EP0081421A1 - Méthode de guidage terminal et missile guidé opérant selon cette méthode - Google Patents

Méthode de guidage terminal et missile guidé opérant selon cette méthode Download PDF

Info

Publication number
EP0081421A1
EP0081421A1 EP82402180A EP82402180A EP0081421A1 EP 0081421 A1 EP0081421 A1 EP 0081421A1 EP 82402180 A EP82402180 A EP 82402180A EP 82402180 A EP82402180 A EP 82402180A EP 0081421 A1 EP0081421 A1 EP 0081421A1
Authority
EP
European Patent Office
Prior art keywords
missile
sensor
target
trajectory
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82402180A
Other languages
German (de)
English (en)
Other versions
EP0081421B1 (fr
Inventor
Pierre Metz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Brandt Armements SA
Original Assignee
Thomson-Brandt SA
Thomson Brandt Armements SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Brandt SA, Thomson Brandt Armements SA filed Critical Thomson-Brandt SA
Priority to AT82402180T priority Critical patent/ATE40467T1/de
Publication of EP0081421A1 publication Critical patent/EP0081421A1/fr
Application granted granted Critical
Publication of EP0081421B1 publication Critical patent/EP0081421B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/661Steering by varying intensity or direction of thrust using several transversally acting rocket motors, each motor containing an individual propellant charge, e.g. solid charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2233Multimissile systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/006Proximity fuzes; Fuzes for remote detonation for non-guided, spinning, braked or gravity-driven weapons, e.g. parachute-braked sub-munitions

Definitions

  • the invention relates to guided projectiles and relates, more specifically, to a method of guiding a missile, applicable during the terminal portion of the flight path; it also relates to a guided missile operating according to this guidance method.
  • AIR-SOL missiles capable of stopping, at relatively large distances, the threat posed by land formations constituted, in particular, by motorized vehicles such as armored vehicles advancing in groups on the ground.
  • These armored vehicles by their nature, radiate thermal energy and, therefore, constitute potential targets which can be detected and located by a missile equipped, for example, with an electrooptical EO sensor operating in the IR band of the spectrum. electromagnetic.
  • the missile may be provided with a military charge capable of perforating the protective armor of armored vehicles.
  • a projectile comprising guide means which make it possible, in the terminal phase of the trajectory, to correct the possible error between the direction of a target and the direction of impact of the projectile on the ground, in free fall.
  • the base of this projectile of the prior art is equipped with a set of fins which imparts to the body of the projectile an autorotation movement of substantially constant angular speed, around its longitudinal axis.
  • an electro-optical sensor EO
  • a lateral impeller can provide a predetermined thrust force whose direction is normal to the velocity vector of the projectile.
  • the EO sensor consists of a plurality of photodetector cells arranged in a ring in a plane perpendicular to the axis of the projectile, in order to provide a hollow conical field of vision.
  • the surface of the ground covered by the field of vision of the EO sensor is progressively reduced as a function of the decreasing altitude of the trajectory.
  • the output signal from the EO sensor is used to provide a trigger order to the lateral impeller at the moment when the orientation of the latter is opposite to the direction of the detected target.
  • the proposed guidance method uses a target tracking sensor which measures the rotation of the missile / target line of sight.
  • the method of guidance according to the invention consists in immobilizing the beam of the sensor on the longitudinal axis, in imparting to the missile body an autorotation movement of controlled angular speed, in producing a transverse thrust force, normal to the direction of the vector speed of movement of the missile to force it to describe a spiral trajectory, to detect the presence of a possible target in the beam of the sensor, to release the beam of the sensor and to maintain the axis of this one pointed on the target, to measure the rotation of the line of sight missile-target, to develop a piloting order, function of the rotation of the line of sight and to modify the attitude of roll of the missile to direct the force of transverse thrust in a direction depending on the magnitude of the rotation of the line of sight.
  • a guided missile according to the invention comprises a sensor sensitive to the energy radiated by a potential target and it comprises: first and second main sections mutually coupled to rotate freely relative to each other around the axis longitudinal of the missile; the first main section called “front section” contains the sensor and comprises: a motor member having a first member secured to the mechanical structure of this front section, and a second member physically coupled to the second main section, and, a gas generator which feeds a side nozzle to create a transverse force; and the second main section called “rear section” is provided at its base with a stabilizing stabilizer; the sensor is provided with a locking device to immobilize its beam on the longitudinal axis of the missile and to allow the search for a target and this sensor provides a measurement of the rotation of the line of sight missile / target to control the roll attitude of the missile body in order to pilot the missile at the target.
  • Another object of the invention consists in conferring on the missile an initial speed of displacement determined on its trajectory and in maintaining it substantially constant along the trajectory.
  • Another object of the invention is to vary the angular speed of autorotation of the missile body along its terminal trajectory.
  • the second member of the engine member is coupled to the rear section of the missile by a central shaft.
  • the rear section of the missile comprises a compartment for housing a releasable braking parachute intended to reduce the ballistic speed of the missile over the portion of the trajectory preceding the terminal phase.
  • FIG. 1 represents, in a simplified form, the projectile of the prior art mentioned in the preamble of this application as well as the corresponding terminal guidance method.
  • the projectile 1 is equipped with a set of fins 2, the configuration of which makes it possible to print on the body of this projectile an angular speed of autorotation ⁇ r around its longitudinal axis X carrying the displacement speed vector V of the projectile on its path.
  • the trajectory of the projectile is inclined by an angle ⁇ t and this projectile strikes the ground at a point 4 angularly offset by an angle ⁇ c of a potential target 6.
  • the projectile In order to modify the trajectory of the projectile, it is provided with a lateral impeller 3 and an electro-optical sensor 5 which provides a trigger signal for this impeller, this trigger signal resulting from the measurement of the angle error ⁇ c . It follows that the velocity vector V of the projectile is modified by an amount V to provide a resulting velocity vector V offset by the angle ⁇ c of the velocity vector V to effect the impact of the projectile on the target.
  • FIG. 2 represents the embodiment of the electrooptical sensor 5 carried by the projectile 1 described in FIG. 1.
  • This sensor EO essentially consists of a plurality of photoconductive elements 7 arranged in a ring in a plane orthogonal to the longitudinal axis X of the projectile body to provide a predetermined hollow conical field of vision with angular opening 9 and angular width ⁇ .
  • the image 8 of the target 6 is detected by one of the photoconductive elements 7 such as the element 7 .
  • the magnitude of the relative angle A between the direction of the impeller 3 and the photoconductive element 7 i is measured by the sensor EO and supplied to a calculation circuit which determines the instant of tripping the impeller 3 corresponding to the passage of the latter in the direction of the detected target.
  • FIG. 3 represents, in a simplified schematic form, a guided missile 10 which includes specific means of the terminal guidance method according to the invention.
  • This missile comprises: a sensor 11, sensitive to the energy radiated by a potential target, located in the head of the missile, a means 12 for providing a transverse thrust P o passing through the center of gravity G of the missile and a means 13 for control the roll attitude of the missile 10 body around its longitudinal axis X.
  • the sensor is provided with a locking means making it possible to immobilize its beam on the longitudinal axis X, means for detecting the possible presence of '' a target intercepted by this beam and angular tracking means to measure the rotation of the target / missile line of sight (LOS).
  • LOS line of sight
  • the means 12 for providing a transverse thrust P 0 comprises a combustion chamber which feeds a lateral nozzle whose thrust direction is inclined, by an angle a, on the longitudinal axis X of the missile; it follows that the transverse FN and longitudinal components F l of the force F applied to the missile are given by the following relationships: to which correspond the normal acceleration ⁇ N given by the following relation and the longitudinal acceleration ⁇ L given by the following relation: where M is the mass of the missile and g the magnitude of the earth's gravity field.
  • FIG. 4 represents a section of the missile 10, of axes, XY and Z; and shows the components Fy and F Z of the normal force FN as a function of the roll angle ( ⁇ of the missile body around its longitudinal axis X.
  • These components F y and F Z are given by the following relationships:
  • the missile body can rotate in both directions, relative to the X axis with an instantaneous angular speed ⁇ .
  • the quantities ⁇ and ⁇ can be measured on board the missile and used respectively to control the roll attitude and the autorotation speed of the missile body.
  • FIG. 5 is a plane diagram of axis x, z linked to the ground on which the main parameters are indicated which determine the extent of the ground swept by the beam 14 of the sensor EO carried by the missile 10 described above.
  • the center of gravity G of the missile is driven by a speed of movement V directed along the longitudinal axis X of the body of the missile and it is subjected to a system of forces comprising: a normal force to which corresponds an acceleration ⁇ N normal to velocity vector V, a longitudinal force to which corresponds an acceleration ⁇ L directed along the longitudinal axis X and the terrestrial gravity force to which corresponds the acceleration vector g directed along the vertical of the place.
  • the missile beam 14 has a relatively narrow half-opening angular field E, a few degrees for example.
  • the straight line GI of the missile's descent trajectory is inclined by an angle O o on the horizontal.
  • the body of a missile being the object of an autorotation speed ⁇ around its longitudinal axis X and the beam 14 of the sensor EO being immobilized on this longitudinal axis X, it follows that the beam 14 described according to the time a hollow cone of axis GI whose external and internal half-openings have the respective values (O + E) and (0 - ⁇ ).
  • the altitude R h of the missile above the ground decreasing in proportion to time, the axis 15 of the beam 14 describes on the ground, as a function of time, a converging spiral of radius R centered on point 1.
  • the extent of the surface of the ground swept by the beam 14 is a circle when the angle of descent is equal to 90 ° and an ellipse of small eccentricity when the value of this angle ⁇ . stays high, 60 to 70 ° for example.
  • FIG. 6 is a diagram in a trihedron x, y, z linked to the ground which illustrates the method of search for a target by the missile described previously, in a particular case corresponding to a descent angle ⁇ o equal to 90 °.
  • the trajectory S of the center of gravity G of the missile describes a spiral carried by a cylinder 15 of vertical axis z passing substantially through the point I and the radius of this cylinder has a magnitude r.
  • the extent A s of the surface of the ground swept by the beam 14 of the sensor EO is given by the following formula:
  • the transit time T D of the optical beam on a target C is given by the following relation: where ⁇ is the angular speed of rotation of the beam around the vertical axis z.
  • FIG. 7 represents a detailed view of a portion of the trajectory S of the missile 10 shown in the previous figure.
  • the speed vector V of the missile originates from the point G representing the center of gravity of the missile, this speed vector V is contained in a plane P tangent to a generator of a cylinder 16 carrying the point G.
  • the components of the speed vector V are the vertical component Vh and the orthogonal component V given by the following relationships:
  • the speed component V is tangent to the circle with center O and radius r.
  • General relationships of dynamics with ⁇ .
  • Figure 8 is a simplified diagram showing a variant of the method of finding a target on the ground.
  • the angular speed ⁇ of roll of the missile, around its longitudinal axis X is varied as a function of the altitude R h of the missile above the ground.
  • the previous formulas giving the values of the width ⁇ R s of the successive scanning frames and the inclination angle 9 of the speed vector V of the missile can be rewritten in an approximate form: meters considering that the values of the angles ⁇ and 9 have always small values.
  • the EO sensor provides the following output signals: a first output signal indicating the presence of a target in the beam 14 and a second output signal proportional to the speed of rotation of the missile / target line of sight.
  • the first output signal is used to release the beam from the optical sensor and allow angular tracking of the sensor on the target image; the second output signal, once the angular tracking is ensured, is supplied to a calculation means for controlling the roll attitude of the missile body and, consequently, for piloting the missile in the direction.
  • FIG. 9 is a diagram which represents the speed of rotation vector from the missile / target line of sight, the normal thrust force FN to the speed vector V passing through the longitudinal axis X of the missile and the angle ⁇ of orientation of this thrust force F N.
  • control input signal is proportional to the magnitude and the answer is the quantity ⁇ of the orientation of the thrust force F N with respect to the direction of the rotation vector such as since the terms o and V of the equation of the guide law are constants.
  • FIGS. 9 and 10 shown opposite, illustrate the laws of acceleration ⁇ and of the roll steering angle ⁇ of the missile as a function of the module of the rotation vector.
  • Figure 17 is a diagram showing the components of the rotation vector in an absolute trihedron U, V and in the trihedron missile Y, Z referenced to the direction of the pilot nozzle.
  • FIG. 18 represents, in the form of a block diagram, the servo-control loop in pursuit of the missile which comprises the following elements: the guide sensor 100 which delivers the components y and Z of the rotation vector of the missile-target line of sight, these two components are supplied to a resolving device 110 and an operator 120 which develops the module of the rotation vector
  • is applied to an operator 130 to supply an output signal ⁇ in accordance with the guide law shown in FIG. 10 and by means of a servo motor 140, turns the resolver 110 by an equivalent angle; finally, the output signal V ⁇ is applied to the roll control means 150 of the missile body.
  • the angular velocity ⁇ of roll of the missile body is then given by the following relation: in which VR is the relative speed and R d the remaining missile-target distance. It follows that the acceleration component ⁇ ⁇ ensures biased proportional navigation and the acceleration component ⁇ T generates a spiral trajectory but has no effect on the convergence of the guidance on the target.
  • the guidance method which has just been described can be applied to a guide missile of moderate caliber, for example of the order of 100 mm, and the magnitudes of the main parameters listed above may, for information, be around the following values: displacement speed V of the missile on its trajectory of the order of 50 ms -1 , descent angle ⁇ o between 60 and 90 °, tilt angle ⁇ of the missile speed vector on the axis of descent between 10 and 15 °, angular half-opening ⁇ of the beam the sensor on the order of 4 to 8 °, altitude R h of the missile at the time of ignition of the gas generator, on the order of 500 m.
  • the duration of travel of the terminal portion of the trajectory is between 10 and 15 seconds and, for a value of normal acceleration ⁇ N of the order of 25 ms 2 , the angular speed of roll rotation ⁇ is of the order of 2.5 rad.s, the surface of the ground swept by the beam of the sensor is approximately 5.10 4 m 2 . All the values of these parameters can vary depending on the specific mission of the missile.
  • FIG. 11 is a view in longitudinal section of an embodiment of a guided missile operating in accordance with the guidance method which has just been described.
  • Such a missile can be characterized by its following main dimensional parameters: its caliber equal to its outside diameter D, its overall length L, the span of its fins LE and its total mass M o .
  • the sensor E.O 23 is sensitive, for example, to the energy of thermal origin radiated by the vehicles to be intercepted and the dome 23a is transparent to the corresponding I.R radiation.
  • This EO sensor comprises an optical assembly 23b at the focal point of which a photodetector element 23c is arranged to provide a beam 14 of half-opening equal to an amount, this beam being materialized by its axis 15.
  • the assembly constituted by the optical assembly 23b and the photodetector element 23c is carried by a gyroscope comprising locking means (tuliping) for immobilizing the axis of the optical beam 14 on the longitudinal axis X of the missile and precession means making it possible, in the locked position, to orient this optical beam in space.
  • this E.O. sensor includes electronic means for detecting the presence of a thermal source intercepted by the beam and means for controlling the axis of the optical beam on the right missile / target.
  • the drive member 24 for controlling the roll attitude of the front section of the missile is a torque engine.
  • a torque motor is a rotary multipolar electric machine which can be coupled in direct engagement with the load to be driven. This type of machine transforms electrical control signals into a mechanical torque large enough to obtain a determined degree of precision in a speed or position control system.
  • a torque motor of the "pancake" type, by design, can be easily integrated into the structure of the missile. As shown in FIG. 12, this type of torque motor essentially comprises three elements: a stator 24a which provides a permanent magnetic field, a laminated rotor 24b, wound, secured to a blade collector 24c, and a carrier ring 24d broom fitted with connections for receiving control signals.
  • this torque motor ensures rigid coupling with the load, resulting in a high mechanical resonance frequency; due to its electrical characteristics, the intrinsic response time of a torque motor can be short and its resolution high.
  • the delivered torque increases in proportion to the input current and is independent of the speed or the angular position.
  • the torque being linear as a function of the input current, this type of machine is free from an operating threshold.
  • Torque motors are marketed, in particular, by the firms ARTUS (France) and INLAND (USA).
  • the second member 24b of the engine member due to its connection with the tail fin of the missile, is the object of a resistant torque resulting from the combination of the torque of inertia of this rear section and the aerodynamic torque provided by the tail.
  • the first member 24a of the drive member has a control input which is connected to an amplifier which includes corrective electrical networks.
  • the input of this amplifier receives an electrical signal resulting from the comparison of the angular speed O of roll of the missile body and of a set value.
  • the angular roll speed of the missile body can be provided by a gyrometer whose sensitive axis is aligned with the longitudinal axis of the missile.
  • the set value can be varied as a function of time, that is to say as a function of the altitude of the missile above the ground.
  • the input of the amplifier of the motor organ receives an electrical signal making it possible to control the attitude of roll of the missile body in order to cancel the rotation of the line of missile / target sight.
  • the empennage 31 of the missile is constituted by movable fins between a position folded against the body of the missile and an active deployed position. Taking into account the relatively low speed of movement V of the missile, it is necessary that the tail unit provides a significant aerodynamic stabilizing torque, this is obtained by fins of great elongation which are placed tangentially on the body of the missile.
  • Figure 13 is a perspective view of the entire empennage, the fins located on the front of the figure being deleted for clarity.
  • the body 3la of the empennage is an annular part provided, for example, with an internal thread 31b allowing its fixing on the base of the rear section 30 of the missile. This annular part comprises a set of inclined yokes 31 c and regularly distributed around the periphery of the part.
  • a slot 33 with parallel faces allows to embed the hinge tab 34 of the fin 32 which can pivot, by means of a pin in the holes 33a and 33b.
  • the tail is supplemented, for each of the fins, by a locking device in the deployed position.
  • This device is constituted, for example, by a spring locking mechanism 36 which actuates a stud 37, which can engage in a lateral notch provided for this purpose in the hinge tab of the fin.
  • a detailed embodiment of this type of tail has been described in the French patent PV. No. 53.419, filed March 15, 1966 and published under No. 1.485.580.
  • the tail provides an aerodynamic resistant torque which is transmitted to the second member 24b of the drive member 24.
  • the gas generator 26 is essentially constituted by a combustion chamber inside which are arranged two blocks 26a and 26b of solid propellant. Between these two blocks of propellant, is located an ejection nozzle 27 whose outlet orifice opens onto the side wall of the missile body.
  • the thrust direction of the gases Po is inclined at an angle a on the front of the missile to provide the two components of acceleration force: the longitudinal force F L making it possible to compensate for the force of terrestrial gravity and the normal force F N used in combination with the roll attitude of the missile body to vary the orientation of the speed vector V of the missile.
  • the section of the combustion chamber and, consequently, the section of the propellant blocks can be toroidal in shape to allow free passage around the longitudinal axis X of the missile, in particular for arranging the coupling shaft 21 of the front and rear sections of the missile.
  • the total mass mp of propellant must satisfy the following relationship: where F is the necessary thrust force, Td the maximum travel time of the missile on the terminal portion of its trajectory and I s the specific impulse of the propellant used.
  • the military charge can advantageously be of the so-called "hollow charge” type which produces a jet capable of puncturing the vehicle's protective armor.
  • the coupling shaft 21 of the front and rear sections of the missile comprises a recess 21 a in its axial portion; moreover, a free passage can also be arranged in the central part of the compartment 25 bringing together the electronic circuits associated with the sensor E.O 23 and with the motor member 24.
  • the braking parachute 35 of the missile can be a parachute similar to those used in the technique of braked projectiles such as aviation bombs. With this parachute are associated release and release devices not shown.
  • the duration of action of the parachute is a function of the mass Mo of the missile and of the ratio of cruising speed to predetermined speed V over the terminal portion of the missile's trajectory.
  • the guided missile which has just been described in detail may be a medium caliber missile of the order of 100 mm and an elongation factor of approximately 6 to 7 for a weight of 10 to 15 kgs. However, it can be indicated that all of its values can be modified within wide limits depending in particular on the destructive power of the military charge carried.
  • the guided missile in itself, as just described, can constitute a sub-projectile of a projectile of larger dimensions whose main function is to ensure the carrying of this or a grouping of such sub-projectiles on the cruise portion to the end position of the firing trajectory.
  • FIG. 14 illustrates the transient portion between the cruising portion and the terminal portion of the firing trajectory.
  • the carrying projectile 50 transports sub-projectiles or guided missiles 51, 52 and 53 located in a section 54. From the start of the transition portion of the trajectory, the guided missiles are ejected and dispersed with a significant initial speed substantially equal to that of the carrier projectile and are at a predetermined altitude above the ground. In order to reduce their initial speed of movement to reach the speed V suitable for carrying out the acquisition and interception of targets, the braking parachute 35 of the missile is released for a determined period, after which the mechanical link between the missile and the parachute is broken to ensure the release of it.
  • the stabilizing stabilizer 31 is deployed and the front section of the missile is put into autorotation. Therefore, the gas generator, to produce the transverse thrust force FN is activated and the search phase for a potential target located on the ground can begin. It results from the ejection force imparted by the carrier vehicle 50 at the time of its separation from the sub-projectiles 51 to 52, a certain distance of dispersion RD at the moment when the operation of searching for targets begins with the sensor of the sub-projectile.
  • Figure 15 is a partial exploded view of section 54 of the carrier projectile 50 which shows an example of installation of a group of three guided missiles 31, 52 and 53. These missiles are regularly distributed around the longitudinal axis of the carrier projectile, in addition, an identical group of missiles can be installed in tandem, if necessary.
  • Figure 16 is a cross section of the carrier projectile 50 which shows the relative arrangement of the guided missiles 51, 52 and 53 inside the housing section 54.
  • the guided missiles are supported on elements 55 actuated by a mechanism ejection 56 whose complementary function is to communicate a certain amount of movement to the missiles during their ejection, in order to ensure a predetermined relative dispersion.
  • the ejection mechanism 56 can be of a known mechanical type actuated by hydraulic, pneumatic or possibly electrical means.
  • the missiles can be provided with a tail unit formed by four deployable fins 32, in order to allow a certain material embedding thereof.
  • Table 1 is a summary table of the progress of the main operations carried out by the missile during its firing trajectory.
  • the guided missile according to the invention is not limited in its characteristics and its applications to the embodiment described.
  • the sensor can be of the passive or semi-active type and operate in the optical or radar bands of the electromagnetic spectrum, the relative arrangement of the elements such as the driving member 24 and the military charge 33 can be modified.
  • the invention is not limited to its application to an autonomous missile, but also applies to a missile carried by conventional vehicles or aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Méthode de guidage de la portion terminale de la trajectoire d'un missile guidé (10) muni d'un senseur (23) et comprenant deux sections (20 et 30) accouplées par un arbre central (21) et libres de tourner l'une par rapport à l'autre autour de l'axe longitudinal X; la section (20) comportant un organe moteur (24) pour contrôler l'attitude de roulis de cette section et un générateur de gaz (26) qui alimente une tuyère (27) pour fournir une force de poussée transverse (Po) et la section (30) est munie d'un empennage stabilisateur (31) formé par un jeu d'ailettes déployables (32). L'invention trouve son application, notamment, dans l'interception de cibles animées d'une vitesse modérée, telles que celles constituées par des véhicules terrestres.

Description

  • L'invention se rapporte aux projectiles guidés et concerne, plus précisément, une méthode de guidage d'un missile, applicable pendant la portion terminale de la trajectoire de vol ; elle concerne également un missile guidé opérant selon cette méthode de guidage.
  • Il existe une demande pour des missiles AIR-SOL capables d'enrayer, à des distances relativement importantes, la menace que présentent des formations terrestres constituées, notamment, par des véhicules motorisés tels que des véhicules blindés progressant par groupes sur le terrain. Ces véhicules blindés, de par leur nature, rayonnent une énergie thermique et, de ce fait, constituent des cibles potentielles qui peuvent être détectées et localisées par un missile muni, par exemple, d'un senseur électrooptique E.O opérant dans la bande I.R du spectre électromagnétique. De plus, le missile peut être doté d'une charge militaire capable de perforer le blindage de protection de véhicules blindés. Il est possible de diriger le tir d'un tel missile vers un groupement de véhicules blindés ; toutefois, le problème demeure de fournir, pendant la portion terminale de la trajectoire de descente vers le sol, les corrections de trajectoires nécessaires pour réaliser un impact du missile sur l'un des véhicules détecté par le senseur E.O.
  • On connaît déjà un projectile comportant des moyens de guidage qui permettent, dans la phase terminale de la trajectoire, de corriger l'erreur éventuelle entre la direction d'une cible et la direction d'impact du projectile sur le sol, en chute libre. A cet effet, la base de ce projectile de l'art antérieur est équipé d'un jeu d'ailettes qui imprime au corps du projectile un mouvement d'autorotation de vitesse angulaire sensiblement constante, autour de son axe longitudinal. Dans la tête du projectile est disposé un senseur électro-optique (E.O) et, enfin, dans la partie médiane du corps, un impulseur latéral peut fournir une force de poussée prédéterminée dont la direction est normale au vecteur de vitesse du projectile. Le senseur E.O est constitué par une pluralité de cellules photodétrices arrangées en anneau dans un plan perpendiculaire à l'axe du projectile, afin de fournir un champ de vision conique creux. Ainsi, la surface du sol couverte par le champ de vision du senseur E.O se réduit progressivement en fonction de l'altitude décroissante de la trajectoire. Lorsque la cible rentre dans le champ de vision du senseur, son image tombe sur l'une des cellules photodétectrices, ce qui détermine, en coordonnées polaires, la position de la cible par rapport à l'orientation de l'impulseur. Le signal de sortie du senseur E.O est exploité pour fournir un ordre de déclenchement à l'impulseur latéral à l'instant où l'orientation de celui-ci est opposée à la direction de la cible détectée.
  • Ce projectile de l'art antérieur de construction relativement simple ne permet pas d'atteindre le degré d'efficacité recherché et, notamment, de réaliser un impact probable sur la cible. Pour atteindre ce but, la méthode de guidage proposée met en oeuvre un senseur de poursuite de la cible qui mesure la rotation de la ligne de visée missile/cible.
  • La méthode de guidage selon l'invention consiste à immobiliser le faisceau du senseur sur l'axe longitudinal, à imprimer au corps du missile un mouvement d'autorotation de vitesse angulaire contrôlée, à produire une force de poussée transversale, normale à la direction du vecteur vitesse de déplacement du missile pour forcer celui-ci à décrire une trajectoire spirale, à détecter la présence d'une cible éventuelle dans le faisceau du senseur, à libérer le faisceau du senseur et à maintenir l'axe de celui-ci pointé sur la cible, à mesurer la rotation de la ligne de visée missile-cible, à élaborer un ordre de pilotage, fonction de la rotation de la ligne de visée et à modifier l'attitude de roulis du missile pour orienter la force de poussée transversale dans une direction fonction de la grandeur de la rotation de la ligne de visée.
  • L'invention concerne également un missile guidé opérant selon la méthode de guidage qui vient d'être énoncée. Un missile guidé selon l'invention comporte un senseur sensible à l'énergie rayonnée par une cible potentielle et il comprend : une première et une seconde sections principales mutuellement accouplées pour tourner librement l'une par rapport à l'autre autour de l'axe longitudinal du missile ; la première section principale dite "section avant" contient le senseur et comporte : un organe moteur ayant un premier membre solidaire de la structure mécanique de cette section avant, et un second membre physiquement couplé à la seconde section principale, et, un générateur de gaz qui alimente une tuyère latérale pour créer une force transversale ; et la seconde section principale dite "section arrière" est munie à sa base d'un empennage stabilisateur ; le senseur est muni d'un dispositif de verrouillage pour immobiliser son faisceau sur l'axe longitudinal du missile et pour permettre la recherche d'une cible et ce senseur fournit une mesure de la rotation de la ligne de visée missile/cible pour contrôler l'attitude de roulis du corps du missile afin de piloter le missile sur la cible.
  • Un autre objet de l'invention consiste à conférer au missile une vitesse initiale de déplacement déterminée sur sa trajectoire et à maintenir celle-ci sensiblement constante le long de la trajectoire.
  • Un autre objet de l'invention est de varier la vitesse angulaire d'autorotation du corps du missile le long de sa trajectoire terminale. En outre, le second membre de l'organe moteur est couplé à la section arrière du missile par un arbre central.
  • Selon un autre objet de l'invention, la section arrière du missile comporte un compartiment du logement d'un parachute de freinage largable destiné à réduire la vitesse balistique du missile sur la portion de la trajectoire précédant la phase terminale.
  • Les caractéristiques et les avantages de l'invention ressortiront de la description détaillée qui va suivre, faite en regard des dessins annexés qui illustrent la méthode de guidage et un mode de réalisation du missile guidé ; sur ces dessins :
    • - la figure 1 représente un projectile guidé de l'art antérieur,
    • - la figure 2 représente le mode de réalisation du senseur électrooptique du projectile de l'art antérieur,
    • - la figure 3, sous une forme schématique simplifiée, représente un missile guidé comprenant les moyens nécessairess à la méthode de guidage selon l'invention,
    • - la figure 4 représente une vue en coupe transverse du missile guidé de la figure 3,
    • - la figure 5 est un diagramme plan d'axes x,z liés au sol indiquant les principaux paramètres qui déterminent l'étendue du sol balayé par le faisceau du senseur,
    • - la figure 6 est un diagramme selon un trièdre x, y, z lié au sol illustrant la méthode de recherche d'une cible potentielle,
    • - la figure 7 représente une vue détaillée d'une portion de la trajectoire du missile,
    • - la figure 8 est un diagramme simplifié représentant une variante de la trajectoire de recherche,
    • - la figure 9 illustre la loi d'accélération conférée au missile en fonction de la grandeur de la rotation de la ligne de visée missile/cible,
    • - la figure 10 illustre la loi de contrôle de l'attitude de roulis du corps du missile en fonction de la grandeur de la rotation de la ligne de visée missile/cible,
    • - la figure 11 est une coupe longitudinale d'un missile guidé selon l'invention,
    • - la figure 12 représente, en vue éclatée, les éléments d'un moteur-couple électrique,
    • - la figure 13 représente un mode de réalisation de l'empennage stabilisateur,
    • - la figure 14 illustre une application du missile guidé à la destruction d'un groupement de véhicules terrestres,
    • - la figure 15 est une vue éclatée du compartiment d'emport d'un projectile porteur contenant une pluralité de missile,
    • - la figure 16 est une vue en coupe du projectile porteur montrant la disposition relative des missiles guidés dans le compartiment d'emport.
    • - La figure 17 est un diagramme des composantes du vecteur rotation de la ligne de visée missile-cible dans un trièdre absolu et dans le trièdre missile.
    • - La figure 18 représente, sous la forme d'un bloc diagramme, les éléments de la boucle d'asservissement en poursuite du missile.
  • La figure 1 représente, sous une forme simplifiée, le projectile de l'art antérieur mentionné dans le préambule de cette demande ainsi que la méthode de guidage terminal correspondante. Le projectile 1 est équipé d'un jeu d'ailettes 2 dont la configuration permet d'imprimer au corps de ce projectile une vitesse angulaire d'autorotation ωr autour de son axe longitudinal X portant le vecteur vitesse de déplacement V du projectile sur sa trajectoire. En chute libre, la trajectoire du projectile est inclinée d'un angle θt et ce projectile percute le sol en un point 4 décalé angulairement d'un angle θc d'une cible potentielle 6.
  • Dans le but de modifier la trajectoire du projectile, celui-ci est muni d'un impulseur latéral 3 et d'un senseur électrooptique 5 qui fournit un signal de déclenchement de cet impulseur, ce signal de déclenchement résultant de la mesure de l'angle d'erreur θc. Il en résulte que le vecteur vitesse V du projectile est modifié d'une quantité V pour fournir un vecteur vitesse résultant V décalé de l'angle θc du vecteur vitesse V pour réaliser l'impact du projectile sur la cible.
  • La figure 2 représente le mode de réalisation du senseur électrooptique 5 porté par le projectile 1 décrit à la figure 1. Ce senseur EO est constitué essentiellement par une pluralité d'éléments photoconducteurs 7 arrangés en couronne dans un plan orthogonal à l'axe longitudinal X du corps du projectile pour fournir un champ de vision conique creux prédéterminé d'ouverture angulaire 9 et de largeur angulaire β . Lorsque l'image 8 de la cible 6 est détectée par l'un des éléments photoconducteurs 7 tel que l'élément 7., la grandeur de l'angle relatif A entre la direction de l'impulseur 3 et l'élément photoconducteur 7i est mesuré par le senseur EO et fournie à un circuit de calcul qui détermine l'instant de déclenchement de l'impulseur 3 correspondant au passage de celui-ci dans la direction de la cible détectée.
  • La figure 3 représente, sous une forme schématique simplifiée, un missile guidé 10 qui comprend des moyens spécifiques de la méthode de guidage terminale selon l'invention. Ce missile comprend : un senseur 11, sensible à l'énergie rayonnée par une cible potentielle, située dans la tête du missile, un moyen 12 pour fournir une poussée transversale Po passant par le centre de gravité G du missile et un moyen 13 pour contrôler l'attitude de roulis du corps du missile 10 autour de son axe longitudinal X. Le senseur est muni d'un moyen de verrouillage permettant d'immobiliser son faisceau sur l'axe longitudinal X, des moyens de détection de la présence éventuelle d'une cible interceptée par ce faisceau et des moyens de poursuite angulaire pour mesurer la rotation
    Figure imgb0001
    de la ligne visée (L.O.S.) cible/missile. Le moyen 12 pour fournir une poussée transversale P0 comprend une chambre de combustion qui alimente une tuyère latérale dont la direction de poussée est inclinée, d'un angle a, sur l'axe longitudinal X du missile ; il en résulte que les composantes transverses FN et longitudinales Fl de la force F appliquée au missile sont données par les relations suivantes :
    Figure imgb0002
    Figure imgb0003
    auxquelles correspondent l'accélération normale αN donnée par la relation suivante
    Figure imgb0004
    et l'accélération longitudinale αL donnée par la relation suivante :
    Figure imgb0005
    où M est la masse du missile et g la grandeur du champ de pesanteur terrestre.
  • La figure 4 représente une section du missile 10, d'axes, X Y et Z ; et montre les composantes Fy et FZ de la force normale FN en fonction de l'angle de roulis (φ du corps du missile autour de son axe longitudinal X. Ces composantes F y et FZ sont données par les relations suivantes :
    Figure imgb0006
    Figure imgb0007
  • Le corps du missile peut tourner dans les deux sens, par rapport à l'axe X avec une vitesse angulaire instantanée φ . Les grandeurs φ et φ peuvent être mesurées à bord du missile et utilisées respectivement pour contrôler l'attitude de roulis et la vitesse d'autorotation du corps de missile.
  • La figure 5 est un diagramme plan d'axe x, z lié au sol sur lequel sont indiqués les principaux paramètres qui déterminent l'étendue du sol balayé par le faisceau 14 du senseur E.O porté par le missile 10 décrit précédemment. Le centre de gravité G du missile est animé d'une vitesse de déplacement V dirigée suivant l'axe longitudinal X du corps du missile et il est soumis à un système de forces comprenant : une force normale à laquelle correspond une accélération αN normale au vecteur vitesse V, une force longitudinale à laquelle correspond une accélération αL dirigée selon l'axe longitudinal X et la force de pesanteur terrestre à laquelle correspond le vecteur accélération g dirigé suivant la verticale du lieu. Le faisceau 14 du missile a un champ angulaire de demi-ouverture E relativement étroite, quelques degrés par exemple. La droite G.I de la trajectoire de descente du missile est inclinée d'un angle Oo sur l'horizontale. Le corps d'un missile étant l'objet d'une vitesse d'autorotation φ autour de son axe longitudinal X et le faisceau 14 du senseur EO étant immobilisé sur cet axe longitudinal X, il en résulte que le faisceau 14 décrit en fonction du temps un cône creux d'axe GI dont les demi-ouvertures externe et interne ont pour valeurs respectives (O + E ) et (0 - ε). L'altitude Rh du missile au-dessus du sol diminuant proportionnellement au temps, l'axe 15 du faisceau 14 décrit sur le sol, en fonction du temps, une spirale convergente de rayon R centrée sur le point 1. L'étendue de la surface du sol balayée par le faisceau 14 est un cercle lorsque l'angle de descente est égal à 90° et une ellipse de faible exentricité lorsque la valeur de cet angle θ. reste élevée, 60 à 70° par exemple.
  • La figure 6 est un diagramme dans un trièdre x, y, z lié au sol qui illustre la méthode de recherche d'une cible par le missile décrit précédemment, dans un cas particulier correspondant à un angle de descente θo égal à 90°. On considère, ici, le cas où la vitesse de rotation φ du missile autour de son axe longitudinal X est maintenue constante ainsi que la vitesse V du missile en négligeant la force de résistance de l'air et en considérant que la force d'accélération αL longitudinale produite par la tuyère du missile et la force de pesanteur g sont de valeurs égales et opposées. La trajectoire S du centre de gravité G du missile décrit une spirale portée par un cylindre 15 d'axe z vertical passant sensiblement par le point I et le rayon de ce cylindre a une grandeur r. L'étendue As de la surface du sol balayée par le faisceau 14 du senseur E.O est donnée par la formule suivante :
  • Figure imgb0008
  • La surface du sol ΔA interceptée par le faisceau optique est une ellipse dont les grandeurs des axes ΔR et ΔR's sont données respectivement par les relations suivantes :
    Figure imgb0009
    et ΔR's = 2 Rh sin ε
  • La distance oblique Rd, entre le missile et la surface ΔAs du sol interceptée par le faisceau du senseur EO, est donnée par la relation suivante :
    Figure imgb0010
  • La distance horizontale R entre le point I et la surface ΔAs est donnée par la relation suivante :
    Figure imgb0011
  • Sur cette figure 6, on a aussi indiqué une cible c animée d'une vitesse V et distante d'une valeur Rc du point 1. Pour assurer une probabilité de détection élevée d'une cible telle que c, la vitesse angulaire Ω du faisceau 14 du senseur EO doit être déterminée pour obtenir un certain degré de recouvrement des trames de balayage successives.
  • Le temps de passage TD du faisceau optique sur une cible C est donné par la relation suivante :
    Figure imgb0012
    où Ω est la vitesse de rotation angulaire du faisceau autour de l'axe vertical z.
  • La figure 7 représente une vue détaillée d'une portion de la trajectoire S du missile 10 représentée sur la figure précédente. Le vecteur vitesse V du missile a pour origine le point G représentant le centre de gravité du missile, ce vecteur vitesse V est contenu dans un plan P tangent à une génératrice d'un cylindre 16 portant le point G. Les composantes du vecteur vitesse V sont la composante verticale Vh et la composante orthogonale V données par les relations suivantes :
    Figure imgb0013
    Figure imgb0014
  • La composante de vitesse V est tangente au cercle de centre O et de rayon r. Des relations générales de la dynamique
    Figure imgb0015
    Figure imgb0016
    avec Ω =
    Figure imgb0017
    . En combinant les relations précédentes, on obtient la valeur de l'angle d'inclinaison 9 du vecteur vitesse V du missile, par rapport à la génératrice G.I du cylindre
    Figure imgb0018
  • La figure 8 est un diagramme simplifié représentant une variante de la méthode de recherche d'une cible sur le sol. Selon cette variante, la vitesse angulaire φde roulis du missile, autour de son axe longitudinal X, est variée en fonction de l'altitude Rh du missile au-dessus du sol. Les formules précédentes donnant les valeurs de la largeur ΔRs des trames successives de balayage et l'angle d'inclinaison 9 du vecteur vitesse V du missile peuvent être récrites sous une forme approximée :
    Figure imgb0019
    mètres
    Figure imgb0020
    en considérant que les valeurs des angles ε et 9 ont des valeurs toujours faibles.
  • Il s'ensuit que, si les trames de balayage adjacentes du faisceau du senseur E.O se recouvrent avec un facteur de recouvrement de 50 %, on a la relation suivante :
    Figure imgb0021
  • Il en résulte que la trajectoire S du centre de gravité G du missile se trouve inscrite sur la surface d'un cone de rayon r tel que :
    Figure imgb0022
  • On vient d'analyser en détail la portion initiale de la trajectoire terminale du missile corrrespondant à la phase de recherche d'une cible éventuelle située dans une zone A du sol centrée sur l'axe de descente du missile. Dans ce qui suit, on décrira la portion finale de la trajectoire du missile correspondant à l'acquisition de l'image de la cible par le senseur et, consécutivement, au pilotage du missile pour réaliser un impact sur la cible détectée. En se référant à nouveau aux figures 6 et 7, on voit que, lorsque le plan P, dans son mouvement de rotation par rapport à l'axe vertical z passe, à un instant donné, au voisinage du point C correspondant à la position d'une cible et que la relation suivante :
    Figure imgb0023
    est sensiblement satisfaite, le senseur EO détecte l'image de la cible. A partir de cet instant, le senseur EO fournit les signaux de sortie suivants : un premier signal de sortie indiquant la présence d'une cible dans le faisceau 14 et un second signal de sortie proportionnel à la vitesse de rotation de la ligne de visée missile/cible. Le premier signal de sortie est utilisé pour libérer le faisceau du senseur optique et autoriser la poursuite angulaire du senseur sur l'image de la cible ; le second signal de sortie, une fois la poursuite angulaire assurée, est fourni à un moyen de calcul pour contrôler l'attitude de roulis du corps du missile et, par voie de conséquence, de piloter le missile en direction.
  • La figure 9 est un diagramme qui représente le vecteur vitesse de rotation
    Figure imgb0024
    de la ligne de visée missile/cible, la force de poussée normale FN au vecteur vitesse V passant par l'axe longitudinal X du missile et l'angle Δφ d'orientation de cette force de poussée FN.
  • L'équation de la loi de pilotage du missile est de la forme :
    αη = αN cos Δφ= 2
    Figure imgb0025
    .V + A (
    Figure imgb0026
    -
    Figure imgb0027
    o ) .V
    qui correspond à une loi de navigàtion proportionnelle de gain A comportant un biais
    Figure imgb0028
    Si, à titre d'exemple, on fait correspondre à ce biais l'accélération ce qui a l'avantage de donner une marge de manoeuvrabilité égale de part et d'autre de la grandeur o donnée par la relation suivante :
    Figure imgb0029
  • En conséquence, le signal d'entrée de pilotage est proportionnel à la grandeur
    Figure imgb0030
    et la réponse est la grandeur Δφ de l'orientation de la force de poussée FN par rapport à la direction du vecteur rotation
    Figure imgb0031
    tel que
    Figure imgb0032
    puisque les termes
    Figure imgb0033
    o et V de l'équation de la loi de guidage sont des constantes.
  • Les figures 9 et 10 représentées en regard, illustrent les lois de l'accélération γ et de l'angle de pilotage en roulis Δφ du missile en fonction du module du vecteur de rotation
    Figure imgb0034
  • La figure 17 est un diagramme montrant les composantes du vecteur rotation
    Figure imgb0035
    dans un trièdre absolu U, V et dans le trièdre missile Y, Z référencé à la direction de la tuyère de pilotage.
  • La figure 18 représente, sous la forme d'un bloc diagramme, la boucle d'asservissement en poursuite du missile qui comprend les éléments suivants : le senseur de guidage 100 qui délivre les composantes y et
    Figure imgb0036
    Z du vecteur rotation de la ligne de visée missile-cible, ces deux composantes sont fournies à un dispositif résolveur 110 et un opérateur 120 qui élabore le module du vecteur rotation |
    Figure imgb0037
    |, ce vecteur rotation |
    Figure imgb0038
    | est appliqué à un opérateur 130 pour fournir un signal de sortie Δφ conformément à la loi de guidage représentée sur la figure 10 et par l'intermédiaire d'un moteur d'asservissement 140, tourne le résolveur 110 d'un angle équivalent ; enfin, le signal de sortie Vε est appliqué au moyen de contrôle en roulis 150 du corps de missile.
  • La composante croisée de l'accélération YT = γN sin Δφ engendre un mouvement spirale de la trajectoire d'interception du missile. La vitesse angulaire φde roulis du corps du missile est alors donnée par la relation suivante :
    Figure imgb0039
    dans laquelle VR est la vitesse relative et Rd la distance restante missile-cible. Il en résulte que la composante d'accélération γη assure une navigation proportionnelle biaisée et la composante d'accélération γT engendre une trajectoire spirale mais n'a pas d'effet sur la convergence du guidage sur la cible.
  • La méthode de guidage qui vient d'être décrite peut s'appliquer à un missile guide de calibre modéré, par exemple de l'ordre de 100 mm, et les grandeurs des principaux paramètres énumérés ci-dessus peuvent, à titre indicatif, se situer autour des valeurs suivantes : vitesse de déplacement V du missile sur sa trajectoire de l'ordre de 50 ms-1, angle de descente θo compris entre 60 et 90°, angle d'inclinaison θ du vecteur vitesse missile sur l'axe de descente compris entre 10 et 15°, demi-ouverture angulaire ε du faisceau du senseur de l'ordre de 4 à 8°, altitude Rh du missile à l'instant d'allumage du générateur de gaz, de l'ordre de 500 m. Pour ces valeurs des principaux paramètres, la durée de parcours de la portion terminale de la trajectoire se situe entre 10 et 15 secondes et, pour une valeur de l'accélération normale γN de l'ordre de 25 ms 2, la vitesse angulaire de rotation en roulis φ est de l'ordre de 2,5 rad.s , la surface du sol balayée par le faisceau du senseur est d'environ 5,104m2. Toutes les valeurs de ces paramètres peuvent varier en fonction de la mission spécifique du missile.
  • La figure 11 est une vue selon une coupe longitudinale d'un mode de réalisation d'un missile guidé opérant conformément à la méthode de guidage qui vient d'être décrite.
  • Le missile guidé 10 comprend deux sections principales : une première section principale 20, dite "section avant" et une seconde section principale 30 dite "section arrière" qui sont libres de tourner l'une par rapport à l'autre autour de l'axe longitudinal X du missile. Les sections avant et arrière sont mutuellement accouplées par l'intermédiaire d'un arbre central 21 porté par deux paliers 22a et 22b. A l'intérieur de la section avant 20 sont disposés les éléments suivants :
    • - un senseur E.O 23 situé derrière un dôme transparent 23a,
    • - un organe moteur 24 permettant de contrôler l'altitude de roulis de cette section avant ; cet organe moteur comprenant : un premier membre 24a solidaire de la structure mécanique de cette section avant et un second membre 24b physiquement couplé à l'arbre central 21 d'accouplement des sections avant et arrière du missile,
    • - un compartiment 25 rassemblant les circuits électroniques associés au senseur E.O, d'une part, et à l'organe moteur 24, d'autre part, et
    • - un générateur de gaz 26 couplé à une tuyère latérale 27 dont l'orifice de sortie est situé sur la paroi latérale externe de cette section avant.
  • La section arrière 30 du missile, physiquement solidaire de l'arbre central d'accouplement 21, est munie, à sa base, d'un empennage stabilisateur 31 formé par un jeu d'ailettes 32 déployables ; sur cette figure, seules, deux ailettes ont été représentées ; l'une des ailettes 32a est montrée en position déployée ou active tandis que l'autre ailette 32b est montrée en position repliée ou inactive. A l'intérieur de cette section arrière sont disposés les éléments suivants :
    • - la charge militaire 33 du missile, et
    • - un compartiment de rangement 34 d'un parachute 35 libéré sur la trajectoire du missile, puis largué en vol.
  • Un tel missile peut être caractérisé par ses principaux paramètres dimensionnels suivants : son calibre égal à son diamètre extérieur D , sa longueur hors-tout L , l'envergure de ses ailettes LE et sa masse totale Mo.
  • On décrira maintenant les principaux éléments énumérés ci-dessous. Le senseur E.O 23 est sensible, par exemple, à l'énergie d'origine thermique rayonnée par les véhicules à intercepter et le dôme 23a est transparent au rayonnement I.R correspondant. Ce senseur E.O comprend un montage optique 23b au foyer duquel est disposé un élément photodétecteur 23c pour fournir un faisceau 14 de demi-ouverture égale à une quantité , ce faisceau étant matérialisé par son axe 15. L'ensemble constitué par le montage optique 23b et l'élément photodétecteur 23c est porté par un gyroscope comprenant des moyens de verrouillage (tulipage) pour immobiliser l'axe du faisceau optique 14 sur l'axe longitudinal X du missile et des moyens de précession permettant, en position verrouillée, d'orienter ce faisceau optique dans l'espace. En outre, ce senseur E.O comprend des moyens électroniques pour détecter la présence d'une source thermique interceptée par le faisceau et des moyens d'asservissement de l'axe du faisceau optique sur la droite missile/cible.
  • L'organe moteur 24 permettant de contrôler l'attitude de roulis de la section avant du missile est un moteur-couple. Un moteur-couple est une machine électrique multipolaire rotative qui peut être accouplée en prise directe avec la charge à entraîner. Ce type de machine transforme des signaux électriques de commande en un couple mécanique suffisamment important pour obtenir un degré de précision déterminé dans un système d'asservissement de vitesse ou de position. Un moteur-couple du type "pancake", de par sa conception, peut être aisément intégré à la structure du missile. Comme représenté sur la figure 12, ce type de moteur-couple , comprend essentiellement trois éléments : un stator 24a qui fournit un champ magnétique permanent, un rotor feuilleté 24b, bobiné, solidaire d'un collecteur à lames 24c, et un anneau porte-balai 24d équipé de connexions destinées à recevoir des signaux de commande. De par ses caractéristiques mécaniques, ce moteur-couple assure un couplage rigide avec la charge, d'où une fréquence de résonance mécanique élevée ; de par ses caractéristiques électriques, le temps de réponse intrinsèque d'un moteur-couple peut être court et sa résolution élevée. De plus, le couple délivré croît proportionnellement au courant d'entrée et est indépendant de la vitesse ou de la position angulaire. Le couple étant linéaire en fonction du courant d'entrée, ce type de machine est exempt de seuil de fonctionnement. Des moteurs-couples sont commercialisés, notamment, par les firmes ARTUS (France) et INLAND (U.S.A.). Le second membre 24b de l'organe moteur, du fait de sa liaison avec la partie arrière empennée du missile, est l'objet d'un couple résistant résultant de la combinaison du couple d'inertie de cette section arrière et du couple aérodynamique fourni par l'empennage. Le premier membre 24a de l'organe moteur comporte une entrée de commande qui est connectée à un amplificateur qui inclut des réseaux électriques correcteurs. L'entrée de cet amplificateur, pendant la phase de recherche d'une cible par le senseur, reçoit un signal électrique résultant de la comparaison de la vitesse angulaire O de roulis du corps du missile et d'une valeur de consigne. La vitesse angulaire de roulis du corps du missile peut être fournie par un gyromètre dont l'axe sensible est aligné sur l'axe longitudinal du missile. La valeur de consigne peut être variée en fonction du temps, c'est-à-dire en fonction de l'altitude du missile au-dessus du sol. Pendant la phase de pilotage du missile sur la cible détectée, l'entrée de l'amplificateur de l'organe-moteur reçoit un signal électrique permettant de contrôler l'attitude de roulis du corps du missile dans le but d'annuler la rotation de la ligne de visée missile/cible.
  • L'empennage 31 du missile est constitué par des ailettes mobiles entre une position rabattue contre le corps du missile et une position déployée active. Compte tenu de la vitesse de déplacement V relativement faible du missile, il est nécessaire que l'empennage fournisse un couple stabilisateur aérodynamique important, ceci est obtenu par des ailettes de grand allongement qui sont plaquées tangentiellement sur le corps du missile. La figure 13 est une vue en perspective de l'ensemble de l'empennage, les ailettes situées sur le devant de la figure étant supprimées dans un but de clarté. Le corps 3la de l'empennage est une pièce annulaire munie, par exemple, d'un filetage intérieur 31b permettant sa fixation sur la base de la section arrière 30 du missile. Cette pièce annulaire comporte un jeu de chapes 31 c inclinées et régulièrement réparties sur le pourtour de la pièce. Dans ces chapes, une fente 33 à faces parallèles permet d'encastrer la patte d'articulation 34 de l'ailette 32 qui peut pivoter, par l'intermédiaire d'un tourillon dans les trous 33a et 33b. Du point de vue mécanique, l'empennage est complété, pour chacune des ailettes, par un dispositif de verrouillage en position déployée. Ce dispositif est constitué, par exemple, par un mécanisme de verrouillage à ressort 36 qui actionne un goujon 37, lequel peut s'engager dans une encoche latérale ménagée à cet effet dans la patte d'articulation de l'ailette. Un mode de réalisation détaillé de ce type d'empennage a été décrit dans le brevet français PV. n° 53.419, déposé le 15 Mars 1966 et publié sous le n° 1.485.580. En plus de sa fonction stabilisatrice, l'empennage fournit un couple résistant aérodynamique qui est transmis au second membre 24b de l'organe moteur 24.
  • Le générateur de gaz 26 est essentiellement constitué par une chambre de combustion à l'intérieur de laquelle sont disposés deux blocs 26a et 26b de propergol solide. Entre ces deux blocs de propergol, est située une tuyère d'éjection 27 dont l'orifice de sortie débouche sur la paroi latérale du corps du missile. La direction de poussée des gaz Po est inclinée d'un angle a sur l'avant du missile pour fournir les deux composantes de force d'accélération : la force longitudinale FL permettant de compenser la force de pesanteur terrestre et la force normale F N utilisée en combinaison avec l'attitude de roulis du corps du missile pour varier l'orientation du vecteur vitesse V du missile. La section de la chambre de combustion et, par voie de conséquence, la section des blocs de propergol, peuvent être de forme torique pour laisser un libre passage autour de l'axe longitudinal X du missile, notamment pour disposer l'arbre d'accouplement 21 des sections avant et arrière du missile.
  • La masse totale m p de propergol doit satisfaire à la relation suivante :
    Figure imgb0040
    où F est la force de poussée nécessaire, Td la durée de trajet maximale du missile sur la portion terminale de sa trajectoire et Is l'impulsion spécifique du propergol utilisé.
  • La charge militaire peut êtré avantageusement du type dit "à charge creuse" qui produit un jet capable de perforer le blindage de protection des véhicules. Pour assurer un libre passage du jet le long de l'axe longitudinal du missile, l'arbre d'accouplement 21 des sections avant et arrière du missile comprend un évidement 21 a dans sa portion axiale ; de plus, un libre passage peut être aménagé également dans la partie centrale du compartiment 25 rassemblant les circuits électroniques associés au senseur E.O 23 et à l'organe moteur 24.
  • Le parachute de freinage 35 du missile peut être un parachute similaire à ceux mis en oeuvre dans la technique des projectiles freinés tels que les bombes d'aviation. A ce parachute sont associés des dispositifs de libération et de largage non représentés. La durée d'action du parachute est fonction de la masse Mo du missile et du rapport de la vitesse de croisière à la vitesse V prédéterminée sur la portion terminale de la trajectoire du missile.
  • Le missile guidé qui vient d'être décrit en détail peut être un missile de moyen calibre de l'ordre de 100 mm et un facteur d'allongement d'environ 6 à 7 pour un poids de 10 à 15 kgs. Toutefois, on peut indiquer que toutes ses valeurs peuvent être modifiées dans de larges limites fonction notamment de la puissance de destruction de la charge militaire emportée.
  • Le missile guidé, en lui-même, tel qu'il vient d'être décrit, peut constituer un sous-projectile d'un projectile de dimensions plus importantes dont la fonction principale est d'assurer l'emport de ce ou d'un groupement de tels sous-projectiles sur la portion de croisière jusqu'à la position terminale de la trajectoire de tir.
  • On se réfère maintenant à la figure 14 qui illustre la portion transitoire entre la portion de croisière et la portion terminale de la trajectoire de tir. Le projectile porteur 50 transporte des sous-projectiles ou missiles guidés 51, 52 et 53 situés dans une section 54. Dès l'abord de la portion de transition de la trajectoire, les missiles guidés sont éjectés et dispersés avec une vitesse initiale importante sensiblement égale à celle du projectile porteur et se trouvent à une altitude, au-dessus du sol, prédéterminée. Afin de réduire leur vitesse initiale de déplacement pour atteindre la vitesse V adéquate pour réaliser l'acquisition et l'interception des cibles, le parachute de freinage 35 du missile est libéré pendant une durée déterminée, après laquelle la liaison mécanique entre le missile et le parachute est rompue pour assurer le largage de celui-ci. L'empennage stabilisateur 31 est déployé et la section avant du missile est mise en autorotation. Dès lors, le générateur de gaz, pour produire la force de poussée transversale FN est activée et la phase de recherche d'une cible potentielle située au sol peut débuter. Il résulte de la force d'éjection imprimée par le véhicule porteur 50 à l'instant de sa séparation des sous-projectiles 51 à 52, une certaine distance de dispersion RD au moment où débute l'opération de recherche des cibles par le senseur du sous-projectile.
  • La figure 15 est une vue partielle éclatée de la section 54 du projectile porteur 50 qui montre un exemple d'installation d'un groupement de trois missiles guidés 31, 52 et 53. Ces missiles sont régulièrement répartis autour de l'axe longitudinal du projectile porteur, en outre, un groupement identique de missiles peut être installé en tandem, si nécessaire.
  • La figure 16 est une coupe transversale du projectile porteur 50 qui montre la disposition relative des missiles guidés 51, 52 et 53 à l'intérieur de la section de logement 54. Les missiles guidés sont en appui sur des éléments 55 actionnés par un mécanisme d'éjection 56 dont la fonction complémentaire est de communiquer une certaine quantité de mouvements aux missiles lors de leur éjection, dans le but d'assurer une dispersion relative prédéterminée. Le mécanisme d'éjection 56 peut être d'un type mécanique connu actionné par des moyens hydrauliques, pneumatiques ou éventuellement électriques. Dans le but de minimiser la section transversale du projectile porteur, les missiles peuvent être munis d'un empennage formé de quatre ailettes déployables 32, afin de permettre un certain encastrement matériel de celles-ci.
  • Le Tableau 1 est un tableau récapitulatif du déroulement des principales opérations effectuées par le missile au cours de sa trajectoire de tir.
  • Le missile guidé selon l'invention n'est pas limité dans ses caractéristiques et ses applications au mode de réalisation décrit. Notamment, le senseur peut être du type passif ou semi-actif et opérer dans les bandes optiques ou radar du spectre électromagnétique, la disposition relative des éléments tels que l'organe moteur 24 et la chargé militaire 33 peut être modifiée.
  • L'invention n'est pas limitée à son application à un missile autonome, mais s'applique également à un missile porté par des véhicules ou aéronefs classiques.
    Figure imgb0041

Claims (11)

1. Méthode de guidage, pendant la portion terminale de sa trajectoire, d'un missile muni d'un senseur sensible à l'énergie rayonnée par une cible potentielle, caractérisée en ce qu'elle comprend les étapes suivantes consistant à :
a) immobiliser le faisceau (14) du senseur (23) sur l'axe longitudinal (X) du missile (10).
b) imprimer au corps du missile une rotation de vitesse angulaire (0) de roulis déterminée autour de l'axe longitudinal du missile.
c) créer une force de poussée transversale (F) normale à la direction de la vitesse de déplacement (V) du missile,
d) détecter l'image d'une cible éventuelle captée par le faisceau du senseur,
e) libérer le faisceau 14 du senseur et à maintenir l'axe (15) de ce faisceau pointé sur l'image de la cible détectée pour mesurer la rotation (
Figure imgb0042
) de.la ligne de visée missile/cible,
f) élaborer un ordre de pilotage, proportionnel à la grandeur mesurée de la rotation de la ligne de visée et,
g) à appliquer cet ordre de pilotage pour modifier l'attitude de roulis du missile.
2. Méthode de guidage selon la revendication 1, caractérisée en ce que la vitesse de déplacement du missile est établie à une valeur déterminée (V), au moment où celui-ci aborde la portion . terminale de sa trajectoire.
3. Méthode de guidage selon la revendication 2, caractérisée en ce que la vitesse de déplacement (V) du missile sur la portion terminale de sa trajectoire est maintenue sensiblement constante en créant une force de poussée longitudinale (FL) de grandeur sensiblement égale à la force résultant du champ de pesanteur terrestre (g) et de direction alignée avec l'axe longitudinal (X) du missile.
4. Méthode de guidage selon la revendication 3, caractérisée en ce que la vitresse angulaire de roulis (φ ) du corps du missile est accrue le long de la portion terminale de la trajectoire du missile.
5. Missile guidé muni d'un senseur sensible à l'énergie rayonnée par une cible potentielle, caractérisé en ce qu'il comprend une première (20) et une seconde (30) section principales mutuellement accouplées et libres de tourner l'une par rapport à l'autre autour de l'axe longitudinal (X) du corps de ce missile ; la première section, dite "section avant" contenant un senseur (23) et comprenant un organe moteur (24) ayant un premier membre (24a) solidaire de la structure de la section avant et un second membre (24b) physiquement couplé à la seconde section principale, et un générateur de gaz (26) qui alimente une tuyère latérale (27) pour fournir une force de poussée transversale (F) et la seconde section principale, dite "section arrière" comportant à sa base un empennage stabilisateur (31) formé d'ailettes déployables (32) et en ce que le senseur est muni d'un dispositif de verrouillage permettant d'immobiliser son faisceau suivant l'axe longitudinal du missile et en ce que l'organe moteur comporte une entrée de commande connectée par l'intermédiaire d'un amplificateur à un générateur d'ordres de pilotage pour varier l'attitude de roulis du corps du missile.
6. Missile selon la revendication 5, caractérisé en ce que le second membre (24b) de l'organe moteur est mécaniquement couplé à la section arrière (30) du missile par un arbre central (21) d'accouplement.
7. Missile selon la revendication 6, caractérisé en ce que l'organe moteur (24) est un moteur-couple électrique.
8. Missile selon la revendication 7, caractérisé en ce que la section arrière (30) du missile comporte une charge militaire du type "charge creuse" et en ce que l'arbre central d'accouplement (21) comporte un évidement axial (21 a).
9. Missile selon la revendication 8, caractérisé en ce que la section arrière (30) du missile comprend un compartiment de rangement (34) d'un parachute (35).
10. Missile selon la revendication 9, caractérisé en ce que l'empennage stabilisateur (31) est formé d'un jeu d'ailettes (32) repliables contre le corps du missile.
11. Missile selon l'une des revendications 5 à 10, caractérisé en ce qu'il constitue un sous-projectile d'un projectile porteur.
EP82402180A 1981-12-09 1982-11-30 Méthode de guidage terminal et missile guidé opérant selon cette méthode Expired EP0081421B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82402180T ATE40467T1 (de) 1981-12-09 1982-11-30 Verfahren zur endphasenlenkung und dieses verfahren verwendender lenkflugkoerper.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8123025 1981-12-09
FR8123025A FR2517818A1 (fr) 1981-12-09 1981-12-09 Methode de guidage terminal et missile guide operant selon cette methode

Publications (2)

Publication Number Publication Date
EP0081421A1 true EP0081421A1 (fr) 1983-06-15
EP0081421B1 EP0081421B1 (fr) 1989-01-25

Family

ID=9264837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82402180A Expired EP0081421B1 (fr) 1981-12-09 1982-11-30 Méthode de guidage terminal et missile guidé opérant selon cette méthode

Country Status (8)

Country Link
US (1) US4568040A (fr)
EP (1) EP0081421B1 (fr)
JP (1) JPS58127100A (fr)
AT (1) ATE40467T1 (fr)
CA (1) CA1209232A (fr)
DE (1) DE3279397D1 (fr)
FR (1) FR2517818A1 (fr)
IL (1) IL67424A (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3323685A1 (de) * 1983-07-01 1985-01-10 Dornier Gmbh, 7990 Friedrichshafen Einrichtung zur bekaempfung von bodenzielen aus der luft
FR2555821A1 (fr) * 1983-11-26 1985-05-31 Diehl Gmbh & Co Dispositif detecteur dans une tete chercheuse
FR2568365A1 (fr) * 1984-07-24 1986-01-31 Diehl Gmbh & Co Article de munition a phase de vol terminale commandable, et procede pour sa navigation en direction de la cible
GB2167536A (en) * 1983-09-16 1986-05-29 Diehl Gmbh & Co Attacking targets with submunitions
EP0191121A1 (fr) * 1973-11-12 1986-08-20 Hughes Missile Systems Company Munition à plusieurs têtes chercheuses pour cibles multiples et système utilisant une telle munition
FR2581750A1 (fr) * 1985-05-09 1986-11-14 Diehl Gmbh & Co Munition a capteur allumeur corrigible en phase terminale, et methode pour combattre des cibles blindees
FR2583868A1 (fr) * 1985-06-21 1986-12-26 Diehl Gmbh & Co Sous-munition a tete d'allumage chercheuse.
EP0223919A1 (fr) * 1985-08-01 1987-06-03 DIEHL GMBH & CO. Procédé et application de sous-munition à guidage terminal pour la lutte contre abris blindés
US4679748A (en) * 1983-07-05 1987-07-14 Ake Blomqvist Cannon-launched projectile scanner
FR2634012A1 (fr) * 1988-07-06 1990-01-12 Roche Kerandraon Oliver Projectile antibut mobile, a echelon unique de correction, a pilotage par reference pendulaire et a trois modes de detection selectionnables
EP0384965A2 (fr) * 1989-03-01 1990-09-05 Rheinmetall GmbH Sous-projectile avec ailettes stabilisatrices
FR2684723A1 (fr) * 1991-12-10 1993-06-11 Thomson Csf Propulseur a propergol solide a poussee modulable et missile equipe.
FR2711783A1 (fr) * 1988-08-05 1995-05-05 Rheinmetall Gmbh Projectile dépourvu de mouvement de lacet.
FR2736147A1 (fr) * 1983-12-14 1997-01-03 Brandt Armements Methode d'acquisition d'une cible par un projectile guide et projectile operant selon cette methode
GB2459914A (en) * 1989-10-17 2009-11-18 Aerospatiale Guidance system for a missile provided with a photosensitive detector

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607917A1 (fr) * 1986-12-08 1988-06-10 Roche Kerandraon Oliver Guidage par infrarouge simplifie pour tout projectile
SE461750B (sv) * 1987-03-20 1990-03-19 Lars Johan Schleimann Jensen Foerfarande foer styrning av ett flygande objekt, saasom en projektil, mot ett maal och projektil foer foerfarandets genomfoerande
US4850275A (en) * 1987-10-30 1989-07-25 The Bdm Corporation Aircraft hollow nose cone
US5261629A (en) * 1989-04-08 1993-11-16 Rheinmetall Gmbh Fin stabilized projectile
FR2647540B1 (fr) * 1989-05-23 1994-03-25 Thomson Csf Dispositif de ralliement de missile
DE69129815T2 (de) * 1990-01-16 1998-12-03 Tda Armements Sas, La Ferte-Saint-Aubin Penetratormunition für Ziele mit hohem mechanischem Widerstand
US5052637A (en) * 1990-03-23 1991-10-01 Martin Marietta Corporation Electronically stabilized tracking system
US5080305A (en) * 1990-04-16 1992-01-14 Stencel Fred B Low-altitude retro-rocket load landing system with wind drift counteraction
US5114094A (en) * 1990-10-23 1992-05-19 Alliant Techsystems, Inc. Navigation method for spinning body and projectile using same
US5076511A (en) * 1990-12-19 1991-12-31 Honeywell Inc. Discrete impulse spinning-body hard-kill (disk)
DE4210113C1 (de) * 1992-03-27 1998-11-05 Athanassios Dr Ing Zacharias Verfahren zum Leiten eines Flugkörpers und Flugkörper
RU2021577C1 (ru) * 1992-06-30 1994-10-15 Машиностроительное Конструкторское Бюро "Факел" Способ управления снарядом
FR2693265B1 (fr) * 1992-07-02 1994-09-16 Giat Ind Sa Munition comportant des moyens de détection de cibles.
FR2695992B1 (fr) * 1992-09-21 1994-12-30 Giat Ind Sa Sous munition à effet dirigé.
US5328129A (en) * 1993-06-17 1994-07-12 The United States Of America As Represented By The Secretary Of The Navy Guidance method for unthrottled, solid-fuel divert motors
DE4410326C2 (de) * 1994-03-25 1998-07-02 Rheinmetall Ind Ag Geschoß mit einer Vorrichtung zur Flugbahnkorrektur
US6254031B1 (en) * 1994-08-24 2001-07-03 Lockhead Martin Corporation Precision guidance system for aircraft launched bombs
DE19505791C1 (de) * 1995-02-20 1996-08-14 Daimler Benz Aerospace Ag Verfahren und Vorrichtung zur Bekämpfung verdeckt operierender Hubschrauber
EP1226400A4 (fr) * 1999-11-03 2005-01-12 Metal Storm Ltd Moyens de defense fixes
US6422509B1 (en) * 2000-11-28 2002-07-23 Xerox Corporation Tracking device
US6817568B2 (en) * 2003-02-27 2004-11-16 Raytheon Company Missile system with multiple submunitions
US7185844B2 (en) * 2004-04-30 2007-03-06 Technology Service Corporation Methods and systems for guiding an object to a target using an improved guidance law
US7851732B2 (en) * 2006-03-07 2010-12-14 Raytheon Company System and method for attitude control of a flight vehicle using pitch-over thrusters
US7781709B1 (en) 2008-05-05 2010-08-24 Sandia Corporation Small caliber guided projectile
CN102362141A (zh) * 2009-02-02 2012-02-22 威罗门飞行公司 多模式无人驾驶航空飞行器
US8618455B2 (en) * 2009-06-05 2013-12-31 Safariland, Llc Adjustable range munition
US8058596B2 (en) * 2009-08-27 2011-11-15 Raytheon Company Method of controlling missile flight using attitude control thrusters
DK2475578T3 (en) 2009-09-09 2017-09-11 Aerovironment Inc Reinforced UAV extension tube
US8436284B1 (en) * 2009-11-21 2013-05-07 The Boeing Company Cavity flow shock oscillation damping mechanism
RU2533660C2 (ru) * 2012-09-27 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" Способ и устройство автономной радиолокационной самокоррекции промаха при встрече малоразмерного летательного аппарата с объектом на заключительном участке траектории полета
CN103307938B (zh) * 2013-04-23 2015-06-03 北京电子工程总体研究所 一种旋转弹气动参数获取方法
RU2590760C2 (ru) * 2014-07-29 2016-07-10 Николай Евгеньевич Староверов Ракета и способ её работы
CN105043171B (zh) * 2015-06-30 2017-08-29 北京航天长征飞行器研究所 一种带倾角约束的火箭弹纵向导引方法
RU2644962C2 (ru) * 2016-07-07 2018-02-15 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ поражения цели сверхзвуковой крылатой ракетой и сверхзвуковая крылатая ракета для его осуществления
SE541615C2 (sv) * 2017-04-28 2019-11-12 Bae Systems Bofors Ab Projektil med valbar anfallsvinkel
RU2701671C1 (ru) * 2018-04-09 2019-09-30 Анатолий Борисович Атнашев Способ наведения ракеты
CN109737812B (zh) * 2018-12-27 2021-10-15 北京航天飞腾装备技术有限责任公司 空对地制导武器侧向攻击方法和装置
RU2718560C1 (ru) * 2019-07-16 2020-04-08 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ обнаружения и поражения воздушной цели ракетным комплексом
US11280591B2 (en) * 2019-09-03 2022-03-22 Harkind Dynamics, LLC Intelligent munition
CN114812293B (zh) * 2021-01-27 2023-03-24 北京理工大学 一种末端减速机动控制方法
CN114034215B (zh) * 2021-11-23 2023-02-28 航天科工火箭技术有限公司 一种火箭的导引方法和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2520433A (en) * 1941-11-10 1950-08-29 Marion B Robinson Directed missile
FR71802E (fr) * 1952-10-25 1960-02-01 Viseur universel sur avion (ou navire) pour la dérivométrie, l'atterrissage de précision, la conduite du pilotage, du bombardement en piqué par bombes ou fusées, du tir sur but au sol ou sur but aérien et du torpillage
DE1092313B (de) * 1958-02-28 1960-11-03 Ignaz V Maydell Dipl Ing Verfahren und Vorrichtung zur Beeinflussung der Bahn eines ferngelenkten oder ferngesteuerten fliegenden Koerpers
US3072365A (en) * 1957-09-16 1963-01-08 Missile Corp Pilotless craft guidance method and means
US3282540A (en) * 1964-05-05 1966-11-01 Henry S Lipinski Gun launched terminal guided projectile
US3843076A (en) * 1972-01-03 1974-10-22 Trw Projectile trajectory correction system
FR2230958A1 (fr) * 1973-05-25 1974-12-20 Messerschmitt Boelkow Blohm
FR2231947A1 (en) * 1973-06-01 1974-12-27 Realisations Applic Techn Et Rocket guidance system - clock device actuates pulse type target dector and course controller
FR2478297A1 (fr) * 1980-03-12 1981-09-18 Serat Perfectionnements apportes aux tetes militaires, notamment antichars, agissant en survol d'un objectif ou d'un groupe d'objectifs

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374967A (en) * 1949-12-06 1968-03-26 Navy Usa Course-changing gun-launched missile
US3000307A (en) * 1953-08-04 1961-09-19 Jr Herbert Trotter Device for correcting the course of a missile
DE1092312B (de) * 1957-10-02 1960-11-03 Philips Nv Flugzeug mit Signalsender
US4193567A (en) * 1962-07-17 1980-03-18 Novatronics, Inc. Guidance devices
FR2321723A1 (fr) * 1975-07-29 1977-03-18 Thomson Brandt Systeme de controle d'attitude et engin equipe d'un tel systeme
US4039246A (en) * 1976-01-22 1977-08-02 General Dynamics Corporation Optical scanning apparatus with two mirrors rotatable about a common axis
US4383663A (en) * 1976-06-01 1983-05-17 The United States Of America As Represented By The Secretary Of The Navy Active optical terminal homing
US4183664A (en) * 1976-09-23 1980-01-15 Raytheon Company Optical apparatus
FR2463909B1 (fr) * 1979-08-17 1985-10-25 Thomson Brandt Procede de pilotage et de guidage d'un missile, et missile equipe de moyens de mise en oeuvre de ce procede
FR2469345A1 (fr) * 1979-11-09 1981-05-22 Thomson Brandt Procede de pilotage et de guidage de projectiles en phase terminale et projectiles comportant les moyens de mise en oeuvre de ce procede
US4394997A (en) * 1980-04-14 1983-07-26 General Dynamics, Pomona Division Sequential time discrimination system for sub-delivery systems
US4347996A (en) * 1980-05-22 1982-09-07 Raytheon Company Spin-stabilized projectile and guidance system therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2520433A (en) * 1941-11-10 1950-08-29 Marion B Robinson Directed missile
FR71802E (fr) * 1952-10-25 1960-02-01 Viseur universel sur avion (ou navire) pour la dérivométrie, l'atterrissage de précision, la conduite du pilotage, du bombardement en piqué par bombes ou fusées, du tir sur but au sol ou sur but aérien et du torpillage
US3072365A (en) * 1957-09-16 1963-01-08 Missile Corp Pilotless craft guidance method and means
DE1092313B (de) * 1958-02-28 1960-11-03 Ignaz V Maydell Dipl Ing Verfahren und Vorrichtung zur Beeinflussung der Bahn eines ferngelenkten oder ferngesteuerten fliegenden Koerpers
US3282540A (en) * 1964-05-05 1966-11-01 Henry S Lipinski Gun launched terminal guided projectile
US3843076A (en) * 1972-01-03 1974-10-22 Trw Projectile trajectory correction system
FR2230958A1 (fr) * 1973-05-25 1974-12-20 Messerschmitt Boelkow Blohm
FR2231947A1 (en) * 1973-06-01 1974-12-27 Realisations Applic Techn Et Rocket guidance system - clock device actuates pulse type target dector and course controller
FR2478297A1 (fr) * 1980-03-12 1981-09-18 Serat Perfectionnements apportes aux tetes militaires, notamment antichars, agissant en survol d'un objectif ou d'un groupe d'objectifs

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191121A1 (fr) * 1973-11-12 1986-08-20 Hughes Missile Systems Company Munition à plusieurs têtes chercheuses pour cibles multiples et système utilisant une telle munition
DE3323685A1 (de) * 1983-07-01 1985-01-10 Dornier Gmbh, 7990 Friedrichshafen Einrichtung zur bekaempfung von bodenzielen aus der luft
US4679748A (en) * 1983-07-05 1987-07-14 Ake Blomqvist Cannon-launched projectile scanner
FR2578043A1 (fr) * 1983-09-16 1986-08-29 Diehl Gmbh & Co Procede et dispositif d'attaque de cibles au moyen d'une sous-munition
GB2167536A (en) * 1983-09-16 1986-05-29 Diehl Gmbh & Co Attacking targets with submunitions
FR2555821A1 (fr) * 1983-11-26 1985-05-31 Diehl Gmbh & Co Dispositif detecteur dans une tete chercheuse
FR2736147A1 (fr) * 1983-12-14 1997-01-03 Brandt Armements Methode d'acquisition d'une cible par un projectile guide et projectile operant selon cette methode
FR2568365A1 (fr) * 1984-07-24 1986-01-31 Diehl Gmbh & Co Article de munition a phase de vol terminale commandable, et procede pour sa navigation en direction de la cible
FR2581750A1 (fr) * 1985-05-09 1986-11-14 Diehl Gmbh & Co Munition a capteur allumeur corrigible en phase terminale, et methode pour combattre des cibles blindees
GB2175377A (en) * 1985-05-09 1986-11-26 Diehl Gmbh & Co Attacking armoured target objects
US4711178A (en) * 1985-05-09 1987-12-08 Diehl Gmbh & Co. Ammunition incorporating searching fuse with trajectory correctable during its final flight phase and method for combating armored target objects
FR2583868A1 (fr) * 1985-06-21 1986-12-26 Diehl Gmbh & Co Sous-munition a tete d'allumage chercheuse.
EP0223919A1 (fr) * 1985-08-01 1987-06-03 DIEHL GMBH & CO. Procédé et application de sous-munition à guidage terminal pour la lutte contre abris blindés
FR2634012A1 (fr) * 1988-07-06 1990-01-12 Roche Kerandraon Oliver Projectile antibut mobile, a echelon unique de correction, a pilotage par reference pendulaire et a trois modes de detection selectionnables
FR2711783A1 (fr) * 1988-08-05 1995-05-05 Rheinmetall Gmbh Projectile dépourvu de mouvement de lacet.
US5564651A (en) * 1988-08-05 1996-10-15 Rheinmetall Gmbh Yaw angle free projectile
EP0384965A3 (fr) * 1989-03-01 1992-08-12 Rheinmetall GmbH Sous-projectile avec ailettes stabilisatrices
EP0384965A2 (fr) * 1989-03-01 1990-09-05 Rheinmetall GmbH Sous-projectile avec ailettes stabilisatrices
GB2459914A (en) * 1989-10-17 2009-11-18 Aerospatiale Guidance system for a missile provided with a photosensitive detector
GB2459914B (en) * 1989-10-17 2010-05-19 Aerospatiale Guidance system for a missile provided with a photosensitive detector
FR2684723A1 (fr) * 1991-12-10 1993-06-11 Thomson Csf Propulseur a propergol solide a poussee modulable et missile equipe.

Also Published As

Publication number Publication date
US4568040A (en) 1986-02-04
FR2517818A1 (fr) 1983-06-10
IL67424A (en) 1989-03-31
JPH0449040B2 (fr) 1992-08-10
CA1209232A (fr) 1986-08-05
ATE40467T1 (de) 1989-02-15
EP0081421B1 (fr) 1989-01-25
FR2517818B1 (fr) 1985-02-22
DE3279397D1 (en) 1989-03-02
JPS58127100A (ja) 1983-07-28

Similar Documents

Publication Publication Date Title
EP0081421B1 (fr) Méthode de guidage terminal et missile guidé opérant selon cette méthode
EP2009387B1 (fr) Procédé de commande du déclenchement d'un module d'attaque et dispositif mettant en oeuvre un tel procédé
EP3150957A1 (fr) Projectile d'artillerie ayant une phase pilotée
FR2768500A1 (fr) Procede de guidage autonome d'un projectile d'artillerie stabilise par rotation et projectile d'artillerie guide de facon autonome pour la mise en oeuvre du procede
EP0439392A1 (fr) Projectile et son procédé d'utilisation
FR2474686A1 (fr) Systeme d'auto-guidage simplifie pour engin du type obus ou roquette
EP1092941B1 (fr) Dispositif de correction de trajectoire pour projectiles guides gyroscopes
EP1093561B1 (fr) Dispositif d'autoprotection passive pour engin mobile tel qu'un helicoptere
FR2973499A1 (fr) Petit engin volant
FR2583868A1 (fr) Sous-munition a tete d'allumage chercheuse.
EP1422587B1 (fr) Procédé d'élaboration d'un ordre de commande pour un organe permettant le pilotage d'un projectile girant
EP0316216B1 (fr) Dispositif de stabilisation gyroscopique pour un organe de manoeuvre de projectile
EP0062563B1 (fr) Procédé de pilotage en facteur de charge d'un missile et systèmes d'armes correspondants
FR2463909A1 (fr) Procede de pilotage et de guidage d'un missile, et missile equipe de moyens de mise en oeuvre de ce procede
EP0420760B1 (fr) Procédé et système de guidage autonome vers une cible d'un projectile balistique aéroporté propulsé
EP0482970B1 (fr) Dispositif pour imprimer une trajectoire infléchie latéralement à un projectile lancé à partir d'un engin aérien
FR2504703A1 (fr) Systeme d'asservissement d'un projectile a une reference axiale pour supprimer l'effet du vent
BE901258A (fr) Methode d'acquisition d'une cible par un projectile guide et projectile operant selon cette methode.
CA2179929C (fr) Systeme de lancement et d'orientation d'engins volants
EP0434476B1 (fr) Projectile à basculement au devant et à proximité de la cible
FR2523717A1 (fr) Systeme d'arme, notamment antichar
FR2558585A1 (fr) Sous-munitions largables pour projectile, notamment antichar
FR2716966A1 (fr) Système de défense anti-aérienne à très courte portée, de type missile sol-air.
FR2899962A1 (fr) Etage de munition a correction terminale.
FR2698440A1 (fr) Procédé pour envoyer un projectile sur un objectif et projectile à trajectoire balistique atmosphérique.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830623

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON BRANDT ARMEMENTS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 40467

Country of ref document: AT

Date of ref document: 19890215

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3279397

Country of ref document: DE

Date of ref document: 19890302

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911014

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911108

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911129

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 10

EPTA Lu: last paid annual fee
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19921130

Ref country code: LI

Effective date: 19921130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921130

Ref country code: AT

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: LES BREVET CI-DESSUS SONT TOMBES EN DECHEANCE FAUTE DE PAIMENT, DE LA 11E ANNUITE.

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 82402180.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961019

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961021

Year of fee payment: 15

Ref country code: GB

Payment date: 19961021

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961112

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971201

BERE Be: lapsed

Owner name: THOMSON BRANDT ARMEMENTS

Effective date: 19971130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

EUG Se: european patent has lapsed

Ref document number: 82402180.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011123

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19901130