EP0080932B1 - Verfahren und Vorrichtung zum gesteuerten Abkühlen von Blech - Google Patents

Verfahren und Vorrichtung zum gesteuerten Abkühlen von Blech Download PDF

Info

Publication number
EP0080932B1
EP0080932B1 EP19820402134 EP82402134A EP0080932B1 EP 0080932 B1 EP0080932 B1 EP 0080932B1 EP 19820402134 EP19820402134 EP 19820402134 EP 82402134 A EP82402134 A EP 82402134A EP 0080932 B1 EP0080932 B1 EP 0080932B1
Authority
EP
European Patent Office
Prior art keywords
temperature
cooling
cooling fluid
theoretical
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19820402134
Other languages
English (en)
French (fr)
Other versions
EP0080932A1 (de
Inventor
Stéphane Viannay
Jack Sebbah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USINOR SA
Original Assignee
Union Siderurgique du Nord et de lEst de France SA USINOR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Siderurgique du Nord et de lEst de France SA USINOR filed Critical Union Siderurgique du Nord et de lEst de France SA USINOR
Publication of EP0080932A1 publication Critical patent/EP0080932A1/de
Application granted granted Critical
Publication of EP0080932B1 publication Critical patent/EP0080932B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • the present invention relates to a process for carrying out the controlled cooling of sheets in order to obtain a perfectly defined crystalline structure of the metal composing it.
  • a method of cooling sheets coming out of rolling mills is known in particular, making it possible to reach high cooling rates with a view to treating sheets of substantial thickness without prohibitively increasing the powers involved. This method and the machine for its implementation are described in FR-A-2 223 096.
  • the heated sheet metal plate is presented horizontally at the entrance to an enclosure in which it is driven in a uniform translational movement by means of rollers.
  • a water blade of constant height and driven by a high speed circulates on both sides of the plate to dissipate the heat from the sheet.
  • each surface element of the metal is in contact, inside the enclosure, with a mass of fluid regularly renewed.
  • the corresponding heat flux exchanged between the plate and the water is higher the higher the flow speed of the water; it is possible thanks to this process to extract a heat flux of the order of 3 x 10 6 W / m 2 .
  • This value corresponds to the core cooling rate of 30 ° C / s of a 30 mm thick plate.
  • the cooling rates achievable according to the process described in the aforementioned patent application appear to be entirely compatible for carrying out, for example, the martensitic quenching of a steel sheet at manganese carbon containing approximately 0.17% carbon and 1/4% manganese, with no other alloying element. It goes without saying that the application of this same treatment to steels containing small amounts of additions, for example, molybdenum, nickel or boron whose presence has the effect of increasing the quenchability, will also produce a structure martensitic.
  • the process defined in the aforementioned patent application does not make it possible to directly obtain the desired final structure of a metal, for example of a steel of given composition.
  • the cooling operation generally results in the martensitic quenching of the metal and an tempering operation, characterized for steel by maintaining a suitable duration at a temperature below 710 ° C., must follow the operation of cooling.
  • studies relating to cooling transformations show that the cooling rate determines the structure of a steel of given composition.
  • Certain phases, in particular bainite, or mixture of phases, bainite and perlite with very fine grains, characterized by good mechanical properties of toughness and ductility, can be sought in the case of suitable grades of steel.
  • the object of the invention is therefore to provide a method and a cooling machine of the aforementioned type, making it possible to adjust and control the cooling rate of the sheet metal plates according to values determined as a function of the desired structures.
  • the subject of the invention is a method for controlling the cooling of a sheet in order to give it a predetermined crystal structure, according to which the sheet to be cooled is passed through an enclosure containing a mass of cooling fluid. regularly renewed, the flow rate of which is adjusted and the temperature of which is measured, characterized in that, as a function of the thickness of the sheet and the desired cooling rate, a theoretical heat flux is determined which must be exchanged between the sheet and the coolant; a theoretical flow speed of the fluid on the sheet is calculated as a function of the temperature of arrival of the cooling fluid and of the theoretical heat flow; the flow rate of the cooling fluid is adjusted as a function of the calculated theoretical speed; a theoretical temperature of the cooling fluid is determined, as a function of the heat flux; this theoretical temperature is compared with the measured temperature, and the inlet temperature of the cooling fluid is regulated as a function of this theoretical temperature.
  • the invention also relates to an installation for implementing the method defined above, said installation comprising a machine composed of an enclosure comprising means for circulating a cooling fluid which moves roughly parallel to the sheet metal, a cooling tank, means for injecting the cooling fluid contained in the tank inside said enclosure and means for discharging the cooling fluid after it has passed through the cooling enclosure, a device for controlling the cooling fluid flow rate and a device for measuring the temperature of the cooling fluid, characterized in that it comprises a member for calculating the theoretical heat flux and a member for calculating the theoretical speed, connected to the calculating member of the theoretical heat flow and to the temperature measurement device, a device for regulating the temperature of the coolant introduced into the girdle, comprising two inputs connected respectively to the device for measuring the temperature of the coolant and to a device providing a theoretical value of the temperature of the coolant, and an output connected to at least one solenoid valve inserted in a circuit d cold water supply to said cooling tank.
  • the invention comprises means for regulating the pressure of the fluid inside the enclosure.
  • the installation shown in FIG. includes a cooling machine 1, a cooling tank 2, and a control and regulation device 3.
  • the cooling machine 1 is of the general type described in patent application n ° 2 223 096.
  • This machine consists of a series of support and guide rollers 4a, 4b to 8a, 8b.
  • the essential elements of the machine arranged symmetrically on either side of the mean plane of the sheet will be designated by the same reference numerals assigned with index a for the upper elements and b for the lower elements.
  • the machine comprises a casing or metal container 9 which extends between the guide rollers 10a, 10b, and surrounds these rolls 11a, 11b.
  • the flat walls 10a, 10b are substantially parallel and are separated by an interval greater than the thickness of the sheet, so as to delimit with the latter two chambers or channels 12a, 12b with a thickness c.
  • Water circulation means comprise at least one supply conduit 13a, 13b, 14a, 14b extending for example over the entire length of the rollers 5 a, 5 b, 7 a, 7 b and at least one exhaust duct 15 a , 15 b , 16 a , 16 b , 17 a , 17 b also extending over the entire length of the rollers 4 a , 4 b , 6 8 , 6 b and 8 a , 8 b .
  • the cooling tank 2 contains the cooling water; on its flanks are provided orifices 18, 19 to allow the exit of the cooling water intended for the machine 1 and water inlet orifices 20, 21 to recover the water which returns from the cooling machine .
  • the orifices 18 and 19 of water outlet of the tray 2 are connected to the supply conduits 13a, 13b, 14a, 14b of the machine through conduits 23a, 23b through feed pumps 24a, B.
  • the water inlet orifices 20, 21 of tank 2 are connected to the discharge conduits 15 a , 15 b , 16 a , 16 b , 17 a , 17 b by conduits 25a, 25 b through electro -Vannes 26a, 26 b.
  • a solenoid valve 27 mounted on line 28 ensures the supply of cold water to the tank.
  • the command and control device 3 essentially consists of a computer which can be of the digital, analog or hybrid type, the latter type being suitable for carrying out processing on both digital and analog quantities.
  • the control and regulating device 3 shown is of hybrid type, it assures the control and regulation of the flow pumps 24a, 24b and solenoid valves 26a, 26b and 27. It is connected by its inputs 1 1 1 2 to a display table 29 of the set values R relating to the desired cooling speed and e relating to the thickness of the sheet metal entering the cooling machine.
  • the setpoints R and e are transmitted in binary coded form to the inputs I 1 and I 2 of the device 3.
  • the input 1 3 is connected to a sensor 30 of the atmospheric pressure P °.
  • Outputs 1 4 and 1 5 transmit the control commands 24a and pump 24b.
  • the inlet 1 6 receives, from a thermometric probe 32 disposed inside the tank 2, the value of the temperature of the coolant.
  • This temperature value is received in the form of an analog signal and in the form of a binary word of several bits.
  • the outputs I 7 to I 9 provide the respective controls for the solenoid valves 27, 26 b and 26a.
  • the input I 10 receives the value of the relative pressure P of the water at the input of enclosure 9 of the machine and transmitted by a pressure sensor 33.
  • This device comprises a member 34 for calculating the value of the heat flux ⁇ exchanged between the sheet metal T and the cooling water, a member 35 for calculating the speed of the cooling fluid necessary to cool the sheet metal under the desired conditions , a member 36 for controlling the flow rate of the pumps 24 a and 24 b , a member 37 for regulating the temperature of the water in the tank 2 and a member 38 for regulating the pressure inside the enclosure 9 cooling.
  • the member 34 is constituted by a programmable read only memory which contains a table A 1 giving the values of the heat flux ⁇ corresponding to different set values R and e.
  • This table A 1 can be determined from a theoretical calculation taking into account the thickness c of the cooling water sheet circulating above and below the sheet to be cooled, and the boundary thermal conditions, in particular the heat flow exchanged on the surface of the sheet. These calculations involving the heat equations, lead to complicated formulas and it is preferable to build the table A 1 directly from tests carried out on several sheet thicknesses and for different cooling rates.
  • the member 35 is also constituted by a programmable read only memory which contains a table A 2 giving the values of the cooling rate corresponding to the different values of thermal flux stored in the memory of the member 34 and to different temperature values 0 of cooling water.
  • This table A 2 is determined from the relation which links the heat flow 0 exchanged, to the flow speed of the cooling water and which is given by the formula: where ⁇ ( ⁇ ) is a coefficient which only depends on the temperature of the cooling water.
  • the member 36 is also constituted by a programmable read-only memory which contains in memory a table A 3 giving the values of the flow rate of the pumps as a function of the values of the speed of the cooling water read in the memory of the member 35.
  • the unit 35 also contains a digital-analog converter, not shown, connected to the output of its memory, necessary for delivering the analog signals for controlling the pumps 24a and 24b.
  • the memory member 34 is connected by its two addressing inputs to it inputs and 1 2 of the device 3 and by its output, on the one hand, to a memory addressing input of the member 35 and , on the other hand, at the input of a multiplication circuit 39 located in the regulating member 37.
  • the memory of the member 35 is connected on its second addressing input to the input 1 6 of the device 3 receiving the binary word transmitted by the temperature probe 32.
  • the output of the member 35 is connected to the addressing input of the memory of the member 36 and the output of the member 36 is connected to the outputs 1 4 and 1 5 of the computer 3.
  • the temperature of the cooling water must naturally be between these two values.
  • 0 M and 0 m are determined from formula (I) for the respective values of ⁇ 0 and ⁇ c and for values V of the speed of the water blade, knowing that the speed V of the blade must be higher than a critical speed V c for the coolant to fill the enclosure.
  • This critical speed corresponds to a dynamic pressure, expressed in water height, equal to the thickness of the tunnel.
  • the circuit 39 for multiplication by a constant is constituted in a known manner by a digital / analog converter composed of a network of resistance cells (R, 2R) in ⁇ whose supply voltage is varied as a function of the value of the constant q.
  • the summing circuit 43 is connected by an input to the output of the circuit 39 and by its other input to the cursor of the potentiometer 40.
  • the summing circuit 44 is connected by an input to the output of the circuit 43 and by its other input to the cursor of the potentiometer 41.
  • the subtraction circuit 45 is connected by an input to the output of the circuit 43 and by its other input to the cursor of potentiometer 42.
  • the comparator 46 has two inputs, one is connected to the input terminal 1 6 of the device 3 to receive the analog signal transmitted by the temperature probe 32 and the other is connected to the output of the circuit 44.
  • the comparator 47 also has two inputs, one is connected to the input terminal 1 6 of the device 30 to receive the analog signal transmitted by the temperature probe 32, the other is connected to the output of the circuit 45.
  • the outputs of the comparators 46 and 47 are connected to two respective inputs of the member 50.
  • the regulating member 38 consists of the potentiometer 51, the summing circuit 52 and the comparator 53.
  • the circuit 52 has two inputs, one of which is connected to the terminal 1 3 of the member 3 and the other is connected to potentiometer cursor 51.
  • Comparator 53 also has two inputs, one is connected to the output of circuit 52 and the other is connected to the input terminal I 10 of the device 3. The output of the comparator 53 is connected to the output terminals 1 8 and I 9 of the device 3.
  • Fig. 2 also show the devices for displaying the reference values R and e of the display panel 29.
  • These devices are constituted by analog digital encoders 54 and 55 whose parallel outputs are connected respectively to the input terminals I 1 and I 2 of the device 3.
  • These coders can consist of simple switch registers whose state represents for example the binary-coded decimal value of the set value.
  • the atmospheric pressure sensor 30 connected to terminal 1 3 of the device 3 and the pressure sensor 33 connected to terminal I 10 .
  • the operation of the cooling installation is as follows.
  • the operator has the manufacturing data which are the thickness e of the sheet and the cooling rate R corresponding to the desired structures of the metal. These two data are displayed on the switch registers 55 and 54 of the display panel 29. They are introduced on the input terminals I 1 and I 2 of the command and regulation device 3 in the direction of the addressing inputs. of the memory of the member 34.
  • the regulating device 37 regulates the temperature of the water in the tank 2.
  • the operating temperature relative to the cooling water is determined by the summing circuit 43 and the multiplication circuit by a constant 39.
  • the circuit 39 delivers an output quantity q ⁇ ⁇ which is proportional to the quantity ⁇ of the heat flux exchanged between the sheet metal plate and the cooling water.
  • This quantity q - 0 is added to the aforementioned constant p displayed inside the calculating member 37 on the potentiometer 40.
  • the permitted limits for variation of the temperature 0f are displayed on the potentiometers 41 and 42, the potentiometer 41 delivering a value + ⁇ and the potentiometer 42 delivering a value - ⁇ .
  • the value + ⁇ is added to the operating temperature ⁇ f in the summing circuit 44 which outputs a value ⁇ f + ⁇ .
  • This theoretical value ⁇ f + ⁇ is compared with the temperature of the water measured in the tank 2, by the comparator 46, the output of which controls the control member 50 of the water supply solenoid valve 27 when the 0 temperature of the measured water is higher than the calculated value ⁇ f + ⁇ .
  • the subtraction circuit 45 subtracts from the calculated value ⁇ , the value - ⁇ transmitted by the potentiometer 42.
  • the result 0f - ⁇ obtained is compared to the value ⁇ of the water measured in the tank 2 to l using comparator 47 to close the solenoid valve 27 when the measured water temperature is lower than the calculated value ⁇ f - ⁇ .
  • the regulation circuit 38 makes it possible to act against the pressure losses which take place in the return circuit and which are due to the reduction in the rate of injection of the cooling water by the pumps.
  • the summation circuit 52 adds the value of the atmospheric pressure Po sensed by the pressure sensor 30 to a value e displayed on the potentiometer 51 and transmits the result of the summation Po + ⁇ to the input of the comparator 53 which compares this value at the pressure value P measured by the pressure sensor 33 inside the cooling enclosure 9.
  • the comparator 53 When the pressure P appears for the comparator 53 greater than the pressure Po + e, the latter controls the opening of the electro -return valves 26a, 26b . By cons if the pressure P is equal to or less than the pressure Po + ⁇ the comparator 53 controls the closing of the solenoid valves 26a and back 26b, so as to increase the pressure P within the enclosure cooling.
  • the temperature regulation device keeps the water in the tank at a constant temperature, which allows firstly, to maintain at a constant level the heat flow exchanged between the sheet and the cooling water and secondly, to keep the vapor pressure in the siphon formed by the discharge conduits 16a, 17a at a constant level, thus avoiding the defusing of the latter and the flow of water through the ends of the machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Claims (7)

1. Verfahren zur Steuerung der Kühlung eines Bleches in Hinblick auf die Erzielung einer bestimmten Gefügeausbildung, gemäß welchem das zu kühlende Blech durch einen Raum geführt wird, welcher eine regelmäßig erneuerte Kühlmittelmenge enthält, deren Durchsatz eingestellt und deren Temperatur gemessen wird, dadurch gekennzeichnet, daß in Abhängigkeit von der Dicke des Bleches und der gewünschten Abkühlgeschwindigkeit ein theoretischer Wärmefluß, welcher zwischen dem Blech und der Kühlflüssigkeit ausgetauscht werden muß, bestimmt wird ; daß eine theoretische Strömungsgeschwindigkeit der Flüssigkeit auf dem Blech in Abhängigkeit von der Eintrittstemperatur der Kühlflüssigkeit und dem theoretischen Wärmefluß berechnet wird ; daß der Durchsatz der Kühlflüssigkeit in Abhängigkeit von der berechneten theoretischen Geschwindigkeit eingestellt wird ; daß eine theoretische Temperatur der Kühlflüssigkeit in Abhängigkeit vom theoretischen Wärmefluß bestimmt wird ; daß diese theoretische Temperatur mit der gemessenen Temperatur verglichen und daß eine Einstellung der Eintrittstemperatur der Kühlflüssigkeit in Abhängigkeit von dieser theoretischen Temperatur bewirkt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Druck an den Enden des Raumes auf einem über dem atmosphärischen Druck liegenden Wert gehalten wird.
3. Anlage zur Durchführung des Verfahrens nach Anspruch 1, mit einer Vorrichtung (1), welche aus einem Raum, der Mittel (10a, 10b) zum Umlaufenlassen einer Kühlflüssigkeit aufweist, welche sich ungefähr parallel zum Blech bewegt, besteht, einem Kühlbehälter (2), Mitteln (13a, 13b, 23a, 23b) für ein Eindrücken der im Behälter enthaltenen Kühlflüssigkeit in den Raum und Mitteln (17a, 17b, 25a, 25b) für ein Abziehen der Kühlflüssigkeit nach ihrem Durchlauf durch den Kühlraum, einer Steuervorrichtung (24a, 24b) für den Durchsatz der Kühlflüssigkeit und einer Vorrichtung (32) zur Messung der Temperatur der Kühlflüssigkeit, dadurch gekennzeichnet, daß sie eine Einrichtung (34) zur Berechnung des theoretischen Wärmeflusses und eine mit der Einrichtung (34) zur Berechnung des theoretischen Wärmeflusses und mit der Vorrichtung (32) zur Messung der Temperatur verbundene Einrichtung (35) zur Berechnung der theoretischen Geschwindigkeit, eine Vorrichtung (37) zur Einstellung der Temperatur der in den Raum eingeführten Kühlflüssigkeit mit zwei Eingängen, welche mit der Vorrichtung (32) zur Messung der Temperatur der Kühlflüssigkeit bzw. einer Vorrichtung (39, 43), die einen theoretischen Wert für die Temperatur der Kühlflüssigkeit liefert, verbunden sind, und einem Ausgang, welcher mit wenigstens einem Elektroventil (27) verbunden ist, das im Kaltwasserspeisekreis (28) des Kühlbehälters sitzt, umfaßt.
4. Anlage nach Anspruch 3, dadurch gekennzeichnet, daß die Vorrichtung (37) zur Einstellung der Temperatur der Kühlflüssigkeit Mittel (39, 43) zur Berechnung der gewünschten Kühltemperatur in Abhängigkeit von dem durch die Berechnungseinrichtung (34) berechneten Wärmefluß umfaßt.
5. Anlage nach Anspruch 3, dadurch gekennzeichnet, daß die Vorrichtung (37) zur Einstellung der Temperatur der Kühlflüssigkeit
- Mittel (39, 43) zur Berechnung der gewünschten Kühltemperatur in Abhängigkeit von dem durch die Berechnungseinrichtung (34) berechneten Wärmefluß ;
- einen Fühler (32) zur Messung der Temperatur der in den Raum eintretenden Kühlflüssigkeit ;
- einen Vergleicher (46, 47) zum Vergleich der durch die Berechnungseinrichtung (37, 43) berechneten Kühltemperatur mit der durch den Fühler (32) gemessenen Temperatur, und
- wenigstens ein mit dem Vergleicher (46, 47) verbundenes Elektroventil (27), welches im Kaltwasserspeisekreis (28) für den Kühlbehälter sitzt, umfaßt.
6. Anlage nach Anspruch 3, dadurch gekennzeichnet, daß sie Mittel (38) zur Einstellung des Flüssigkeitsdruckes an den Enden des Raumes umfaßt.
7. Anlage nach Anspruch 6, dadurch gekennzeichnet, daß die Mittel (38) zur Einstellung des Druckes der Flüssigkeit im Innern des Raumes
- einen ersten Meßfühler (33) zur Messung des Druckes an den Enden des Raumes (9) ;
- einen zweiten Meßfühler (30) zur Messung des atmosphärischen Druckes ;
- einen mit den Meßfühlern verbundenen Vergleicher (53) zum Vergleichen des im Raum gemessenen Druckes mit dem durch den zweiten Meßfühler gemessenen atmosphärischen Druck ;
- wenigstens ein Elektroventil (26a, 26b), welches in den Mitteln zum Abziehen der Flüssigkeit sitzt und durch das Ergebnis des durch den Vergleicher (53) bewirkten Vergleichs in einer solchen Weise gesteuert wird, daß die Elektroventile geschlossen sind, wenn der vom ersten Meßfühler gemessene Druck kleiner oder gleich dem atmosphärischen Druck ist, umfaßt.
EP19820402134 1981-11-26 1982-11-23 Verfahren und Vorrichtung zum gesteuerten Abkühlen von Blech Expired EP0080932B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8122142A FR2517039A1 (fr) 1981-11-26 1981-11-26 Procede et installation pour effectuer le refroidissement controle de toles
FR8122142 1981-11-26

Publications (2)

Publication Number Publication Date
EP0080932A1 EP0080932A1 (de) 1983-06-08
EP0080932B1 true EP0080932B1 (de) 1985-04-24

Family

ID=9264389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820402134 Expired EP0080932B1 (de) 1981-11-26 1982-11-23 Verfahren und Vorrichtung zum gesteuerten Abkühlen von Blech

Country Status (5)

Country Link
EP (1) EP0080932B1 (de)
JP (1) JPS58126933A (de)
DE (1) DE3263303D1 (de)
FR (1) FR2517039A1 (de)
SU (1) SU1131461A3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305469B6 (cs) * 2014-03-26 2015-10-14 Technická univerzita v Liberci, Katedra strojírenské technologie Způsob stanovení ochlazovací schopnosti média pro konkrétní zpracovávané materiály včetně možnosti simulace tepelného zpracování rozměrných dílů

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167137A (en) * 1988-01-29 1992-12-01 Southwire Company Method for automatically adjusting soluble oil flow rates to control physical properties of continuously rolled rod
DE3914218C2 (de) * 1989-04-27 1994-08-18 Mannesmann Ag Verfahren und Vorrichtung zum Abschrecken eines metallischen langgestreckten, zylindrischen Körpers
US5329779A (en) * 1993-02-09 1994-07-19 C.V.G. Siderurgica Del Orinoco, C.A. Method and apparatus for cooling workpieces
JP4678112B2 (ja) * 2001-09-21 2011-04-27 Jfeスチール株式会社 鋼板の冷却方法および装置
AU2017421673B2 (en) * 2017-06-26 2020-10-01 Arcelormittal Method and electronic device for determining the temperature of a metal strip, related control method, computer program, control apparatus and hot rolling installation
CN112292469A (zh) 2018-06-13 2021-01-29 诺维尔里斯公司 用于在轧制之后将金属带淬火的系统和方法
EP4001447B1 (de) * 2019-08-30 2024-05-01 JFE Steel Corporation Stahlblech, element und verfahren zur herstellung davon
CN114147077A (zh) * 2021-11-30 2022-03-08 江苏中旭冷拉型钢有限公司 一种用于冷拉钢加工的轧机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446273A (en) * 1967-10-18 1969-05-27 Midland Ross Corp Control system
DE2151210A1 (de) * 1971-10-14 1973-04-19 Schloemann Ag Wasserkuehleinrichtung fuer schnelllaufenden walzdraht
JPS5317965B2 (de) * 1972-11-30 1978-06-12
FR2223096B1 (de) * 1973-03-26 1976-09-10 Usinor
LU78743A1 (de) * 1977-12-21 1979-02-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305469B6 (cs) * 2014-03-26 2015-10-14 Technická univerzita v Liberci, Katedra strojírenské technologie Způsob stanovení ochlazovací schopnosti média pro konkrétní zpracovávané materiály včetně možnosti simulace tepelného zpracování rozměrných dílů

Also Published As

Publication number Publication date
FR2517039A1 (fr) 1983-05-27
SU1131461A3 (ru) 1984-12-23
DE3263303D1 (en) 1985-05-30
FR2517039B1 (de) 1984-12-14
JPH0471968B2 (de) 1992-11-17
JPS58126933A (ja) 1983-07-28
EP0080932A1 (de) 1983-06-08

Similar Documents

Publication Publication Date Title
EP0080932B1 (de) Verfahren und Vorrichtung zum gesteuerten Abkühlen von Blech
EP2129810B1 (de) Verfahren zur beschichtung eines substrats und anlage zur metalllegierungsbedampfung
FR2668097A1 (fr) Procede de regulation de temperature pour une machine de moulage par injection.
FR2484088A1 (fr) Calorimetre a flux de chaleur et son procede de fonctionnement
NL8202486A (nl) Werkwijze en inrichting voor het meten.
EP0032206A1 (de) Verfahren zum pneumatischen Einspritzen dosierter Mengen pulverförmingen Guts in einen unter veränderlichem Druck stehenden Behälter
FR2681332A1 (fr) Procede et dispositif de cementation d'un acier dans une atmosphere a basse pression.
FR2782326A1 (fr) Procede de galvanisation d'une bande metallique
EP0047682A1 (de) Verfahren und Vorrichtung zur Temperaturregelung einer Glasscheibe in einem Ofen mit mehreren Zellen
US3510345A (en) Apparatus and method for automatically controlling the molten metal bath level in a metallurgical process
EP3601624B1 (de) Abschnitt und verfahren zum kühlen einer kontinuierlichen leitung mit trockenkühlung und nasskühlung
EP0686844A1 (de) Verfahren und Vorrichtung zur Beneztbarkeitsmessung unter kontrollierter Atmosphäre
WO2007063015A1 (fr) Installation d'alimentation en gaz pour machines de depot d'une couche barriere sur recipients
EP2707896A1 (de) Wärmebehandlung durch injektion eines wärmeübertragungsgases
CH624486A5 (de)
EP0162739B1 (de) Verfahren zur automatischen Bedienung einer durchlaufenden Kristallisationsvorrichtung zur Herstellung von Zucker
US382321A (en) Manufacture of sheet metal
FR2830608A1 (fr) Procede et installation de prediction de la temperature d'articles traversant une enceinte de refroidissement
FR2651307A1 (fr) Four de traitement thermique equipe de moyens de refroidissement perfectionnes.
JPS5945058A (ja) 溶融金属中の不純物除去方法及びその装置
EP0410294A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von Metallband
EP1077267A1 (de) Vorrichtung zum Durchlaufwärmebehandeln von metallischen Werkstücken, einzeln oder gruppenweise
CH627545A5 (fr) Procede et installation pour le sechage, a evaporation reglee de produits pulverulents moules.
BE630467A (de)
CH332581A (fr) Installation pour le traitement thermique de pièces métalliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19830520

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3263303

Country of ref document: DE

Date of ref document: 19850530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931020

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931116

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801