EP0081512A1 - Procede et dispositif de production d'eau chaude a usage domestique a partir de l'energie perdue au cours du refroidissement des moteurs de vehicules - Google Patents

Procede et dispositif de production d'eau chaude a usage domestique a partir de l'energie perdue au cours du refroidissement des moteurs de vehicules

Info

Publication number
EP0081512A1
EP0081512A1 EP82901721A EP82901721A EP0081512A1 EP 0081512 A1 EP0081512 A1 EP 0081512A1 EP 82901721 A EP82901721 A EP 82901721A EP 82901721 A EP82901721 A EP 82901721A EP 0081512 A1 EP0081512 A1 EP 0081512A1
Authority
EP
European Patent Office
Prior art keywords
pump
water
vehicle
circuit
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82901721A
Other languages
German (de)
English (en)
Inventor
Raymond Louis Pochard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0081512A1 publication Critical patent/EP0081512A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0026Particular heat storage apparatus the heat storage material being enclosed in mobile containers for transporting thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device intended to supply water for domestic use from a modified cooling system of a heat engine used for the propulsion of a vehicle and by means of ther mioue storage.
  • Another project DE-A-2930 269 aims to use the fluid of the engine cooling circuit as storage fluid, or directly exchange the heat of said circuit by means of an exchanger located in a tank without circulation of the storage fluid therefore with low heat exchanges.
  • the capacity of the cooling circuit is considerably increased. In general, the practical use of heat or hot water is not clear.
  • the present invention aims to remedy the drawbacks of these various proposals.
  • the invention as characterized in the claims solves the problem of efficient heating of domestic water over short distances without modifying the capacity of the engine cooling circuit.
  • the practical use of heated water is advantageously achieved thanks to the features of the device.
  • the vehicle with or without annex (trailer, caravan) is provided with two independent and closed hydraulic circuits, that is to say with each a outward journey (hot fluid) and a return journey (cold fluid), one for cooling the engine, the other forming the storage circuit.
  • These closed circuits are traversed by different fluids, coolant for the engine, heat transfer fluid, for example water for domestic use, for the storage circuit.
  • the cooling circuit includes two thermostatic valves commonly designated by their brand name "calorstat".
  • the first valve is normally located at the setting of the water pump and the second, at the outlet of the exchanger, controls the circuit of the racer.
  • the storage tank is advantageously provided with stratification plates allowing a maximum temperature difference between the two circuits of the exchanger, which facilitates exchanges.
  • the circulation pump in the storage circuit provides very good heat exchanges. Said pump also makes it possible to ensure the use of hot water on the vehicle or to transfer it outside the latter.
  • Charging of the stationary vehicle can be provided by circulation, stored hot water, in a convector.
  • the adaptation of the device to the vehicle can be facilitated, for certain embodiments, by the use of integrated exchangers ev. radiator .
  • An additional advantage resides in an improvement in the thermal regulation of the engine and in its setting in thermal mode thanks to the two thermostatic valves commonly called "CALORSTAT" and designated in the continuation of the patent by this designation.
  • Figure 1 shows an exemplary embodiment with an integrated type choke-radiator device, a pump driven by an electric motor and the use of hot water by transfer to a fixed tank thanks to the reversal of the direction of rotation of the pump. .
  • FIG. 1 shows the detail of the fixed capacity and its connection.
  • FIG. 3 shows an exemplary embodiment with an exchanger-radiator device of the integrated type, a pump with mechanical drive by the motor or by coupling to the water pump of the cooling circuit and direct use of hot water by means of a connection to a cold water supply and hot water distribution network.
  • Figure 4 shows an exemplary embodiment with a liquid-liquid tube bundle discharge device located at the location of a cooling circuit piping, a pump driven by an electric motor and direct use of hot water on the vehicle or its annex
  • the heating of the stationary vehicle can be ensured by means of a convector.
  • Figure 1 shows a complete embodiment of the cooling circuit (1,2,3 or 4,5,6) and the storage circuit (8,10,12,16,9).
  • the normal radiator is replaced by a li ⁇ uide-eir exchanger, liquid-liquid of the integrated type, shown from the front to facilitate understanding.
  • Part 4 corresponds to a conventional water-air radiator with an associated fan.
  • Part 3 corresponds to the primary of a water-water exchanger.
  • thermostatic valve device commonly referred to as
  • “calorstat” 5 can also be integrated between parts 4 and 3.
  • the exchanger 6 of suitable exchange surface (0.05 to 0.2 m or more) of the U-tube bundle style, or other, towards secondary water, allows the inlet and outlet pipes to be grouped in the lower part. In addition, this system facilitates expansion due to temperature variations.
  • the engine cooling circuit, or primary circuit then comprises the pump 1, the "calorstat” 2, the assembly 3 and 4, the “calorstat” 5 and the return and return lines 6 of the pump. When the engine water temperature is sufficient, the "calorstat" 2 allows the circulation of water in 3, the "calorstat” 5 closing the circuit 4.
  • the heat is exchanged by 8 in the secondary circuit or the pump 9, electrically driven by the motor 33, ensures the circulation of the fluid as soon as the temperature measured by the thermal probe 34 is sufficient on the cooling circuit (ex: 40o or 60 °).
  • the pump is automatically stopped when the desired temperature of the storage circuit, measured by the thermal probe 35 is reached (ex: 60 to 80 ° c).
  • the pump is variable speed. This speed advantageously believes, gradually, that the temperature difference, called pinching, between primary and secondary decreases, in order to increase the exchange coefficient given by a relation of the type: k: coefficient: Prantl number of the liquid ⁇ T: pinching : Reynolds number '. thermal conductivity of fluid P: motor power
  • the Reynolds number is directly related to the rotation speed of the pump, but also to the physical properties of the fluid. It is therefore possible to determine a law of variation of the speed of rotation of the pump as a function of the temperature and the nip for a given average power.
  • An electronic assembly 37 can perform the functions described above using probes 34 and 35.
  • the lines 10 and 16 connect the storage tank 12 provided with the stratification plates 13 to the exchanger 8 and to the pump 9.
  • the "calorstat" 5 ensures the circulation of the primary coolant in part 4 and limits the flow in part 3.
  • the heat is then evacuated towards the air by 4, a conventional fan device starting to limit the temperature by 4.
  • the pump 9 can then be ensured by means of the pump 9.
  • the latter being driven by the motor 33, the inversion of the polarity of the supply voltage ensures the inversion ⁇ its direction of rotation.
  • the hot water is therefore drawn directly through line 10 , the pump 9 discharging this water through the pipes 16 and 28.
  • the number of valves and solenoid valves required, for closing 21 or opening 20-22 is reduced.
  • the flexible pipes 28 and 29 provide the hydraulic connections.
  • the electronic device 37 can control the operation and the stopping of the transfer of hot water.
  • the valve 17 makes it possible to avoid any accidental overpressure which could not be compensated by the expansion volume 14 at the storage circuit.
  • the stratification plates 13 avoid as much as possible the mixing of cold water and hot water during the transfer.
  • Sealed "STAUBLI" quick couplings can replace valves 20-22 (figure 1) and 24-25.
  • the valves 26 and 27 can be used to isolate the tank 32 from the cold water inlet 30 and from the hot water outlet 31.
  • Figure 3 shows a variant of the device shown in Fig.1 in which the pump 9 to the secondary circuit is driven directly by the engine or mechanically coupled to the pump 1 of the cooling circuit.
  • An additional "calorstat" 11 and a “bypass” 15 located on the secondary circuit are then necessary if it is desired to adjust the flow rate in part 8 and towards the reservoir 12.
  • the "calorstat" device 5 can be located on an annex pipe connecting the radiator part 4 and the exchanger part 3.
  • the valve 17 prevents any accidental overpressure which could not be compensated by the expansion tank 14 integrated into the storage tank 12.
  • the assembly 12-14 is then easily removable.
  • the tank 12 is used like a normal hot water tank.
  • FIG. 4 shows an embodiment with a liquid-liquid exchanger 3-8 tube bundle of low pressure drop, and suitable exchange surface (0.05 to 0.2 m 2 or more) located on the route of a hot water hose.
  • the primary part 3 of the exchanger is extended by a calibrated pipe 7 as the return of the coolant to the engine. In the case of FIGS. 1 and 3, this return function was directly provided by the cold water box of the integrated exchanger. The operation is identical to those described above.
  • the "calorstat" 5 opens ensuring circulation of the cooling fluid preferably in the radiator 4.
  • the contacts 38 and 39 of the thermostats 34 and 35 respectively ensure the starting and automatic stopping of the engine 33.
  • the tap 23 allows the direct distribution of hot water on the vehicle (motorhome, coach ...) or on a hydraulically connected caravan.
  • the pressurization of hot water is then ensured either by means of the pump 9 by starting the engine 33 by means of the electrical contact 40 controlled by the tap 23, or by compressing the expansion volume 14 integrated in the reservoir 12, said compression being caused by the expansion of the water of the storage circuit and the air of said volume 14 or by the combination of the two methods.
  • Heating of the stationary vehicle can then be ensured by means of a convector 18 located on one of the pipes 10 or 16, the opening of the flaps 19 ensures the activation of a thermostat 36 controlling the setting in route from motor 33 to pump 9 to. by means of a contact 40.
  • the flaps 19 being closed during the heating phase of the water, this device causes only a small loss of heat and does not modify the performance of the storage circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Production d'eau chaude sanitaire a partir de l'energie perdue dans les moteurs thermiques. Le dispositif comporte deux circuits hydrauliques fermes, parcourus par des fluides differents et possedant chacun en propre une pompe. Le circuit de refroidissement ou primaire comprend un echangeur liquide-air (4) et liquide-liquide (3). Le circuit secondaire (8) permet le chauffage de l'eau a usage domestique, de la capacite (12) circulant grace a la pompe (9). Le dispositif de type 'calorstat' (2) assure la circulation du fluide entraine par la pompe (1), vers (3) quand la temperature du moteur est suffisante. Le dispositif (5) assure la circulation du fluide primaire vers (4) quand la temperature en (3) devient trop importante. Des thermostats (34, 35) permettent la mise en route de la pompe (9) des que la temperature du liquide de refroidissement atteint 40 a 60 C et l'arret de cette pompe lorsque la temperature de l'eau a usage domestique est suffisante (60 a 80 C). L'eau chaude produite peut etre utilisee sur le vehicule (camping-car, caravane) ou dans une habitation soit par transfert dans un reservoir au moyen de vannes telles (20, 21, 22) et tuyauterie souple (28, 29) soit par utilisation de la capacite (12) comme un ballon d'eau chaude normal.

Description

Procédé et dispositif de production d'eau chaude à usege domestique à partir de l'énergie perdue au cours du refroidissement des moteurs αe véhicules.
L'invention concerne un dispositif αestiné à fournir de l'eau à usage domestique à partir d'un système de refroidissement modifié d'un moteur thermique utilisé pour la propulsion d'un véhicule et au moyen d'un stockage ther mioue.
l'énergie extraite, lors du refroidissement nécessaire, des moteurs à cycles deux ou cuetre temps est actuellement évacuée par des échangeurs (radiateurs) dans l'atmosphère ambiante. L'utilisation quotidienne des véhi cules par exemple pour des trajets de l'ordre ce 10 à 100 kms ou plus représente donc une dissipation importante
Certaines propositions visent à réguler ces écnarges vers l'extérieur par un stockage limité de la chaleur produite, qui est de toute façon destinée à être perdue. D'autres propositions DE-A- 2821 690 et DE-A 2635 632 sounaitent emprunter la chaleur de l'eau de refroidissement ou des gazs d'échappement et la stocker sur le véhicule afin de la délivrer ensuite à des points de ramassage pour une utilisation domestique ou industrielle. Les intentions restent très générales et aucun dispositif suff isemment précis n'est défini.
Un autre projet DE-A- 2930 269 vise à utiliser le fluide du circuit de refroidissement du moteur comme fluide de stockage, ou échange directement la chaleur du dit circuit au moyen d'un échangeur situé dans un réservoir sans circulation du fluide de stockage donc avec de faibles échanges thermiques. De plus la contenance du circuit de refroidissement se trouve considérablement augmentée. D'une façon générale l'utilisation pratique de la chaleur ou de l'eau chaude n'apparaît pas clairement.
La présente invention a pour but de remédier aux inconvénients de ces diverses propositions. L'invention telle qu'elle est caractérisée dans les revendications résoud le problème d'un chauffage efficace de l'eau domestique sur de courtes distances sans modification de la contenance du circuit de refroidissement du moteur. De plus l'utilisation pratique de l'eau chauffée est avantageusement réalisée grâce aux particularités du dispositif. Dans la présente invention le véhicule avec ou sans annexe (remorque, caravane) est muni de deux circuits hydrauliques indépendants et fermés, c'est-à-dire avec chacun un trajet aller (fluide chaud) et un trajet retour (fluide froid), l'un de refroidissement du moteur, l'autre formant le circuit de stockage. Ces circuits fermés sent parcourus par des fluides différents, liquide de refroidissement pour le moteur, fluide caloporteur, par exemple de l'eau à usage domestique, pour le circuit de stockage. Ces deux circuits ont chacun en propre un e pompe de circulation et sont reliés thermiquement par un échangeur de chaleur implanté sur le dit circuit de refroidissement, lequel conserve approximativement sa contenance initiale. Le circuit de refroidissement comporte deux vannes thermcstatiques communément désignées par leur marque de fabricue "calorstat". La première vanne est normalement située à la sertie de la pompe à eau et la seconde, à la sortie de l'échangeur, pilote le circuit du raciateur. Le réservoir de stockage se trouve avantageusement pourvu de plaques de stratification permettant d'avoir un écart de température maximum entre les deux circuits de l'échangeur, ce qui facilite les échanges. La pompe de circulation du circuit de stockage permet d'obtenir de très bons échanges thermiques. La dite pompe permet également d'assurer l'utilisation de l'eau chaude sur le véhicule ou de la transférer à l'extérieur de ce dernier.
Les avantages obtenus grâce à cette invention consistent essentiellement en ceci, que la séparation des circuits de refroidissement et de stockage assure la production directe sur le véhicule d'eau chaude à usage domestique sur des distances relativement courtes (10 à 50 kms ) grâce à la grande qualité des échanges thermiques. La faible modi fication des caractéristiques du circuit de refroidissement (volume, géométrie, trajets du fluide) permet d'utiliser la pompe à eau d'origine sur le dit circuit et la quantité normale de liquide de refroidissement. Un autre avantage important est la réversibilité totale du dispositif qui as sure le fonctionnement normal du moteur en cas de vidange du circuit de stockage et permet donc la dépose éventuelle du réservoir, le véhicule retrouvant alors son poids d'origine à 15 ou 20 kg près. L'utilisation de l'eau chaude sur le véhicule ou à l'extérieur de celui-ci est grandement facilitée grâce à la pompe du circuit de stockage. Le charffcge du véhicule à l'arrêt (camping-car, autocar, ...) peut être assuré par circulation, de l'eau chaude stockée, dans un convecteur. L'adaptation du dispositif au véhicule peut être facilitée, pour certaines formes de réalisation, par l'utilisation d'échangeurs intégrés ev. radiateur . Un avantage annexe réside dans une amélioration de la régulation thermique du moteur et de sa mise en régime thermique grâce aux deux vannes thermostatiques communément appelées "CALORSTAT" et désignées dans la suite du brevet par cette appellation. D'autres caractéristiques et avantages de la présente invention ressortiront de le description qui va suivre, faite en regard des dessins annexés et donnant à titre explicatif mais nullement limitatif diverses formes de réalisation de l'invention.
La figure 1 montre un exemple de réalisation avec un dispositif échengeur-radiateur de type intégré, une pompe à entraînement par moteur électrique et une utilisation de l'eau chaude par transfert vers un réservoir fixe grâce à l'inversinαedu sens de rotation de la pompe.
La figure 2 montre le détail de la capacité fixe et de son raccordement.
Ls figure 3 montre un exemple de réalisation avec un dispositif échangeur-radiateur de type intégré, une pompe à entraînement mécanique par le moteur ou par couplage à la pompe à eau du circuit de refroidissement et une utilisation directe de l'eau chaude grâce à un raccordement à un réseau d'alimentation en eau froide et de distribution en eau chaude.
La figure 4 montre un exemple de réalisation avec un éehargeur liquide-liquide à faisceau de tube situé à l'emplacement d'une tuyauterie du circuit de refroidissement, une pompe à entraînement par moteur électrique et une utilisation directe de l'eau chaude sur le véhicule ou son annexe Le chauffage du véhicule à l'arrêt peut être assuré au moyen d'un convec-teur. La figure 1 présente un exemple de réalisation complet du circuit de refroidissement (1,2,3 ou 4,5,6) et du circuit de stockage (8,10,12,16,9). Le radiateur normal est remplacé par un échangeur liαuide-eir, liquide-liquide de type intégré, représenté de face peur faciliter la compréhension. La partie 4 correspond à un radiateur eau air classique avec un ventilateur associé. La partie 3 correspond au primaire d'un échangeur eau-eau. L'intérêt d'un tel dispositif intégré est d'avoir des boites à eau primaire communes aux deux parties de l'échangeur, donc de simplifier les raccordements. De plus le remplacement d'un radiateur normal par un tel dispositif est aisé et peut donc permettre d'adapter facilement la présente invention sur les véhicules actuels. Un dispositif de vanne thérmostatiσue communément désigné sous le nom de
"calorstat" 5 peut également être intégré entre les parties 4 et 3. L'échangeur 6 de surface d'échange convena ble (0,05 à 0,2 m ou plus) du style faisceau de tubes en U, ou autre, vers l'eau secondaire, permet de regrouper les tuyauteries d'entrée et de sortie dans la partie basse. De plus ce système facilite les dilatations dues aux variations de températures. Le circuit de refroidissement du moteur, ou circuit primaire, comprend alors la pompe 1, le "calorstat" 2, l'ensemble 3 et 4, le "calorstat" 5 et les conduits aller et retour 6 de la pompe. Quand la température de l'eau du moteur, est suffisante, le "calorstat" 2 permet la circulation de l'eau dans 3, le "calorstat" 5 fermant le circuit 4. La chaleur est échangée par 8 dans le circuit secondaire ou la pompe 9, entraînée électriquement par le moteur 33, assure la circulation du fluide dès-que la température mesurée par la sonde thermique 34 est suffisante sur le circuit de refroidissement (ex : 40º ou 60°). La pompe est arrêtée automatiquement lorsque la température désirée du circuit de stockage, mesurée par la sonde thermique 35 est atteinte (ex : 60 à 80° c). La pompe est à vitesse variable. Cette vitesse croit avantageusement, au fur et à mesure, que l'écart de température, appelé pincement, entre primaire et secondaire diminue, afin d'augmenter le coefficient d'échange donné par une relation du type : k : coefficient :nombre de Prantl du liquide ΔT : pincement :nombre de Reynolds '. conductivité thermique du fluide P : puissance du moteur
Le nombre de Reynolds est directement lié à la vitesse de rotation de la pompe, mais également aux propriétés physiques du fluide. Il est donc possible de déterminer une loi de variation de la vitesse de rotation de la pompe en fonction de la température et du pincement pour une puissance moyenne donnée. Un ensemble électronique 37 peut réaliser les fonctions décrites précédemment à l'aide des sondes 34 et 35. Lee conduites 10 et 16 relient le réservoir de stockage 12 munis des plaques de stratification 13 à l'échangeur 8 et à la pompe 9 . Lorsque la température de la partie 3 devient trop importante (ex : 70 à 85º) le "calorstat" 5 assure le circulation du liquide de refroidissement primaire dans la partie 4 et limite le débit dans la partie 3. La chaleur est alors évacuée vers l'air par 4, un dispositif classique de ventilateur se mettant en route pour limiter la température de 4. Le transfert de l'eau chaude de la capacité 12 vers une capacité fixe 32 (fig. 2 . peut alors être assurée au moyen de la pompe 9. Celle-ci étant entraînée par le moteur 33 l'inversion de la polarité de la tension d'alimentation assure l'inversion αε son sens de rotation. L'aspiration de l'eau chaude se fait donc directement par la conduite 10, la pompe 9 refoulant cette eau par les tuyauteries 16 et 28. Le nombre des vannes et électrovannes nécessaires, à fermeture 21 ou ouverture 20-22 est réduit. Les conduites souples 28 et 29 assurent les liaisons hydrauliques. Le dispositif électronique 37 peut contrôler le fonctionnement et l'arrêt du transfert d'eau chaude. La soupape 17 permet d'éviter toute surpression accidentelle qui ne pourrait être compensée par le volume d'expansion 14 au circuit de stockage.
Sur la figure 2 la capacité 32 avec ses plaques de stratification 13, les vannes ou électrovannes 24 et 25 étant ouvertes, voit arriver l'eau chaude par 28 et repartir l'eau froide par 29 vers la capacité 12 (figure 1). Les plaques de stratification 13 évite au maximum le mélange eau froide eau chaude lors du transfert. Des raccords rapides étanchεε genre "STAUBLI" peuvent remplacer les vannes 20-22 (figure 1) et 24-25. Les vannes 26 et 27 peuvent permettre d'isoler le réservoir 32 de l'arrivée d'eau froide 30 et du départ d' au chaude 31.
La figure 3 montre une variante du dispositif présenté Fig.1 dans laquelle la pompe 9 au circuit secondaire est entraînée directement par le moteur thermique ou couplée mécaniquement à la pompe 1 du circuit de refroidissement. Un "calorstat" supplémentaire 11 et un "by pass" 15 situés sur le circuit secondaire sont alors nécessaires si l'on désire régler le débit dans la partie 8 et vers le réservoir 12 . Le dispositif " calorstat" 5 peut être situé sur une conduite annexe reliant la partie radiateur 4 et la partie échangeur 3. La soupape 17 prévient toute surpression accidentelle qui ne pourrait être compensée par le vase d'expansion 14 intégré au réservoir de stockage 12. L'ensemble 12-14 est alors facilement déposable. Le réservoir 12 est utilisé comme un ballon d'eau chaude normal. Des raccords hydrauliques étanches genre "STAUBLI" 20 et 23 permettent de relier le réservoir 12 d'une part au réseau d'alimentation en eau froide 30, d'autre part au circuit de distribution d'eau chaude par la conduite 31. Le véhicule doit rester immobilisé au plus près du lieu d'utilisation de l'eau chaude.
L a figure 4 présente un mode de réalisation avec un échangeur liquide-liquide 3-8 à faisceau de tubes de faible perte de charge, et de surface d'échange convenable (0,05 à 0,2 m2 ou plus) implanté sur le trajet d'une durite d'eau chaude. La partie primaire 3 de l'échangeur est prolongée par une conduite calibrée 7 as s urant le retour du liquide de refroidissement vers le moteur. Dans le cas des figures 1 et 3 cette fonction de retour était directement assurée par la boite à eau froide de l' échangeur intégré. Le fonctionnement est identique à ceux décrits précédemment. Quand l'échangeur 3-8 n'assure plus une évacuation suffisante des calories le "calorstat" 5 s'ouvre assurant la circulation du fluide de refroidissement préférentiellement dans le radiateur 4. Les contacts 38 et 39 des thermostats 34 et 35 assurent respectivement la mise en route et l'arrêt automatique du moteur 33. Le robinet 23 permet la distribution directe de l'eau chaude sur le véhicule (camping-car, autocar ...) ou sur une caravane connectée hydrauliquement. La mise en pression de l'eau chaude est alors assurée soit au moyen de la pompe 9 par la mise en route du moteur 33 grâce au contact électrique 40 commandé par le robinet 23, soit par la compression du volume d'expansion 14 intégré au réservoir 12, la dite compression étant provoquée par la dilatation de l'eau du circuit de stockage et de l'air du dit volume 14 soit par la combinaison des deux procédés. Le chauffage du véhicule à l'arrêt peut alors être assuré au moyen d'un convecteur 18 situé sur l'une des conduites 10 ou 16 dont l'ouverture des volets 19 assure la mise en circuit d'un thermostat 36 contrôlant la mise en route du moteur 33 àe la pompe 9 au. moyen d'un contact 40. Les volets 19 étant fermés pendant la phase de chauffage de l'eau, ce dispositif n'entraine qu'une faible déperdition de chaleur et ne modifie pas les performances du circuit de stockage.

Claims

Revendications
1 - Dispositif destiné à fournir de l'eau chaude à usage domestique à partir d'un système de refroidissement modifié d'un moteur thermique utilisé pour la propulsion d'un véhicule, et au moyen d'un stockage thermique, caractérisé par le fait que le dit véhicule avec ou sans annexe (remorque, caravane ...) possède deux circuits hydrauliques distincts et fermés, c'est-à-dire avec chacun un trajet aller (fluidechaud) et un trajet retour (fluide-froid), l'un de refroidissement du moteur, ( 1, 3, 4, 5, 6), l'autre (8, 10, 12, 16, 9) formant le circuit secondaire de stockage, ces circuits fermés étant parcourus par des fluides différents, liquide de refroidissement pour l'un, eau à usage domestique pour l'autre, les deux circuits ayant chacun en propre une pompe de circulation et étant reliés thermiouement par un échangeur de chaleur implanté sans modifier sensiblement la contenance du circuit de refroidissement.
2 - Dispositif selon la revendication 1 caractérisé par le fait que le circuit de refroidissement modifié utilise un échangeur liquide-liquide(3, 8) de faible perte de charge, afin d'utiliser au mieux la pompe à eau normale du moteur et implanté en remplacement de durites existantes, le dit échangeur (3, 8) comportant un faisceau de tubes en ϋ ou autres afin d'obtenir une surface d'échange convenable (0,05 à 0,2 m2 ou plus), la partie secondaire (8) constituant l'élément de chauffage de l'eau circulant grâce à la pompe (9) vers le réservoir (12). 3 - Dispositif selon les revendications 1 et 2 caractérisé en ce qu'il comporte deux dispositifs communément appelés "Calorstat" afin que la montée en température et le fonctionnement normal du moteur ne soient pas pertur bés, le premier (2) ne permettant le passage de l'eau vers le circuit de refroidissement que lorsque la température de fonctionnement du moteur est atteinte, le se cond (5) assurant l'évacuation de la chaleur, qui n'a pu être échangée avec le circuit secondaire de stockage, vers le radiateur du véhicule (4).
4 - Dispositif selon l'une quelconque des revendications 1, 2 et 3 caractérisé par le fait qu'il utilise un échangeur intégré de type liquide-air (4) et liquide-liquide (3, 6) possèdant au moins une boite à eau commune, entre (4 et 3) une ou des vannes thermostatiques telles que (5), à ouverture ou fermeture, incorporées ou placées sur une ou des tuyauteries annexes et éventuellement des vannes d'isolement et de vidange, cet échangeur intégré rem plaçant alors le radiateur classique.
5 - Dispositif selon la revendication 1 caractérisé par le fait que la pompe (9) permettant la circulation de l'eau à usage domestique du circuit de stockage est entraînée directement par le moteur thermique ou par un couplage à la pompe à eau normale du véhicule.
6 - Dispositif selon la revendication 1, caractérisé par le fait qu'un moteur électrique (33) alimenté par le circuit électrique du véhicule assure l'entrainement de la pompe (9) du circuit de stockage.
7 - Dispositif selon les revendications 1 et 6 caractérisé par le fait que des dispositifs de contrôle thermostatiques tels (34, 35, 36) assurent la mise en marche, ou l'arrêt du moteur (33), en contrôlant la température du circuit de refroidissement, du circuit de stockage, ou une température dans le véhicule.
8 - Dispositif selon l'une quelconque des revendications 1, 6 et 7 caractérisé par le fait qu'un dispositif électronique (34) permet de régler la tension d'alimentation du moteur (33) et donc sa vitesse en fonction de la température mesurée sur le circuit de stockage ou en fonction d'un écart de température mesuré entre ce circuit et le circuit de refroidissement du moteur.
9 - Dispositif selon l'une quelconque des revendications 1, 5, 6, 7 et 8 caractérisé par le fait que la pompe 9 implantée sur le véhicule où sur une annexe est utilisée, au besoin en inversant son sens de rotation, si elle est entraînée par un moteur électrique, pour le transfert de l'eau chaude domestique vers une capacité de stockage (32) liée au lieu d'utilisation.
10 - Dispositif selon l'une quelconque des revendications 1, 6, 7, 6 et 9 caractérisé par le fait que la pompe 6 du circuit secondaire de stockage d'eau chaude à usage domestique est utilisée pour la distribution de cette eau sur le véhicule dans le cas où celui-ci est un camping-car ou un car de grande randonnée, ou dans une caravane reliée au véhicule.
11 - Dispositif selon l'une quelconque des revendications 1 à 4 et 6 à 10 caractérisé par le fait qu'un appareil convecteur (16) destiné au chauffage du véhicule à l'arrêt est implanté sur une des conduites (10) ou (16) du circuit de stockage, le dit convecteur étant munis de volets normalement fermés penoant la phase de stockage et ouverts si l'on désire du chauffage, l'ouverture des dits volets assurant la mise en service d'un thermostat (36) commandent la mise en mar che du moteur (33) entraînant la pompe. (9).
12 - Dispositif selon la revendication 1 caractérisé par le fait qu'une ou plusieurs plaques (13) de stratification horizontale équipent le réservoir de stockage (12) afin de délimiter une séparation physique entre l'eau chauffée et l'eau froide, ce dispositif améliorant aussi bien la phase de chauffage que la phase de transfert ou d'utilisation directe de l'eau chaude.
13 - Dispositif εelon les revendications 1 et 12 caractérisé par le fait que le volume libre d'expansion nécessaire au circuit secondaire est inclus dans le réservoir de stockage permettant éventuellement l'obtention directe d'eau sous pression (1 à quelques bars) grâce à la dilatation de l'eau et de l'air du volume libre,ainsi qu'une plus grande facilité de démontage.
14 - Dispositif selon l'une quelconque des revendications 1 à 7 caractérisé par le fait que les deux circuits distincts et le dispositif thermostatique tel que(5)ou autre permettent d'assurer en cas de vidange complète du circuit secondaire dit de stockage, le refroidissement du moteur par le radiateur normal ou la partie (4) de l'échangeur intégré permettant la dépose du réservoir (12) et le retour du véhicule à son état antérieur.
EP82901721A 1981-06-10 1982-06-08 Procede et dispositif de production d'eau chaude a usage domestique a partir de l'energie perdue au cours du refroidissement des moteurs de vehicules Withdrawn EP0081512A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8111403A FR2507752B1 (fr) 1981-06-10 1981-06-10 Procede et dispositif de production d'eau chaude a usage domestique a partir de l'energie perdue au cours du refroidissement des moteurs de vehicules
FR8111403 1981-06-10

Publications (1)

Publication Number Publication Date
EP0081512A1 true EP0081512A1 (fr) 1983-06-22

Family

ID=9259349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82901721A Withdrawn EP0081512A1 (fr) 1981-06-10 1982-06-08 Procede et dispositif de production d'eau chaude a usage domestique a partir de l'energie perdue au cours du refroidissement des moteurs de vehicules

Country Status (4)

Country Link
EP (1) EP0081512A1 (fr)
JP (1) JPS58500863A (fr)
FR (1) FR2507752B1 (fr)
WO (1) WO1982004474A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554564A1 (fr) * 1983-11-07 1985-05-10 Dujmovic Tomislav Appareil chauffe-eau pour vehicules a moteur thermique, notamment camping-car
GB8824180D0 (en) * 1988-10-14 1988-11-23 Duell K Motor vehicle water supply system
GB0228105D0 (en) 2002-12-03 2003-01-08 Thomason John A Method and apparatus for conserving heat
GB2406901B (en) * 2003-10-06 2007-12-27 Ec Power As Heat transfer system
FR2928975B1 (fr) * 2008-03-20 2011-09-23 Patrice Philippe Pierre Claude Dispositif pour economiser l'energie en stockant le fluide chaud en sortie de circuit de refroidissement d'un moteur thermique d'engin mobile pour le restituer a un systeme de chauffage exterieur a cet engin.
FR2994477A1 (fr) * 2012-08-10 2014-02-14 Suez Environnement Systeme pour la recuperation d'une partie au moins de la chaleur degagee par un moteur thermique de vehicule, et vehicule equipe pour un tel systeme

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB957460A (en) * 1961-11-03 1964-05-06 Searle Russell John Apparatus for heating water by means of the water cooling system of an internal combustion engine
DE2635632A1 (de) * 1976-08-07 1978-02-09 Sigrid Dipl Ing Reinhard Verfahren zur nutzung der abwaerme von verbrennungsmotoren
DE2821690A1 (de) * 1978-05-18 1979-11-22 Harald Biesterfeldt Fahrzeugwaermeenergieausnutzer
DE2930269A1 (de) * 1979-07-26 1981-03-12 Bruno 6208 Bad Schwalbach Hanke Waermenutzungsanlage von kraftfahrzeugabwaerme fuer haeuer und wohnungen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8204474A1 *

Also Published As

Publication number Publication date
WO1982004474A1 (fr) 1982-12-23
FR2507752A1 (fr) 1982-12-17
FR2507752B1 (fr) 1986-09-05
JPS58500863A (ja) 1983-05-26

Similar Documents

Publication Publication Date Title
EP1132229B1 (fr) Dispositif de climatisation de véhicule comportant un échangeur de chaleur polyvalent
FR2642012A1 (fr) Dispositif pour le chauffage de vehicules automobiles equipes d'un moteur a combustion interne, notamment d'autobus
FR2745759A1 (fr) Dispositif de chauffage et de climatisation pour vehicules automobiles
EP2334504A1 (fr) Vehicule automobile a moteur electrique comportant un circuit de refroidissement du circuit electronique de puissance connecte a un radiateur de chauffage de l'habitacle
EP2108910B1 (fr) Échangeur interne comportant un moyen de stockage thermique et boucle incorporant un tel échangeur
EP2102575A1 (fr) Echangeur de chaleur comprenant au moins trois parties d'echanges de chaleur et systeme de gestion de l'energie thermique comportant un tel echangeur
EP0081512A1 (fr) Procede et dispositif de production d'eau chaude a usage domestique a partir de l'energie perdue au cours du refroidissement des moteurs de vehicules
EP0545795A1 (fr) Procédé et dispositif de refroidissement d'un moteur thermique à charge fortement variable
FR2482906A1 (fr) Perfectionnements aux systemes de refroidissement de moteurs de vehicules a radiateur associe a un vase d'expansion
FR2536841A1 (fr) Procede de chauffage ou de refroidissement et de commande d'une pompe a chaleur et appareil de conditionnement d'air
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
FR3025297A1 (fr) Pompe a chaleur d'un vehicule automobile hybride pour la regulation en temperature d'un stockeur electrique
FR2988467A1 (fr) Installation de chauffage pour un vehicule hybride
EP0036355B1 (fr) Installation de chauffage pour locaux à usage d'habitation ou industriel
FR2610989A1 (fr) Circuit de refroidissement auxiliaire pour vehicule automobile
FR3042221B1 (fr) Groupe motopropulseur comprenant un moteur thermique equipe d’un circuit de refroidissement et d’un echangeur thermique
EP0670414B1 (fr) Système de refroidissement pour un moteur à combustion interne
EP1556588B1 (fr) Systeme de refroidissement d'un groupe motopropulseur, notament de vehicule automobile, comprenant un echangeur liquide/liquide
FR2913755A1 (fr) Dispositif de ventilation pour echangeur thermique
EP0992377A1 (fr) Dispositif thermostatique de récupération de la chaleur des gaz d'échappement d'un véhicule
FR2752016A1 (fr) Dispositif de refroidissement d'un moteur a combustion interne
FR3074525A1 (fr) Circuit de refroidissement de groupe motopropulseur optimisant la montee en temperature d'une boite de vitesses
FR2691504A1 (fr) Dispositif de refroidissement d'un moteur thermique comprenant un condenseur.
WO2023072587A1 (fr) Systeme de gestion thermique pour vehicule hybride ou electrique
WO2023187271A1 (fr) Procédé de pilotage d'un dispositif de couplage et de decouplage d'un moteur electrique de traction en fonction de criteres thermiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830331

AK Designated contracting states

Designated state(s): DE FR GB NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19851119