EP0078869B2 - Structure filamentaire - Google Patents

Structure filamentaire Download PDF

Info

Publication number
EP0078869B2
EP0078869B2 EP19810305307 EP81305307A EP0078869B2 EP 0078869 B2 EP0078869 B2 EP 0078869B2 EP 19810305307 EP19810305307 EP 19810305307 EP 81305307 A EP81305307 A EP 81305307A EP 0078869 B2 EP0078869 B2 EP 0078869B2
Authority
EP
European Patent Office
Prior art keywords
filamentary
filaments
fused
cage
sheath component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19810305307
Other languages
German (de)
English (en)
Other versions
EP0078869A1 (fr
EP0078869B1 (fr
Inventor
Anthony James Fowler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8188447&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0078869(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to DE8181305307T priority Critical patent/DE3171730D1/de
Priority to EP19810305307 priority patent/EP0078869B2/fr
Publication of EP0078869A1 publication Critical patent/EP0078869A1/fr
Application granted granted Critical
Publication of EP0078869B1 publication Critical patent/EP0078869B1/fr
Publication of EP0078869B2 publication Critical patent/EP0078869B2/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • This invention is concerned with the extrusion of thermoplastic polymers to form a novel filamentary structure.
  • a filamentary structure comprises a helical thermoplastic core filament disposed within a thermoplastic sheath component which is fused to the successive turns of the helical core filament.
  • the sheath component is preferably a cage formed by at least three thermoplastic filaments each of which is fused to the successive turns of the helical core filament.
  • the sheath component may comprise a tube.
  • the invention includes a process for making such a filamentary structure comprising feeding molten thermoplastic polymer to a spinning jet having an inner jet hole ringed by outer jet holes, extruding the polymer through the inner jet hole at a greater velocity than polymer is extruded through the outer jet holes to form a helical extrudate disposed within an extruded sheath component to which its successive turns are fused, and cooling the extrudates to solidify them to a unitary structure.
  • the thermoplastic polymer may be any which can be melt spun into filaments including polyamides, polyesters and polyolefins.
  • the polymer extruded through the inner jet hole to form the helical core may be the same as or different from the polymer extruded through the outer jet holes to form the sheath component. Preferably it is the same in order to simplify spinning and ensure good fusion between the turns of the helical core filament and the sheath component.
  • An elastic filamentary structure may be formed by making the helical core filament from a non- elastomeric polymer and the sheath component from an elastomeric polymer.
  • the polymer extruded through the inner jet hole is required to have a greater velocity than that flowing through the outer jet holes in order that it will take up the desired helical form.
  • this greater velocity may be achieved by having the inner jet hole of greater cross-sectional area and/or of shorter capillary length than each of the outer jet holes.
  • it is of greater cross-sectional area for two reasons: the first being that in the most desirable filamentary structure of the invention the cage filaments which comprise the sheath component are of smaller cross-sectional area than the helical core filament; and the second being that jets having holes of a common capillary length are much easier to make.
  • the sizes and cross-sectional shapes of the jet holes determine the size and shape of the filaments extruded through them.
  • the preferred shape is circular, particularly for the inner jet hole.
  • the pitch of the helical core filament is determined by the relative polymer velocities through the inner and outer holes. That is, the pitch reduces as the velocity differential increases.
  • the axes of the inner and outer jet holes are all parallel to one another so that, in the embodiment where the sheath component comprises a cage of filaments, these filaments are in substantially parallel alignment with the axis of the helical core filament.
  • the diameter of the helix of the core filament is determined by the sheath component which holds it in place and which stabilises it by becoming fused to its successive turns.
  • the sheath component comprises a cage of filaments it has been found that it is necessary to have at least three cage filaments for this purpose otherwise the core filament 'breaks out' and is uncontrolled.
  • each cage filament is spaced apart from its adjacent cage filaments by substantially equal distances. This may be arranged by using a spinning jet with a central inner jet hole ringed by at least three outer jet holes pitched at substantially equal angles to and substantially equidistant from the central inner jet hole.
  • each outer jet hole is positioned sufficiently closely to its adjacent outer jet holes that because of die swell the extruded cage filaments merge to form a tube.
  • the outer jet holes are preferably of circular cross-section, although other suitable cross-sections may be used, for example arcuate slots which may be used to produce a tube as described.
  • the extruded structure may be cooled in air to solidify it, but it is preferred to stabilise it more quickly by quenching it in a liquid bath which is conveniently water.
  • the filamentary structure of the invention may be used as yarn, cord ortwine, or as a reinforcement for a tube.
  • the sheath component comprises a tube, it constitutes a reinforced tube itself. It may also be used to construct an abrasive pad such as a pan scrub.
  • the invention includes a fabric structure comprising a plurality of filamentary structures according to the invention fused to each other with the axes of the helical filaments in substantially parallel relation.
  • This fabric structure may be produced directly by extrusion using a bank of adjacent sets of jet holes from which adjacent filament structures are extruded. These merge and become fused so that after being cooled to solidify them, they remain fused as a unitary fabric structure.
  • the component filamentary structures may be arranged in a planar array by a corresponding arrangement of the adjacent sets of jet holes, to produce a planar fabric structure.
  • Three-dimensional fabric structures may be made using appropriate groupings of the sets of jet holes from which the component filamentary structures are extruded.
  • the fabric structure of the invention has a variety of uses including use as drainage, earth-support and other civil engineering fabrics, and as matting such as door mats.
  • the sheath component comprises a cage of filaments
  • limited stretching of the filamentary structure produces elongation of the cage filaments between the successive points of fusion, with the result that after removal of the stretching forces and contraction of the helical core, the cage filaments balloon out between the points of fusion, giving an expanded structure.
  • the broken cage filaments constitute fibrils which are substantially uniform in length, with the majority of the fibrils being raked in a common direction.
  • the modified filamentary structure has decorative qualities and may be used as fancy yarn, or twine, especially if coloured.
  • the rake of the fibrils gives it a particularly distinctive appearance and also imparts good knot-tying properties.
  • the roughness of the fibrils, particularly at the points of fusion, gives the product abrasive properties making it suitable for the construction of scouring pads, for example.
  • a spinning jet 1 has a circular jet face 2 in which are drilled an inner jet hole 3 encircled by a ring of four outer jet holes 4.
  • the jet holes have the same capillary length and the inner jet hole is shown as about twice the diameter of the outer jet holes.
  • Figure 3 shows a filamentary structure 5 spun from a jet similar to that shown in Figures 1 and 2, but comprising eight outer jet holes instead of four.
  • the filamentary structure 5 comprises a helical core filament 6 held within a cage of eight finer filaments 7 which are fused to the successive turns of the helical core filament at points 8.
  • Figure 4 shows a modified filamentary structure 9 produced by stretching the structure 5, whereby the cage filaments 7 have broken close to the points 8.
  • the resulting fibrils 10 are regularly spaced and uniform in length. As shown they are raked in a common direction.
  • the points at which they are fused to the core filament 6 lie on a generally helical path around the core filament.
  • the filamentary structure 11 shown in Figure 5 comprises a helical core filament 12 held within a tubular sheath 13 which is fused to the successive turns of the helical core filament at points 14.
  • the structure 11 may be spun from a jet of the type shown in Figure 6 in which the jet 15 has a central inner jet hole 16 ringed by two outer jet holes 17 in the form of two arcuate slots. The extrudates from the outer jet holes merge below the jet to form a tube enclosing the helical core filament formed from the higher velocity extrudate from the inner jet hole.
  • Figure 7 shows a filamentary structure of the type shown in Figure 3 after being stretched to a degree which elongates the cage filaments without breaking them. On being allowed to relax, the helical core filament 18 contacts and causes the elongated cage filaments 19 to balloon out as shown to produce an expanded filamentary stucture 20.
  • the fabric structure 21 shown in Figure 8 comprises three filamentary structures of the type shown in Figure 3 with the axes of their helical core filaments 22 parallel and adjacent cage filaments 23 fused together.
  • This fabric structure may be produced by a jet of the type shown in Figure 9 which has a rectangular jet face 24 with three sets 25 of jet holes lying adjacent to each other in a line. Each set 25 comprises an inner jet hole 26 ringed by eight outer jet holes 27 of smaller diameter.
  • the number of sets of jet holes may be extended beyond three to produce wider fabric structures, and may also be grouped other than in line, for example as a grid, to provide three-dimensional fabric structures.
  • the apparatus shown diagrammatically comprises a spinning jet 32 from which a filamentary structure 33 according to the invention is extruded downwardly into a water quench bath 34.
  • the solidified structure is withdrawn from the jet by driven rollers 35 in a 'clover teaf formation and located below the surface of the bath.
  • the structure is withdrawn from the bath by a godet 36 and, if desired, stretched between the godet 36 and a further godet 37 to produce a structure as shown in Figure 4 or Figure 7 depending upon the degree of stretch.
  • Nylon 6 polymer was melted and extruded through various spinning jets as shown in Figures 1 and 2 of the drawings, some with four outer jet holes and some with eight outer jet holes with variations also in the pitch circle diameter (PCD) of the outer jet holes.
  • the extrudates were quenched in a water bath at room temperature and collected either by free fall or by nip rollers. Samples were taken and stretched at two different percentage stretches, one simply to bulk the product and the other a greater stretch to break the cage filaments and produce the modified filamentary structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (16)

1. Structure filamentaire, caractérisée en ce qu'elle comporte un filamente d'âme thermoplastique hélicoïdal (6, 12) disposé dans une gaine thermoplastique (7, 13) qui est soudée aux spires (8, 14) successives du filament d'âme hélicoïdal.
2. Structure filamentaire suivant la revendication 1, caractérisée en ce que la gaine comprend une cage faite d'au moins trois filaments thermoplastiques (7) qui sont chacun soudés aux spires (8) successives du filament d'âme hélicoïdal.
3. Structure filamentaire suivant la revendication 2, caractérisée en ce que chaque filament de cage (7) est espacé de ses filaments de cage adjacents de distances en substance égales.
4. Structure filamentaire suivant la revendication 2 ou la revendication 3, caractérisée en ce que les filaments de cage (7) sont en substance parallèlement alignés avec l'axe du filament d'âme hélicoïdal (6).
5. Structure filamentaire suivant l'une quelconque des revendications 2 à 4, caractérisée en ce que chacun des filaments de cage (7) a une section transversale plus petite que celle du filament d'âme hélicoïdal (6).
6. Structure filamentaire suivant la revendication 1, caractérisée en ce que la gaine comprend un tube (13).
7. Structure filamentaire suivant l'une quelconque des revendications 1 à 6, caractérisée en ce que le filament d'âme hélicoïdal (6, 12) et la gaine (7, 13) sont faits du même polymère thermoplastique.
8. Structure de tissu, caractérisée par plusieurs structures filamentaires suivant l'une quelconque des revendications 1 à 7 soudées l'une à l'autre, de telle sorte que les axes des filaments hélicoïdaux (22, 23) soient en substance parallèles.
9. Structure de tissu suivant la revendication 8, caractérisée en ce que les structures filamentaires constitutives sont disposées en un ensemble plan.
10. Procédé pour fabriquer une structure filamentaire selon la revendication 1, caractérisé en ce que l'on fournit un polymère thermoplastique fondu à une filière de filature (1) comportant un orifice intérieur (3, 16) entouré par des orifices extérieurs (4, 17), on extrude le polymère par l'orifice intérieur (3) à une vitesse supérieure à la vitesse d'extrusion du polymère par les orifices extérieurs (4) pour former un extrudat hélicoïdal disposé dans une gaine extrudée à laquelle ses spires successives sont soudées et on refroidit les extrudats en vue de les solidifier en une structure monolithique.
11. Procédé suivant la revendication 10, caractérisé en ce que chaque orifice extérieur (4) est placé suffisamment près de ses orifices extérieurs (4) adjacents pour que les extrudats des orifices extérieurs fusionnent pour former une gaine tubulaire.
12. Procédé suivant la revendication 10 ou 11, caractérisé en ce que chacun des orifices extérieurs (4) de la filière de filature a une section transversale inférieure à celle de l'orifice intérieur (3).
13. Procédé suivant l'une quelconque des revendications 10 à 12, caractérisé en ce que l'on étire la structure filamentaire produite, puis on la relâche pour amener les filaments de cage (19) qui forment la gaine à bouffer entre les points où ils sont soudés au filament d'âme hélicoïdal (18) et ainsi à produire une structure expansée (20).
14. Procédé suivant l'une quelconque des revendications 10 à 12, caractérisé en ce que l'on étire la structure filamentaire (5) produite au point que les filaments de cage (7) qui forment la gaine se rompent entre les points (8) où ils sont soudés au filament d'âme hélicoïdal (6) afin de produire une structure filamentaire modifiée dans laquelle les filaments de cage rompus constituent des fibrillés (10) d'une longueur en substance uniforme qui sont pour la plupart inclinées dans un même sens.
15. Procédé pour fabriquer une structure de tissu par un procédé suivant l'une quelconque des revendications 10 à 14, caractérisé en ce que l'on extrude plusieurs structures filamentairés l'une près de l'autre avec les axes des filaments d'âme hélicoïdaux en substance parallèles, de telle sorte que les structures filamentaires extrudées se soudent l'uné à l'autre et qu'après avoire été refroidies en vue de leur solidification, elles restent soudées en une structure de tissu monolithique.
16. Procédé suivant la revendication 15, caractérisé en ce que l'on extrude les structures filamentaires sous la forme d'un ensemble plan, ces structures se soudant l'une à l'autre pour former un tissu plan.
EP19810305307 1981-11-09 1981-11-09 Structure filamentaire Expired EP0078869B2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8181305307T DE3171730D1 (en) 1981-11-09 1981-11-09 Filamentary structure
EP19810305307 EP0078869B2 (fr) 1981-11-09 1981-11-09 Structure filamentaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19810305307 EP0078869B2 (fr) 1981-11-09 1981-11-09 Structure filamentaire

Publications (3)

Publication Number Publication Date
EP0078869A1 EP0078869A1 (fr) 1983-05-18
EP0078869B1 EP0078869B1 (fr) 1985-08-07
EP0078869B2 true EP0078869B2 (fr) 1988-09-28

Family

ID=8188447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810305307 Expired EP0078869B2 (fr) 1981-11-09 1981-11-09 Structure filamentaire

Country Status (2)

Country Link
EP (1) EP0078869B2 (fr)
DE (1) DE3171730D1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5405682A (en) 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5643662A (en) 1992-11-12 1997-07-01 Kimberly-Clark Corporation Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
US6500538B1 (en) 1992-12-28 2002-12-31 Kimberly-Clark Worldwide, Inc. Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2058551A (en) * 1933-06-05 1936-10-27 Beattey Earie J Richard Making of rayon
US2804645A (en) * 1953-05-12 1957-09-03 Du Pont Spinneret plate for melt spinning
US4017659A (en) * 1974-10-17 1977-04-12 Ingrip Fasteners Inc. Team lattice fibers
GB2003423B (en) * 1977-08-17 1982-07-14 Monsanto Co Self crimping yarn and process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5418045A (en) 1992-08-21 1995-05-23 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric
US5405682A (en) 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5425987A (en) 1992-08-26 1995-06-20 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5643662A (en) 1992-11-12 1997-07-01 Kimberly-Clark Corporation Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
US6500538B1 (en) 1992-12-28 2002-12-31 Kimberly-Clark Worldwide, Inc. Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith

Also Published As

Publication number Publication date
DE3171730D1 (en) 1985-09-12
EP0078869A1 (fr) 1983-05-18
EP0078869B1 (fr) 1985-08-07

Similar Documents

Publication Publication Date Title
US4384022A (en) Filamentary structure
US4772347A (en) Process for making filamentary structure
EP0607174B1 (fr) Fibre a section profilee orientee
US3558420A (en) Hollow filaments
EP0432272B1 (fr) Gazon artificiel, fil a poils pour gazon artificiel et procede pour la production dudit gazon
GB1224451A (en) Resilient padding units of helical synthetic filaments
US4429006A (en) Filament-like fibers and bundles thereof, and novel process and apparatus for production thereof
EP0087291B1 (fr) Procédé pour augmenter le volume vide de fibres creuses
EP0078869B2 (fr) Structure filamentaire
US5597646A (en) Polymeric cable and fabric made therefrom
KR20120007173A (ko) 권축성이 우수한 사이드 바이 사이드형 이성분 중공필라멘트 및 그 제조방법
US3728428A (en) Process for producing hollow filaments
GB2075417A (en) Filamentary structure
CA1163072A (fr) Filaments
KR100192656B1 (ko) 초극세 복합섬유의 제조방법
EP0013186A1 (fr) Procédé de filage par fusion d'un filament conjugué susceptible de se fendre; filament conjugué, à frisure latente, susceptible de se fendre; procédé de refente d'un tel filament
JPS61119704A (ja) フイラメント集合体の冷却方法
JPH0730495B2 (ja) 合成樹脂製網状体
KR0162550B1 (ko) 중공섬유 제조용 방사구금
JPH02446B2 (fr)
JPH04222203A (ja) 異繊度混繊糸用紡糸口金
JPS58149318A (ja) ポリエステル糸及びその製造法
US6221491B1 (en) Hexagonal filament articles and methods for making the same
JPS584085B2 (ja) 中空繊維の製造法
KR840000656B1 (ko) 필라멘트상 섬유집속체의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR IT LI NL

17P Request for examination filed

Effective date: 19831008

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR IT LI NL

REF Corresponds to:

Ref document number: 3171730

Country of ref document: DE

Date of ref document: 19850912

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ENKA AG

Effective date: 19860409

NLR1 Nl: opposition has been filed with the epo

Opponent name: ENKA AG

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19880928

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR IT LI NL

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001018

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001026

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20011108

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20011108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20011109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20011109