EP0084891B1 - Tintenstrahldrucker mit einem Vielstrahleinzelkopf - Google Patents

Tintenstrahldrucker mit einem Vielstrahleinzelkopf Download PDF

Info

Publication number
EP0084891B1
EP0084891B1 EP83100729A EP83100729A EP0084891B1 EP 0084891 B1 EP0084891 B1 EP 0084891B1 EP 83100729 A EP83100729 A EP 83100729A EP 83100729 A EP83100729 A EP 83100729A EP 0084891 B1 EP0084891 B1 EP 0084891B1
Authority
EP
European Patent Office
Prior art keywords
ink
print
droplets
orifice
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP83100729A
Other languages
English (en)
French (fr)
Other versions
EP0084891A2 (de
EP0084891A3 (en
Inventor
Shou L. Hou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMC Co
Original Assignee
TMC Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TMC Co filed Critical TMC Co
Publication of EP0084891A2 publication Critical patent/EP0084891A2/de
Publication of EP0084891A3 publication Critical patent/EP0084891A3/en
Application granted granted Critical
Publication of EP0084891B1 publication Critical patent/EP0084891B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/485Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/025Ink jet characterised by the jet generation process generating a continuous ink jet by vibration

Definitions

  • the present invention relates to a multi-ink jet printer comprising:
  • the present invention also relates to an ink jet printer in accordance with the preamble of claim 5.
  • the present invention is related to a method of printing with an ink jet printer, wherein ink drops separated and expelled through a plurality of orifices are charged and then deflected by electrode plates, to be directed to predetermined points on a receiving medium, said receiving medium being moved in a print direction relatively with respect to said orifices and each droplet is given a charge corresponding to its placement substantially perpendicular to said relative print direction so that dotted lines which extend substantially perpendicular to said relative print direction, can be printed in a matrix format representing a printed mark or character.
  • DE-A-23 44 453 describes an ink jet matrix printer having an array of nozzle orifices aligned transverse to a relative print direction whereas US 4,272,771 describes a multiple-ink jet printer, wherein bands printed by different nozzles are overlapping with their outermost neighbouring lines in order to prevent black or white lines to occur along the boundary between the bands printed by different nozzles. Also in these known printers, a printed symbol or character is confined in a matrix printed by the same nozzle or nozzle array respectively.
  • a multi-ink jet printer as defined above, which is capable to print at high quality with increased printing speed without the need of a nozzle orifice array substantially extending along the length or the whole length of the lines to be printed.
  • the present invention as defined in claim 1 has the following structure and interlacing scheme to achieve the said objectives of SPEED with QUALITY:
  • An ink jet printer of the present invention in accordance with claim 1 comprises a print head containing from 2 to n jets. All jets are aligned in a straight line parallel to the printing direction. Each jet deflection is in a direction perpendicular to the print direction. Proper delay is provided to each jet during printing to maintain a good printing quality. By the use of the multiple jets the printing speed will be increased 2 to n times faster depending upon the number of jets used. At 12 characters per inch printing, a high resolution character needs 640 print droplets at 10 dots/mm (or 240 dots/inch) resolution; and needs 1000 print droplets at 12 dots/mm. (or 300 dots/inch) resolution. While at 5 dots/mm.
  • a typical continuous ink jet operates at about 100,000 droplets a second.
  • a typical single continuous jet printer prints about 50 characters per second at 12 dots/mm. resolution; about 80 characters per second at 10 dots/mm. resolution; and about 310 characters per second at 5 dots/mm. resolution.
  • the following table lists the printing speeds as a function of process and a number of jets:
  • a single continuous jet printer has a quality and speed comparable with that of a daisywheel printer. There is very little price performance advantage over a daisywheel printer.
  • the present invention offers a printing speed increase by n-times (where n is the number of nozzles in a single print head), while maintaining the same high resolution quality.
  • the additional structure required in accordance with the present invention is relatively nominal. The parts are known and easily fabricated and many parts can be used in common such as the ink system, the deflection plates, the gutter and recirculation system.
  • An ink-jet printer as is defined in claim 1 has the ink jet nozzles aligned in a straight line which is parallel with the relative print direction. Each nozzle is capable of producing a stream of ink droplets. Each droplet is properly charged to a pre-determined level and is able to be deflected by the deflection electric field to a maximum deflection of at least 1.35 times the character height perpendicular to the print direction.
  • each nozzle in the ink jet printer prints exactly like the ink jet printer described in the Sweet patent and Lewis and Brown patent. When multi-nozzle print head is used as described, each nozzle will print a portion of the vertical dotted lines The vertical dotted lines printed by different nozzles in the array will interlace to form a high resolution character.
  • jet "1" will print every even mumber of vertical dotted lines, while the jet “2” will print every odd number of vertical dotted lines.
  • each nozzle prints only every third vertical dotted lines, i.e., jet "1" prints (3m ⁇ 1)th dotted line; jet “2" prints (3m ⁇ 2)th dotted line; jet “3” prints (3m ⁇ 3)th dotted line; where m is an integer.
  • the time delays with respect to jet "1" are, (d ⁇ 1/R)/10V seconds for jet “2”; and (2d ⁇ 2/R)10V seconds for jet “3”, or there are spacial displacements ("delays") with respect to the nozzle for jet "1” by (dR ⁇ 1) dotted lines the nozzle for the nozzle for jet "2", and (2dR ⁇ 2) dotted lines for the nozzle for jet "3".
  • each nozzle will print every nth dotted line apart.
  • the Kth jet in the array will print every (mn ⁇ K)th dotted line, while the first jet will print every (mn ⁇ 1)th dotted line, where n is an integer.
  • There exists a time delay for the Kth jet with respect to the first jet by (K-1) [d ⁇ 1/R]/10V second, or a spacial delay (displacement) of (K-1) [dR ⁇ l] dotted lines.
  • Electrostatic Coulomb force between two charged particles of adjacent jets is where q is the charge contained in the droplet "i", r is the distance between the droplets of adjacent jets, and K is a constant. Note that the closest distance between charged droplets from 2 adjacents jets is the distance between the jet nozzles which as a practical proposition is taken to be 1 - 3 mm. At 132,000 droplets/sec. and a droplet velocity of 2000 cm./sec., the inter-droplet spacing for a single jet is .152 millimeter, the inter-droplet spacing is 7 to 20 times closer than the inter-jet spacing. Since Coulomb force is inversely proportional to the square of the distance, correction due to adjacent jet is very small. Hence, one can ignore both the electrostatic correction as well as the aerodynamic wake effect for droplets between jets.
  • the ink jet printer apparatus of the present invention employs an ink chamber or reservoir having at least two matched orifice nozzles aligned parallel to one another.
  • Means of constant pressure or of constant flow is employed to apply pressure to the reservoir to force ink out through each of said orifices in a thin filament, including acoustic energy means generating waves of the same phase being preferred, acting on the ink to break the filament into droplets of predetermined size, each droplet being of a size to produce a dot of predetermined size in a raster of dots forming a printed character.
  • Deflection plates are positioned so that all of the droplets pass in droplet paths from the respective nozzles each in planes transverse to the deflection plates.
  • Deflection voltage supply means is connected to the deflection plates to impose an electrostatic field between the deflection plates.
  • Charging electrode means is fixed relative to each orifice nozzle in position adjacent to the respective orifice nozzles along the droplet paths from that nozzle.
  • Electrostatic shielding means may be interposed between adjacent charging electrodes to isolate charge effects imposed on droplets of one stream from droplets of another.
  • a source of voltage is connected to the respective charging electrode means.
  • Each charging electrode is capable of inducing electrostatic charge on the individual droplets as they break off from the ink filament emerging from the orifice associated with the charging electrode. The droplets are then deflected into paths determined by their respective charges as they pass through the field imposed by the deflection plates.
  • Voltage switching means is provided for applying in a prearranged order selected voltages (which may include zero voltage) to each charging electrode, as the individual droplets pass through.
  • the selected level of voltage induces charge on each droplet determined by and different for each voltage and causes that droplet to follow a predetermined droplet path.
  • Each droplet having the same charge will follow the same path, different from paths followed by droplets having other charges but all of which droplet paths lie in a common plane transverse to the deflection plates.
  • Ink collector means is positioned for collection of non-print ink droplets for all nozzles moving along the predictable paths generated by a particular selected level of voltage typically at zero potential.
  • Means is supplied for supporting paper in position such that droplets moving along paths in a plane from an orifice nozzle will impinge the supported paper at points along a line opposite that orifice nozzle and parallel to a line opposite another orifice nozzle upon which droplets from said other nozzle impinge.
  • Carriage is also provided for moving the orifice nozzles and charging electrode means relative to the means supporting the paper transverse to the plane of droplet paths from a particular nozzle.
  • the method of the present invention involves either manually or automatically, as by computer, delaying the printing of intermediate lines until the second nozzle orifice catches up with the position adjacent to that the first nozzle orifice was in when it printed the line adjacent to which the new line is to be printed by the second nozzle.
  • the pattern of dots in the (2n ⁇ 1)th dotted line printed by the second jet is delayed from the time of the printing of the 2nth dotted line by the first jet by (d ⁇ 1/R)/10V seconds where "d" is in the inter-jet spacing in millimeters, "V” is the print speed in cm./sec., and "R” is resolution in dots per millimeter.
  • the spacial delay (corresponding spacial displacement of the nozzle) is expressed (dR ⁇ 1) dotted lines.
  • Fig. 1 and 2, 5, 6, 7 and 8 illustrate a preferred embodiment.
  • Much of the system is known to be conventional. Much of it has been shown in schematic form since the actual physical form is well known.
  • the ink chamber 10 is shown schematically.
  • the orifice nozzles through which ink filaments are ejected from the reservoir are best seen as nozzles 12a and 12b in an orifice plate 12.
  • the use of two nozzles in this configuration is new.
  • a support structure l8 of insulating material supports ring charging electrodes l6a and l6b, between which is provided a conductive electrostatic shield 14 of conductive material.
  • the reservoir structure is more representative of an actual form which would be employed.
  • the reservoir provides a cone-shaped cavity in a block 20 provided with a cylindrical extension 20a the outside surface of which is threaded to engage the threads of a cap 22.
  • the cap closes the narrow end of the conical cavity and is provided with the orifices 12a and 12b on an orifice plate 12.
  • Ink is fed into the cavity 10 through a conduit 24, preferably from a sump fed from the return means from the gutter (to be described) through a suitable pump which supplies pressure at a constant rate, typically about l6 to 80 pounds per square inch.
  • the ink is fed into the ink chamber by way of a cavity 26 adjacent to back plate 28 mounted on the reservoir plate 20 using a sealing gasket 30 and suitable fasteners and supporting an ultrasonic transducer 32.
  • a filament of ink on the order of 20 to 30 microns in diameter is ejected under the pressure through the orifice nozzle and is broken into well-defined ink droplets in the charge rings l6 at a rate equal to the rate of the frequency of the ultrasonic source, thus, enabling each individual droplet to be separately and differently charged by the charging means l4.
  • the two jets involved here are charged by the charging ring electrodes l6a and l6b which surround the paths of the droplets close to the orifice and before they are deflected by the electrostatic plates 34a and 34b.
  • the amount of deflection of an individual droplet depends upon the charge imposed upon that droplet by its charging ring electrode l6a or l6b.
  • uncharged droplets are allowed to proceed undeflected through the electrostatic field between the plates 34a and 34b into the gutter or catcher 36. They are returned by drain 38 to a sump and by the pump back to the reservoir through the line 24 as described all in conventional manner. If instead of not being charged the droplets are charged, the electrostatic field will act upon the to deflect them.
  • the rest of the structure, the charging electrodes l6a and l6b and their support l4 are effectively mechanically integral with the reservoir and orifices and are part of the laterally moving print head which moves parallel to the length of the platen.
  • the print head therefore is designed to sequentially print as it moves along the structure, parallel to the platen.
  • the two orifice nozzles located along the horizontal diameter (or axis) are spaced on the order of 3 to 4 mm apart.
  • the tip of the cone in the ink chamber l0 is elongated in the horizontal direction, the direction of head traverse to a dimension of 6 mm as opposed to 3 mm in the vertical dimension.
  • the elongated cone tip is recommended to focus the acoustic energy and to assure an efficient non-perturbed acoustic wave reaching at the orifice nozzles with identical energy density and at identical phase.
  • the back of the cone has a diameter of 8 mm and is closed by a stainless steel plate 28 with a circular disc transducer 32 , 8-10 mm in diameter, mounted in the other side of the metal cover for stimulation.
  • the distance between the orifice plate and the back plate for stimulation should be (2m + 1) ⁇ /4 where ⁇ is the acoustic wave length of the ink, and m is an integer.
  • the head structure remains identical with that of a single jet head structure.
  • Charging electrodes l6a and l6b consist of two metal rings with 1.0 mm inner diameter.
  • the thickness of the charging electrode or the length of each ring is about 0.9 to 1.0 mm.
  • the distance between centers of the charging rings is identical to the distance between centers of the orifice nozzles.
  • Both the orifice nozzles 12a and 12b and two charging rings l6a and l6b are located an equal distance above the bottom of the deflection plates 34a.
  • nozzles 12a and 12b produce jets that are as close to identical twins as possible.
  • jet a will reach there first, while jet b is 3 mm. away.
  • the printed dot from a droplet in jet a will be 3mm. away from the one in jet b , plus additional error caused by the jet straightness.
  • jet straightness is a major concern for a high resolution printing ink jet array.
  • the droplet placement error should be within 25 microns.
  • the corresponding jet straightness is less than 1 milliradian.
  • jet a In a regular text printing mode with a resolution of 300 dots per inch (or l2 dots/mm.), jet a will print the 2nth dotted line, while jet b will print the (2n ⁇ 1)th dotted line. There is a delay (displacement) of 3 x 12 ⁇ 1 dotted lines between jets, or a time delay of (3 ⁇ 1/12) /10V seconds before jet b starts printing next to the dotted line printed by jet a , where "V" is the velocity of the carrier in cm. /second.
  • jet a lags behind jet b by 3 x 12 ⁇ 1 dotted lines or lags by a time of (3 + 1/12)/10V seconds.
  • each jet prints 32 positions. Jet a prints the even number 2n th dotted lines and jet b prints the odd (2n-1)th dotted lines. Time delay between these two jets is (3 ⁇ 1/10)/10V seconds or 3 x l0 + 1 dotted lines. In general, if "d" is the inter-jet spacing in mm. and resolution is R dots/mm., then the time delay between two jets is (d ⁇ 1/R)/10V seconds; or a spacial delay of (dR ⁇ 1) dotted lines.
  • Jet a will print at the 2(2m)th dotted lines; while jet b prints at the 2(m - 1)th dotted lines. All odd number of dotted lines are omitted.
  • the time delay between two jets is always (d ⁇ 2/R)/l0V seconds; or a spacial delay of (dR ⁇ 2) dotted lines away.
  • d "d", "R” and "V” have been defined in Section (1).
  • each jet is basically the same as a regular single continuous jet used in regular printing, droplet charging, charge compensation, and guard drop scheme are the same. To minimize the cross talk between jets, electrostatic shielding between charging electrodes is recommended.
  • a configuration is shown in which a 5-nozzle jet configuration is employed.
  • the structure is very similar as that for the 2-jet array shown in Figs. 1, 2, 5 through 8 and therefore similar numbers with the addition of primes thereto are employed in the structure.
  • the ink reservoir l0' is modified somewhat in shape and elongated within plate 20' in order to accommodate three transducers 32', 32b', 32c'.
  • the back plate 28' supports the transducers distributed longitudinally and the transducers are interconnected in such a way that they will be cumulative or additive in their effect rather than counteracting the effect of other transducers.
  • the orifice plate l2' in this case has five separate orifices l2a', l2b', l2c', l2d', and l2e'.
  • the orifices are carefully aligned so that they produce jets which are directed in parallel paths.
  • the jets pass through charging rings l6a', l6b', l6c', l6d', and l6e' and they are each supported on an insulating charge plate l8'.
  • FIG. 9 is a sectional view through the structure so that only the lower deflection plate 34b' is seen but it will be understood that an upper deflection plate 34a' is also employed as in the prior structure. Furthermore, an ink collector means 36' is positioned so that if no charge is placed upon the droplets, they will be collected by the collection means. However, as in the prior arrangements, if charges are placed upon the droplets, they will be suitably deflected onto paper 40' on a platen 42'.
  • Fig. 11 shows a typical pattern printed by the 5-nozzle printer of Fig. 9 to print a character "T".
  • Jet “1” prints the 1st, 6th, 11th, l6th and 21st dotted lines; jet “2” prints the 2nd, 7th, 12th, 17th, and 22nd dotted lines; ...; and jet “5" prints the 5th, l0th, l5th, 20th, and 25th dotted lines.
  • the interlacing of all printed dotted lines forms the character "T”. Note that all 5 nozzles must be identical in every practical means. Jet straightness must be within acceptable level.
  • the interlacing scheme blends all 5 jet printing in every portion of the character. Hence, it produces a more homogeneous appearance, and every slight misalignment will be averaged out.
  • the vertical positional accuracy is precisely taken care of by electronic compensation on the amount of charge given to each individual droplet.
  • kth jet prints every (5m + K)th dotted lines, if we choose a time delay for the Kth jet with respect to the 1st jet by (K-1) (d + 1/R)/10V seconds, where d, R, m, and V are as defined above.
  • the corresponding spacial delay is (K-1) (dR + 1) dotted lines for th Kth jet.
  • Another printing sequence is shown in the bottom of Fig. 11 where the Kth jet prints every (5m - K)th dotted lines, if we choose the time delay for the Kth jet with respect to the first jet by (K-1) (d - 1/R)/10V seconds.
  • the corresponding spacial delay is (K-1) (dR - 1) dotted lines.
  • Character printing is done through a character generator on a ROM chip.
  • the signal from each dotted column will first go through a specific shift register to provide a proper spacial delay (or time delay) before being sent to the driving electronics for the Kth jet charge electrode.
  • the printer head assembly starts with a transducer array 32a', 32b', 32c' of rectangular shape mounted on a back plate 28' opposite to the rectangular pads 31a', 31b' and 31c'.
  • a transducer array is necessary when the total length of the ink jet array exceeds ⁇ /2, the half acoustic wavelength of the ink.
  • the acoustic wave generated by the transducer array must have the same amplitude and phase to avoid generating a longitudinal acoustic standing wave along the direction of the orifices.
  • Transducers are mounted by epoxy on the back plate 28', which may be a flat thin plate, or with a number of corresponding pads. The structure separates the transducer array fro direct contact with ink, while transmitting acoustic energy effectively to the ink chamber.
  • the ink chamber contains ink inlet 24' and an ink outlet 25', preferably with a controlled valve (not shown).
  • the tapered slot shape ink chamber block has transducer array mounted on the larger crossection end, and the orifice plate at the tapered end. Mechanical clamping, soldering, or gluing by epoxy are methods of mounting.
  • a tapered shaped ink chamber is to focus the acoustic energy toward the orifice plate.
  • the length of the ink chamber should be at least ⁇ /2 longer than the total length of the orifice array.
  • the width of the slot in the ink chamber should not exceed half wavelength ⁇ /2 to avoid higher order standing wave generation.
  • the depth of ink chamber between the back plate and the orifice plate should be kept at (2m + 1) ⁇ /4, where m is an integer and ⁇ is the acoustic wavelength of the ink at the stimulation frequency.
  • the fabrication of the orifice plate 12' is one of the most critical parts of the ink jet printer. Although it is possible to drill a series of identical holes on a thin metal plate, (preferably a 5+ to 10 mils stainless or nickel plate) it is better recommended to use photo-fabrication process to control precisely the dimension and the shape. Silicon single crystal wafer can be made as an orifice plate through oxidation then preferentially etch nozzles at predetermined positions using photo-resist. One can also use electroform process to fabricate a precision orifice plate, where a photoresist image is first made on a conductive substrate before electrodeposition. Care must be exercised to assure perfectly round holes with identical dimensions to minimize the droplet placement error.
  • the charge plate l8' has equal number of holes lined-up concentrically with the orifices as shown in Fig. 12a.
  • Conductive rings l6a', l6b', l6c', l6d' and l6e' are made on the holes in the charge plate and is individually connected to the driving circuit for charging electrode. Electrostatic shields between nearest charge rings are recommended though not necessary.
  • Another configuration of the charge plate consists of an array of conductive U-shaped channels l8a (see Fig. l2b) or semi-circles l8b (see Fig. l2c) On the charge plate. Each channel is connected to the driving electronic circuit.
  • the width of the deflection plates and catcher 36' have to be widened to cover beyond the entire jet array in the present invention. Otherwise, they are identical with that of a single jet printer.
  • the ink chamber, deflection plates, catcher and ink system including pump, filtration, ink supply and tubings are common to all jets.
  • FIGs. 3 and 4 shows a modified construction wherein two jets are employed but the jets are provided one above the other instead of in lateral alignment.
  • Fig. 3 is the side view of another type of 2-jet configuration, where two jets are aligned 3 to 6 mm apart one on each side of printing area.
  • the charge electrodes for jet a and jet b have opposite polarities. Under the deflection electric field given in Fig. 3, charged droplets from jet a will be positively “+” charged, hence deflected downward; while droplets from jet b will be negatively charged "-" and are deflected upward.
  • a dual catcher is shown in Fig. 4 which is a sectional view from line 4-4 in Fig. 3. The upper catcher catches the non-print droplets from jet a and the lower catcher catches the non-print droplets from jet b .
  • the aperture between the catcher fingers is the window for printing.
  • jet a and jet b in Fig. 3 nay be replaced by two rows of ink jet array, each array is parallel to the print direction.
  • Row a is located above the print area and row b is located below the print area.
  • the polarities of the matched charge electrodes for row a is opposite to that of row b so that the print droplets from each row of ink jet array are deflected in opposite direction into the print area to form the predetermined characters or images.
  • high resolution images can be obtained at a printing speed n times faster than a single jet printer, where n is the total number of jets in the print head.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (12)

  1. Mehstrahltintendrucker mit:
    - einer Tintenkammer und einem Feld von Düsenöffnungen (12a, 12b; 12a', 12b', 12c', 12d', 12e'), welche in etwa entlang einer Achse angeordnet sind,
    - Ablenkplatten (34a, 34b; 34a', 34b'), zwischen welchen Tintentröpfchen, die aus den jeweiligen Düsenöffnungen austreten, hindurchlaufen und welche die Tintentröpfchen im wesentlichen senkrecht zu der Achse des Düsenöffnungsfeldes ablenken, so daß es möglich ist, aus Punkten zusammengesetzte Linien zu drucken, die sich in der Ablenkrichtung erstrecken,
    - Ladeelektroden (16a, 16b; 16a', 16b', 16c', 16d', 16e'), die neben dem Abbruchpunkt eines Tintenfadens liegen, der zu den jeweiligen Düsenöffnungen (12a, 12b; 12a', 12b', 12c', 12d', 12e') gehört, und einer Spannungsquelle, um in einer voreingestellten Reihenfolge ausgewählte Spannungen den jeweiligen Ladeelektroden zuzuführen, wobei jede in der Lage ist, eine Ladung vorbestimmter Größe an jedem Tröpfchen zu induzieren, um zu bewirken, daß jedes Tröpfchen auf eine vorbestimmte Stelle auf dem Aufzeichnungsmedium (40, 40') gelenkt wird,
    - Einrichtungen zum Haltern des Aufzeichnungsmediums und des Düsenfeldes, so daß sie relativ zueinander bewegbar (51) sind,
       wobei die Achse des Düsenfeldes im wesentlichen parallel zur relativen Druckrichtung (51) liegt und die erwähnte Relativbewegung in eben dieser Richtung stattfindet, so daß aus Punkten zusammengesetzte Linien in Matrixform gedruckt werden können, die ein gedrucktes Zeichen oder einen Buchstaben darstellt, wobei der Drucker zusätzliche Einrichtungen aufweist, um geeignete Markierungsfolgen bereitzustellen, derart, daß während des Ablaufs der Relativbewegung zwischen dem Feld und dem Aufzeichnungsmedium jeweils benachbarte, aus Punkten zusammengesetzte Linien der Matrix auf dem Aufzeichnungsmedium von unterschiedlichen Düsenöffnungen innerhalb des Öffnungsfeldes erzeugt werden, so daß die Matrix aus miteinander vernetzten, aus Punkten zusammengesetzten Linien gebildet wird, wobei benachbarte Linien jeweils von verschiedenen Düsenöffnungen gebildet sind.
  2. Tintenstrahldrucker nach Anspruch 1, wobei das Feld von Düsenöffnungen und die Ladeelektroden auf einem Schlitten montiert sind, der in der erwähnten Druckrichtung bewegbar ist und wobei der Abstand der Düsenöffnungen und die Bewegung des Schlittens derart ist, daß eine Vernetzung bzw. Überlappung der aus Punkten zusammengesetzten Linien innerhalb der Matrix stattfindet.
  3. Tintenstrahldrucker nach Anspruch 1 oder 2, wobei eine elektrostatische Einrichtung zwischen benachbarten Ladeelektroden angeordnet ist, um Ladewirkungen, die auf Tropfen eines Stromes von den Tropfen eines anderen Stromes ausgeübt werden, zu isolieren, und wobei eine Mehrzahl von Laderingen von einem gemeinsamen Stützaufbau gehaltert wird und leitfähige Teile zwischen den Ladeelektroden angeordnet und elektrisch mit Masse verbunden sind, um ein elektrostatisches Abschirmen zu bewirken, um Ladewirkungen auf Tropfen eines Stromes durch Tropfen von einem anderen Strom zu isolieren bzw. abzuschirmen.
  4. Tintenstrahldrucker nach einem der Ansprüche 1 bis 3, wobei die Einrichtungen zum Aufbringen eines Druckes auf eine Tintenkammer (10, 10', 10''), um Tinte durch die Düsenöffnungen herauszudrücken, Einrichtungen mit konstantem Druck und konstanter Strömung sind, und wobei die Einrichtungen, die auf die Tinte einwirken, um die Fäden in Tropfen aufzuteilen, zumindest aus einem Generator für akustische Wellen (32; 32a', 32b', 32c') bestehen, der der Tintenkammer und den Düsenöffnungen zugeordnet ist, um akustische Wellen mit derselben Amplitude und der gleichen Phase an dem Feld von Düsenöffnungen zu erzeugen, und wobei die Einrichtung zum Aufbringen von Druck auf die Tintenkammer eine Einrichtung aufweist, um Tinte aus einer Tintensammeleinrichtung (36; 36'; 36a'', 36b'') zu rezirkulieren.
  5. Tintenstrahldrucker mit:
    a) einer Tintenkammer mit zwei Düsenöffnungen (12a'', 12b''),
    b) Einrichtungen zum Haltern des Aufzeichnungsmediums und der Düsen, so daß sie entlang einer relativen Druckrichtung (51) relativ zueinander bewegbar sind,
    c) Ablenkplatten (34a'', 34b''), welche sich im wesentlichen parallel zu der Druckrichtung (51) erstrecken, wobei zwischen den Ablenkplatten alle Tropfen entlang von Tropfenwegen aus den jeweiligen Düsenöffnungen (12a'', 12b'') hindurchtreten,
    d) Ladeelektroden (16a'', 16b''), die neben dem Abbrechpunkt der Tintenfäden angeordnet sind, welche mit den entsprechenden Düsenöffnungen (12a'', 12b'') verknüpft sind, und mit einer Spannungsquelle, um Spannungen an die jeweiligen Ladeelektroden anzulegen,
    dadurch gekennzeichnet, daß
    e) die Düsenöffnungen entlang einer gemeinsamen Achse angeordnet sind, die im wesentlichen senkrecht zu der relativen Druckrichtung verläuft, so daß eine Öffnung (12a'') oberhalb einer Zeichendruckfläche und die andere Öffnung (12b'') unterhalb dieser Fläche liegt,
    f) die Spannungsquelle, die mit den entsprechenden Ladeelektroden (16a'', 16b'') verbunden ist, Signale einer Polarität auf den Tropfenstrom, der aus der Öffnung austritt, abgibt und Signale der umgekehrten Polarität auf den anderen Strom, so daß die Tropfen der beiden zwei Ströme in entgegengesetzten Richtungen auf dieselbe Druckfläche abgelenkt werden und gedruckte, aus Punkten zusammengesetzte Linien erzeugen, die im wesentlichen senkrecht zur Druckrichtung verlaufen und aus miteinander vernetzten bzw. sich überlappenden Tropfen beider Ströme zusammengesetzt sind, und wobei
    g) vorzugsweise getrennte Tintensammeleinrichtungen (36a'', 36b'') verwendet werden, um die nicht zum Drucken verwendeten Tintentropfen aus den entsprechenden Düsenöffnungen zu sammeln.
  6. Tintenstrahldruck nach Anspruch 5, dadurch gekennzeichnet, daß getrennte Felder von Tintenstrahldüsenöffnungen in zwei Reihen oberhalb und unterhalb des Druckbereiches angeordnet sind, wobei jedes Feld von Düsenöffnungen im wesentlichen parallel zu der relativen Druckrichtung (51) ausgerichtet ist und wobei die Spannungsquelle Signale einer Polarität auf die Ladeelektroden abgibt, die an den Abbrechpunkten der Tintenfäden liegen, welche aus dem oberen Feld von Düsenöffnungen austreten, sowie Signale der umgekehrten Polarität an die Ladeelektroden des anderen Feldes von Düsenöffnungen abgibt, so daß die Tröpfchen in entgegengesetzten Richtungen unter der Wirkung des ablenkenden elektrischen Feldes auf denselben Druckbereich gelenkt werden, um die erwähnten aus Linien zusammengesetzten Punkte zu drucken, die vernetzt sind, so daß sie ein vorbestimmtes Bild, einen Buchstaben oder ein Symbol drucken.
  7. Tintenstrahldrucker nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Ladeelektroden in einem gemeinsamen Isolationsaufbau gelagert sind und jeweils ringförmig, U-förmig oder halbkreisförmig und sehr präzise ausgebildet sind, so daß sie miteinander identisch sind.
  8. Verfahren zum Drucken mit einem Tintenstrahldrucker, wobei Tintentröpfchen abgetrennt und durch eine Mehrzahl von Öffnungen (12a, 12b; 12a', 12b', 12c', 12d', 12e') ausgestoßen und geladen und dann durch Elektrodenplatten (34a, 34b; 34a', 34b') abgelenkt werden, so daß sie auf vorbestimmte Punkte auf einem Aufzeichnungsmedium (40, 40') gelenkt werden, wobei das Aufzeichnungsmedium relativ zu den Öffnungen in einer Druckrichtung (51) bewegt wird und wobei die Öffnungen im wesentlichen parallel zu der Richtung dieser Relativbewegung ausgerichtet sind, wobei weiterhin jeder Tropfen eine Ladung erhält, die seiner Anordnung im wesentlichen senkrecht zu der relativen Druckrichtung entspricht, so daß aus Punkten bestehende Linien, die sich im wesentlichen senkrecht zu der relativen Druckrichtung erstrecken, in Form einer Matrix gedruckt werden können, welche ein gedrucktes Zeichen oder einen Buchstaben darstellt, und wobei benachbarte aus Punkten bestehende Linien innerhalb dieser Matrix von verschiedenen Düsenöffnungen des Druckkopfes gedruckt werden, so daß das gedruckte Zeichen oder der Buchstabe aus miteinander vernetzten bzw. überlappenden, aus Punkten bestehenden Linien zusammengesetzt ist, wobei jeweils benachbarte Linien von jeweils verschiedenen Düsenöffnungen gebildet worden sind.
  9. Verfahren zum Drucken nach Anspruch 8, unter Ablenken geladener Tintentröpfchen, um parallele, aus Punkten bestehende Linien zu ziehen, welche für einen ausgewählten Buchstaben oder ein Bild benötigt werden, derart, daß die k'te Düse eines Feldes aus n Düsen jede (mn + k)'te Linie druckt, wobei m eine ganze Zahl ist, und wobei nach einer (örtlichen) Verschiebung von (DR + 1) aus Punkten bestehenden Linien oder (DR - 1) aus Punkten bestehenden Linien für jede zur erstgenannten verschobene (k')'te Düse, welche dafür vorgesehen ist, die benachbarte Linie zu drucken, d.h. die [(mn + k) + 1]'te Punktlinie bzw. die [mn + k) - 1]'te Linie, zu drucken, wobei R die Auflösung in Punkten pro Millimeter, D der Abstand in Millimeter zwischen der k'ten Düse und der relativ verschobenen (k')'ten Düse ist und wobei k und k' = 1, 2, 3... oder n sind, so daß die Punktlinien in geeigneter Weise miteinander vernetzt sind, um den ausgewählten Buchstaben, das Zeichen oder Bild vollständig zu bilden.
  10. Verfahren nach Anspruch 9, wobei bei einer Betriebsart mit konstanter relativer Druckgeschwindigkeit die von der verschobenen (k')'ten Düse erzeugten Tropfen, welche die vernetzte Linie unmittelbar neben der (mn + k)'ten Linie drucken sollen, d.h. die [(mn + k) + 1]'te gepünktete Linie oder die [(mn + k) -1]'te Punktlinie, einer Zeitverzögerung von (D + 1/R)/10V Sekunden oder (D - 1/R)/10V Sekunden ausgesetzt wird, wobei "V" die relative Druckgeschwindigkeit in cm/Sekunde ist.
  11. Verfahren nach Anspruch 8 unter Verwendung eines Zweistrahlkopfes, wobei Tröpfchen von der Strahlöffnung "a" erzeugt und auf ein Aufzeichnungsmedium (40, 40') abgelenkt werden, um eine 2n'te Punktlinie in einem Buchstaben oder Zeichen zu drucken und, nach einer räumlichen Verschiebung von (RD - 1) oder (RD + 1) Punktlinien, oder, bei einer Betriebsart mit konstanter Relativgeschwindigkeit, nach einer Zeitverzögerung von entweder (D - 1/R) / 10V Sekunden oder (D + 1/R) / 10V Sekunden, wobei die Auflösung R Punkte pro Millimeter beträgt, D den Abstand zwischen den Zentren der beiden Düsenöffnungen in Millimeter angibt und V die Relativgeschwindigkeit in cm/sec ist, und wobei Tropfen aus einer zweiten Strahlöffnung "b" erzeugt werden, um eine (2n - 1)'te Punktlinie oder eine (2n + 1)'te Punktlinie des Buchstabens oder Bildes zu drucken.
  12. Verfahren nach Anspruch 8 unter Verwendung eines Zweistrahldruckkopfes, wobei Tropfen von der Strahlöffnung "a" erzeugt und auf ein Aufzeichnungsmedium (40, 40') abgelenkt werden, um die 2(2n)'te Punktlinie zu drucken, während eine zweite Strahlöffnung "b" die 2(2n ± 1)'te Punktlinie druckt nach einer räumlichen Verschiebung von (DR ± 2) Punktlinien oder, bei einer Betriebsart mit konstanter Geschwindigkeit, nach einer Zeitverzögerung von (D ± 2/R) / 10V Sekunden, wobei die Auflösung R Punkte pro Millimeter beträgt, D den Abstand zwischen den Zentren der beiden Düsen in Millimetern angibt und V die relative Druckgeschwindigkeit in cm/sec ist.
EP83100729A 1982-01-27 1983-01-27 Tintenstrahldrucker mit einem Vielstrahleinzelkopf Expired - Lifetime EP0084891B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34328882A 1982-01-27 1982-01-27
US343288 1982-01-27

Publications (3)

Publication Number Publication Date
EP0084891A2 EP0084891A2 (de) 1983-08-03
EP0084891A3 EP0084891A3 (en) 1984-07-18
EP0084891B1 true EP0084891B1 (de) 1991-08-21

Family

ID=23345473

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100729A Expired - Lifetime EP0084891B1 (de) 1982-01-27 1983-01-27 Tintenstrahldrucker mit einem Vielstrahleinzelkopf

Country Status (4)

Country Link
EP (1) EP0084891B1 (de)
JP (1) JPS58132566A (de)
CA (1) CA1202522A (de)
DE (1) DE3382377D1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714934A (en) * 1985-11-26 1987-12-22 Exxon Research & Engineering Company Apparatus for printing with ink jet chambers utilizing a plurality of orifices
GB9001654D0 (en) * 1990-01-24 1990-03-21 Domino Printing Sciences Plc Printhead for continuous ink jet printer
GB9421389D0 (en) 1994-10-24 1994-12-07 Domino Printing Sciences Plc Ink jet printhead
US7687102B2 (en) * 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
GB2467100B (en) * 2008-11-14 2012-10-10 Domino Printing Sciences Plc Improvements in or relating to continuous inkjet printers
JP5919159B2 (ja) * 2012-10-05 2016-05-18 株式会社日立産機システム インクジェット記録装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739395A (en) * 1971-10-12 1973-06-12 Mead Corp Liquid drop printing or coating system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596275A (en) * 1964-03-25 1971-07-27 Richard G Sweet Fluid droplet recorder
US3298030A (en) * 1965-07-12 1967-01-10 Clevite Corp Electrically operated character printer
US3786517A (en) * 1972-09-05 1974-01-15 Ibm Ink jet printer with ink system filter means
DE2402541C3 (de) * 1973-01-22 1981-11-12 International Business Machines Corp., 10504 Armonk, N.Y. Steuersystem für einen Tintenstrahldrucker
US4194210A (en) * 1976-03-29 1980-03-18 International Business Machines Corporation Multi-nozzle ink jet print head apparatus
US4085409A (en) * 1976-06-01 1978-04-18 The Mead Corporation Method and apparatus for ink jet printing
US4131898A (en) * 1977-09-15 1978-12-26 The Mead Corporation Interlacing recorder
JPS5843028B2 (ja) * 1978-09-25 1983-09-24 株式会社リコー 荷電偏向型マルチインクジェットプロッタ−
US4222058A (en) * 1978-10-12 1980-09-09 The Mead Corporation Charge plate with conductive pads and method of manufacture
JPS5613179A (en) * 1979-07-13 1981-02-09 Ricoh Co Ltd Ink jet recording method
JPS56105975A (en) * 1980-01-28 1981-08-22 Ricoh Co Ltd Charge quantity control type ink jet recording device
JPS591801Y2 (ja) * 1980-04-26 1984-01-19 株式会社日立製作所 インクジエツト記録装置
JPS5798365A (en) * 1980-12-11 1982-06-18 Sharp Corp Ink jet printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739395A (en) * 1971-10-12 1973-06-12 Mead Corp Liquid drop printing or coating system

Also Published As

Publication number Publication date
DE3382377D1 (de) 1991-09-26
JPS58132566A (ja) 1983-08-06
JPH0424229B2 (de) 1992-04-24
EP0084891A2 (de) 1983-08-03
CA1202522A (en) 1986-04-01
EP0084891A3 (en) 1984-07-18

Similar Documents

Publication Publication Date Title
US4596990A (en) Multi-jet single head ink jet printer
EP2828083B1 (de) Tropfenpositionierungfehlerverringerung ein einem elektrostatischen drucker
US4122458A (en) Ink jet printer having plural parallel deflection fields
EP0113499B1 (de) Tintenstrahldrucker
US4091390A (en) Arrangement for multi-orifice ink jet print head
US4809016A (en) Inkjet interlace printing with inclined printhead
US3813675A (en) Catching apparatus for a jet drop recorder
US4194210A (en) Multi-nozzle ink jet print head apparatus
US8651633B2 (en) Drop placement error reduction in electrostatic printer
JPS5849270A (ja) インク・ジェット印刷方法
EP0084891B1 (de) Tintenstrahldrucker mit einem Vielstrahleinzelkopf
CA1068328A (en) Oblique multi-nozzle ink jet print head apparatus
US6837574B2 (en) Line scan type ink jet recording device
US4048639A (en) Ink jet nozzle with tilted arrangement
US4307407A (en) Ink jet printer with inclined rows of jet drop streams
US4544930A (en) Ink jet printer with secondary, cyclically varying deflection field
EP0780230B1 (de) Anordnung zum Aufladen des Tropfens für einen hochauflösenden Tintenstrahldrucker
EP0639459A2 (de) Verfahren und Vorrichtung zum Betrieb von Hochgeschwindigkeits-Tintenstrahldruckern
EP0458943B1 (de) Vom benutzer auswählbare tröpfchenladungssynchronisierung für durch wanderwellen erregten kontinuierlich arbeitenden farbstrahldrucker
US6527375B2 (en) Ink jet recording device capable of controlling impact positions of ink droplets
GB1558421A (en) Liquid droplet recording apparatus
EP0104951A2 (de) Tintenstrahldrucker und Methode einer Druckeroperation
EP0514382B1 (de) Druckkopf für kontinuierlich arbeitenden tintenstrahldrucker
JPH09193393A (ja) マルチノズル連続インクジェット印字方法
SU1075079A1 (ru) Многосоплова печатающа головка струйнопишущей машины

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19831027

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910821

Ref country code: BE

Effective date: 19910821

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3382377

Country of ref document: DE

Date of ref document: 19910926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920129

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000907

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010116

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010130

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020127

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST