 werden durch die Ueberlagerungsvorrichtung 41, wie bereits anhand von Fig. 1 erläutert, dem Luftklappenstellhub h von einer konventionellen Steuerung resp. Regelung überlagert. Das Lastgradsignal β wird schliesslich beispielsweise durch ein Potentiometer 42 eingestellt. Ebenso erfolgt die Positionsregelung des Stellmotors 40 über ein Potentiometer 44, auf welches die mechanische Ausgangsbewegung des Motors übertragen wird und das ein elektrisches Signal Sr auf den Summierverstärker 31 rückführt. Die Funktionsgeneratoren können in üblicher Art und Weise, so z. B. mit Dioden-Netzwerken, realisiert sein, ihr Funktionsverlauf ist dabei vorzugsweise über Eingriffe P einstellbar. Es versteht sich jedoch von selbst, dass die ganze Regeleinrichtung digital, analog oder hybrid aufgebaut sein kann.The output of the summing amplifier 31 with the signal A 3 influences control relays 38 and 39, which in turn cause the servomotor 40 to run forwards or backwards. The movements of the servomotor 40 are, by the superposition device 41, as already explained with reference to FIG. 1, the air flap actuating stroke h by a conventional control or. Regulation overlaid. The load level signal β is finally set, for example, by a potentiometer 42. Likewise, the position control of the servomotor 40 takes place via a potentiometer 44, to which the mechanical output movement of the motor is transmitted and which feeds an electrical signal S r back to the summing amplifier 31. The function generators can in the usual way, such. B. be implemented with diode networks, its function course is preferably adjustable via interventions P. However, it goes without saying that the entire control device can be constructed digitally, analogously or hybrid.

Die vorstehend beschriebene erfindungsgemässe Regeleinrichtung lässt selbstverständlich nur dann die gewünschte optimale Regelwirkung erzielen, wenn sie auch entsprechend den statischen und dynamischen Eigenschaften der Regelstrecke eingestellt wird. Die Grundwerte der Reglerparameter entsprechend Vollast bei β = 1 sind nach den bekannten Optimierungsregeln der Regeltheorie zu ermitteln. Für die Einstellung der Funktionen an den Funktionsgeneratoren 30, 33, 35 und 37 gemäss Fig. 2 resp. 9, 15, 16 und 17 gemäss Fig. 1 bezüglich der Lastabhängigkeit ihres Ausgangssignals liefert die Regeltheorie jedoch keine Angaben.The control device according to the invention described above can of course only achieve the desired optimal control effect if it is also set according to the static and dynamic properties of the controlled system. The basic values of the controller parameters corresponding to full load at β = 1 are to be determined according to the known optimization rules of control theory. For the setting of the functions on the function generators 30, 33, 35 and 37 according to FIG. 2 and 9, 15, 16 and 17 according to FIG. 1 with regard to the load dependency of their output signal, however, the control theory does not provide any information.

Entscheidend ist hier nun die Erkenntnis, dass die statischen und dynamischen Eigenschaften einer gegebenen Regelstrecke der vorliegenden Art praktisch nur vom Lastgrad β abhängen. Daraus ergibt sich, dass die optimalen Reglerparameter ebenfalls nur von β abhängig sind, d. h. in Funktion von ß gesteuert werden können. Nun lässt sich im weiteren aufgrund thermodynamischer und strömungstechnischer Ueberlegungen zeigen, dass die Zeitkonstanten Ts der Strecke, welche ihr dynamisches Verhalten kennzeichnen, mit hinreichender Genauigkeit dem Lastgrad β indirekt proportional sind. Die Abhängigkeit der Streckenverstärkung Ks vom Lastgrad, die durch Ventil-, Klappen, Ventilator- und Getriebekennlinien bestimmt wird, lässt sich anderseits nicht allgemein angeben, sondern muss von Fall zu Fall in der Anlage experimentell ermittelt werden.The decisive factor here is the realization that the static and dynamic properties of a given controlled system of the type in question practically depend only on the load factor β. This means that the optimal controller parameters are also only dependent on β, ie they can be controlled as a function of β. Now it can be shown further on the basis of thermodynamic and fluidic considerations that the time constants T s of the line, which characterize their dynamic behavior, are indirectly proportional to the load degree β with sufficient accuracy. The dependency of the line gain K s on the degree of load, which is determined by valve, flap, fan and transmission characteristics, cannot be specified on the other hand, but must be in the system from case to case can be determined experimentally.

Aufgrund regeltheoretischer Ueberlegungen ergeben sich damit für die Lastabhängigkeit der Reglereinstellwerte die folgenden Beziehungen als Grundlage für die Einstellung der Funktionsgeneratoren :

  • Regler-Verstärkung :
    Figure imgb0001
    wobei Ko = konstant der optimalen Kreisverstärkung entspricht.
  • Regler-Zeitkonstanten :
    Figure imgb0002
    wobei TR allgemein charakteristische Zeitkonstanten am Regler bezeichnet, wie Nachstellzeit T, oder Vorhaltezeit Ty.
Based on theoretical considerations, the following relationships result for the load dependency of the controller setting values as a basis for the setting of the function generators:
  • Controller gain:
    Figure imgb0001
    where K o = constant corresponds to the optimal loop gain.
  • Controller time constants:
    Figure imgb0002
    where T R denotes generally characteristic time constants on the controller, such as reset time T, or derivative time Ty.

Obige Zeitkonstantenbeziehung lässt sich auch sinngemäss für die lastabhängige Anpassung der Filterzeitkonstanten TF verwenden.The above time constant relationship can also be used analogously for the load-dependent adaptation of the filter time constant T F.

Damit ergeben sich die folgenden Einstellregeln, die durch die entsprechenden Funktionsgeneratoren zu realisieren sind :

  • Funktionsgenerator 30 resp.15a :
    Figure imgb0003
  • Funktionsgenerator 33 resp.15b :
    Figure imgb0004
  • Funktionsgenerator 37 resp.16 :
    Figure imgb0005
This results in the following setting rules, which can be implemented by the corresponding function generators:
  • Function generator 30 or 15a:
    Figure imgb0003
  • Function generator 33 or 15b:
    Figure imgb0004
  • Function generator 37 or 16:
    Figure imgb0005

Die Einstellung des Funktionsgenerators 25 resp. 9 hat aufgrund von Feuerungsoptimierungsversuchen zu erfolgen, die fallweise durchzuführen sind.The setting of the function generator 25, respectively. 9 has to be carried out on the basis of attempts to optimize the furnace, which have to be carried out on a case-by-case basis.

Die Einstellung des Störgrössenaufschaltungs-Funktionsgenerators 35 resp. 17 ergibt sich aus den lastabhängigen Beharrungspositionen des Korrektur-Servomotors 40 resp. 13, die ebenfalls fallweise experimentell bestimmt werden müssen.The setting of the disturbance variable function generator 35 and. 17 results from the load-dependent steady-state positions of the correction servo motor 40, respectively. 13, which must also be determined experimentally on a case-by-case basis.

Die Einführung des Signalfilters 10 bzw. 26, woran die relevanten Zeitkonstanten, in Abhängigkeit vom Lastgrad β verstellt werden, erhöht den Freiheitsgrad zur Optimierung der Regelwirkung der beschriebenen Regelung, indem nun getrennt das Stör- und das Führungsverhalten der Regelung optimiert werden können.The introduction of the signal filter 10 or 26, by means of which the relevant time constants are adjusted as a function of the load level β, increases the degree of freedom for optimizing the control effect of the control described, since the disturbance and the control behavior of the control can now be optimized separately.

Claims (9)

1. A process for controlling the excess air in a furnace in which the air flow and/or fuel flow is corrected on the basis of measurement of the excess air in the flue gas after a prescribed value/actual value comparison of the excess air in a control device, the proportional sensitivity (gain) of the control device being varied according to the load rate (ß), and at least some of the time parameters of the control device are automatically adapted to the load rate (ß) of the furnace, the prescribed excess air value (w, w') fed as command variable (reference variable) to a controller (11, 28) of the control device being varied according to the load rate (β), characterized in that the prescribed excess air value (w, w') is fed to the controller (11, 28) through a signal filter (10, 26) having at least one time constant, at least one of the time constants (TF) being varied according to the load rate (ß).
2. A process as claimed in Claim 1, characterized in that the control effect is supplemented by superimprosing the load rate as disturbance variable (17, 35).
3. A process as claimed in one or both of Claims 1 and 2, characterized in that the proportional sensitivity (KR) (gain) of the control device (11, 28) is automatically varied so that the proportional sensitivity of the open control circuit (Ko) remains constant independent of load.
4. A process as claimed in one or more of Claims 1 to 3, characterized in that at least one controller time constant (TR) is automatically varied so that the product of load rate (β) and time constant (TR) remains constant, i. e. independent of load.
5. A process as claimed in one or more of Claims 1 to 4, characterized in that at least one time constant (TF) of the signal filter (10, 26) is varied so that the product of load rate (ß) and time constant (TF) remains constant, i. e. independent of load.
6. A control device for carrying out the process claimed in Claims 1 comprising
a first input (Ep) for a load-rate-dependent signal (ß),
a second input (Ex) for a signal (x) dependent on the excess air,
a controller (11, 28),

the first input (Eβ) being connected via a function generator (9, 25) and the second input (Ex) being operatively connected to a differential unit (24) and at least one circuit (16, 10, 15b, 11) being provided for adapting at least some of the time constants (TF, TR) of the control device to the load rate (ß), said circuit comprising an adaption input activated in dependence upon the signal at the first input (Eβ), characterized in that the first input (Eβ) is operatively connected via filter (10, 26) to the differential unit (24) and said input (Eo) acting via at least one function generator (16, 37) on at least one adaption input (ETF) on the filter (10, 26) to vary at least one filter time constant (TF) in dependence upon the load rate (β).
7. A control device as claimed in Claim 6, characterized in that the first input (Eβ) acts on at least one adaption input (ET) to influence a controller time constant (TR).
8. A control device as claimed in one or both of Claims 6 and 7, characterized in that the first input (Eo) is connected via at least one function generator (15a, b, 30, 33) with a preferably adjustable (P) function shape (AK = AK(P, P15a); AT = AT(β, P15b)...) to the adaption input on the controller (11, 28).
9. A control device as claimed in one or more of Claims 6 to 8, characterized in that the first input (Eβ) is operatively connected, preferably via a function generator (17, 35) with a preferably adjustable (P17, P35) function shape (A17 = A17 (β, P17); A35 = A35(β, P35)), to a superimposing unit (12, 31) at the output of the controller (11, 28).
EP83100320A 1982-02-04 1983-01-15 Process for the control of excess air in firing equipments and control equipment for the realization of the process Expired EP0086337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83100320T ATE26166T1 (en) 1982-02-04 1983-01-15 METHOD FOR CONTROLLING EXCESS AIR ON FURNACES AND CONTROL DEVICE FOR CARRYING OUT THE PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3203675 1982-02-04
DE3203675A DE3203675C2 (en) 1982-02-04 1982-02-04 Procedure for regulating the excess air in furnaces as well as a device for regulating the excess air

Publications (2)

Publication Number Publication Date
EP0086337A1 EP0086337A1 (en) 1983-08-24
EP0086337B1 true EP0086337B1 (en) 1987-03-25

Family

ID=6154711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100320A Expired EP0086337B1 (en) 1982-02-04 1983-01-15 Process for the control of excess air in firing equipments and control equipment for the realization of the process

Country Status (4)

Country Link
EP (1) EP0086337B1 (en)
AT (1) ATE26166T1 (en)
DE (2) DE3203675C2 (en)
ZA (1) ZA83648B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812697A1 (en) * 1988-04-16 1989-12-28 Programmelectronic Eng Ag METHOD FOR REDUCING THE INTERFERENCE EFFECT IN FAN BURNER PLANTS AND FAN BURNER PLANT

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3441376C1 (en) * 1984-11-13 1986-03-13 Programmelectronic Engineering AG, Dornach Process for apparatus diagnosis of the operating state of a furnace and device therefor
EP0339135A1 (en) * 1988-04-25 1989-11-02 Landis & Gyr Betriebs AG Composite controlling apparatus for a burner
DE3834795A1 (en) * 1988-10-12 1990-04-19 Riedhammer Gmbh Co Kg INDUSTRIAL OVEN
DE102021127223A1 (en) 2021-10-20 2023-04-20 Ebm-Papst Landshut Gmbh Method for model predictive control of a fuel-air mixture of a system and an associated system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404836A (en) * 1965-12-20 1968-10-08 Westinghouse Electric Corp Heat generating apparatus
DE1588731B1 (en) * 1967-06-19 1970-01-15 Siemens Ag Adaptation process and device for control loops
BE757241A (en) * 1969-10-20 1971-03-16 Ceskoslovenska Akademie Ved ADAPTIVE CONTROL SYSTEMS NETWORK DEVICE
FI772751A (en) * 1976-12-14 1978-06-15 Measurex Corp EFFECTIVENESS AND EFFECTIVENESS OF EFFECTIVENESS FUNCTIONS
DE2753520C2 (en) * 1977-12-01 1986-01-23 H. Saacke Kg, 2800 Bremen Device for optimizing the air / fuel ratio in combustion systems operated with gaseous or liquid fuels
DE3005103A1 (en) * 1980-02-12 1981-08-20 Konstantin Dipl.-Ing. 8910 Landsberg Meyl Electrical adaptive control system - provides optimised regulator performance by comparison of regulator standard function with optimum transfer function

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Art. "Adaptive-Steuerung der Reglereinstellung mit einfachen Mitteln" v. W. Peinke, in Regelungstechnik, Heft 6 (1966), Seiten 274 ff *
Art. "Regelung der Verbrennung mittels Prozessrechner" aus Gas/Erdgas, Zeitschrift des DVGW Deutscher Verein des Gas- und Wasserfaches, Jahrgang 1980, Heft 4, Seiten 141 ff *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812697A1 (en) * 1988-04-16 1989-12-28 Programmelectronic Eng Ag METHOD FOR REDUCING THE INTERFERENCE EFFECT IN FAN BURNER PLANTS AND FAN BURNER PLANT

Also Published As

Publication number Publication date
DE3370527D1 (en) 1987-04-30
DE3203675C2 (en) 1985-10-03
EP0086337A1 (en) 1983-08-24
ZA83648B (en) 1983-10-26
ATE26166T1 (en) 1987-04-15
DE3203675A1 (en) 1983-08-11

Similar Documents

Publication Publication Date Title
DE3208567C2 (en) Method for controlling a steam boiler
EP1621811B1 (en) Operating Method for a Combustion Apparatus
DE1902356C3 (en) Fuel control device for gas turbine engines
DE2916629A1 (en) NON-LINEAR TWO-WAY CONTROL
DE3638410C2 (en)
DE19820038C2 (en) Process for controlling the fire performance of incinerators
EP0098909B1 (en) Idling speed controller, in particular for vehicles
EP1340019B1 (en) Method for operating a refuse incineration plant
DE3739805C3 (en) Device for regulating the speed of an internal combustion engine
EP0086337B1 (en) Process for the control of excess air in firing equipments and control equipment for the realization of the process
DE3215073A1 (en) Control arrangement for furnace systems in steam or heating boilers
DE4014390C2 (en)
DE2048807C3 (en) Fuel control arrangement for starting up a gas turbine system to operating temperature
EP1510758A1 (en) Method for regulating and/or controlling a burner
DE1798196A1 (en) Control device
DE2142787B2 (en) Fuel control system for gas turbines
DE3438175C2 (en)
EP0352619B1 (en) Process for regulating the firing power in combustion plants
DE3830805C2 (en)
DE102004017886B3 (en) Lambda regulating process for engine with catalytic converter involves setting lambda regulator to preset degree of filling in oxygen store
AT412903B (en) METHOD FOR CONTROLLING BZW. CONTROL OF FUELING SYSTEMS AND THEREBY REGULATORY FIRING SYSTEM
DE3712392C1 (en) Method and arrangement for increasing the operating reliability of furnace burner systems
DE4008447A1 (en) METHOD AND DEVICE FOR CONTROLLING A GAS TURBINE ENGINE
DE2834242A1 (en) Blower type burner automatic regulator - controls gas and air supply to ensure optimum mixture composition over working range by air pressure sensor
DE19712771C2 (en) Method and arrangement for automatic combustion control in boilers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840211

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 26166

Country of ref document: AT

Date of ref document: 19870415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3370527

Country of ref document: DE

Date of ref document: 19870430

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: JOH. VAILLANT GMBH U. CO

Effective date: 19870623

NLR1 Nl: opposition has been filed with the epo

Opponent name: JOH. VAILLANT GMBH U. CO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890114

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890127

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19890131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890131

Year of fee payment: 7

Ref country code: NL

Payment date: 19890131

Year of fee payment: 10

Ref country code: GB

Payment date: 19890131

Year of fee payment: 7

Ref country code: BE

Payment date: 19890131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890329

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900115

Ref country code: AT

Effective date: 19900115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900131

Ref country code: CH

Effective date: 19900131

Ref country code: BE

Effective date: 19900131

BERE Be: lapsed

Owner name: PROGRAMMELECTRONIC ENGINEERING A.G.

Effective date: 19900131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900801

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901002

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBG Opposition deemed not to have been filed

Free format text: ORIGINAL CODE: 0009274

26D Opposition deemed not to have been filed

Opponent name: JOH. VAILLANT GMBH U. CO

Effective date: 19880208

EUG Se: european patent has lapsed

Ref document number: 83100320.7

Effective date: 19900813

RIN2 Information on inventor provided after grant (corrected)

Inventor name: PROFOS, PAUL, PROF. DR. ING.