EP0068300B1 - Device for the course stabilization of a rocket moving in a liquid medium - Google Patents

Device for the course stabilization of a rocket moving in a liquid medium Download PDF

Info

Publication number
EP0068300B1
EP0068300B1 EP82105259A EP82105259A EP0068300B1 EP 0068300 B1 EP0068300 B1 EP 0068300B1 EP 82105259 A EP82105259 A EP 82105259A EP 82105259 A EP82105259 A EP 82105259A EP 0068300 B1 EP0068300 B1 EP 0068300B1
Authority
EP
European Patent Office
Prior art keywords
rocket
magnet
arrangement
liquid medium
course
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82105259A
Other languages
German (de)
French (fr)
Other versions
EP0068300A3 (en
EP0068300A2 (en
Inventor
Karl Dr. Wisseroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0068300A2 publication Critical patent/EP0068300A2/en
Publication of EP0068300A3 publication Critical patent/EP0068300A3/en
Application granted granted Critical
Publication of EP0068300B1 publication Critical patent/EP0068300B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/005Other methods or devices for dislodging with or without loading by projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • F42B19/01Steering control
    • F42B19/06Directional control

Definitions

  • the invention relates to an arrangement for the horizontal course alignment of rockets moving in liquids.
  • Missiles launched in liquids - e.g. B. water - are used, for example, to bring explosives to solid materials to be shredded.
  • the explosive destruction of hard coal in a coal seam filled with liquid and in the process of being mined For this purpose, the rocket carrying the explosives is fed into the seam through a hole from above ground. After reaching the bottom of the mine, the rocket generally aligns itself automatically by regulating the center of gravity at an intended elevation angle, which predominantly corresponds to the horizontal or only slightly deviates from it. The azimuth angle, however, remains indefinite, so that after the propellant has been ignited, the rocket will move in any randomly set horizontal direction.
  • the task was therefore to develop an arrangement by means of which the direction of movement of rockets moving in liquids can also be adjusted with regard to their azimuthal orientation.
  • the object was achieved in that the rocket body is connected to a magnet and the rocket axis and the magnetic axis of the magnet form an azimuthal angle ⁇ , which determines the target direction of the rocket with respect to the geomagnetic meridian.
  • Fig. 1 the arrangement according to the invention for horizontal course alignment is shown schematically. It consists of the rocket body 1 to be moved and a bar magnet 2 attached to it on the outside or inside. This is fixed to the rocket body by screws or pins or other suitable fastening means in such a way that the rocket axis 3 and the axis 4 of the bar magnet 2 form an azimuthal angle a, which determines the direction of the missile with respect to the geomagnetic meridian 5 (FIG. 2).
  • the aligning force K is defined by the torque acting at the pivot point of the rocket body according to the mathematical relationship where a is the force arm and H is the earth's magnetic field strength, M is the magnetic moment of the bar magnet 2 and n is the azimuthal angle.
  • the geomagnetic field is relatively weak.
  • the required directional force K can, however, be achieved by suitable selection of the magnetic moment of the bar magnet.
  • the force K to be used serves to overcome both inertial forces and the moment of inertia correspond to the rocket to be oriented, where ⁇ is the angular acceleration, as well as the frictional forces that are already noticeable in a liquid.
  • the permanent magnets available have sufficiently high residual flux densities with which both the inertial forces and the frictional forces can be easily overcome. The friction forces even proved useful in one respect by supporting the swinging into the end position by strongly damping the rotary movement.
  • the bar magnet 2 can be connected to the rocket as additional ballast, as illustrated, for example, by FIG. 3.
  • an orientation of the elevation angle / l of the direction of the missile can be effected at the same time.
  • This combined measure means that practically every point P of a spherical reference space around the center of gravity of the rocket can be reached (FIG. 2).
  • Barium ferrites or cast magnets made of aluminum-nickel-cobalt alloy are particularly suitable as materials for the bar magnets.
  • a rocket 20 cm long and 3.5 cm in diameter has a propellant charge of 25 g of pressed black powder. It also carries a load of 250 g explosives. To stabilize the course, a sleeve tail of 10 cm length and 5 cm diameter is pushed coaxially over the missile body at the end of the missile, so that the sleeve end protrudes 5 cm beyond the nozzle opening. Below the rocket is a bar magnet of 50 g weight and a magnetic moment of 5 ⁇ 10 7 V ⁇ s ⁇ m, whose magnetic north-south axis is rotated 45 "against the rocket axis, so that the rockets after alignment pointed towards the northwest.
  • the complete rocket arrangement is introduced with a random directional orientation into a concentrated CaC1 2 solution (density 1.40 g / cm 3 ), which is under a pressure of 150 bar. After about 2 seconds the rocket has leveled off in the intended direction and points to the target location. The propellant charge is then ignited with an overpressure igniter delayed by 5 seconds. It then moves towards the destination at a stable course, where the explosive charge is detonated by a detonator.

Description

Die Erfindung betrifft eine Anordnung zur horizontalen Kursausrichtung von in Flüssigkeiten bewegten Raketen.The invention relates to an arrangement for the horizontal course alignment of rockets moving in liquids.

Raketen, die in Flüssigkeiten - z. B. Wasser - betrieben werden, werden zum Beispiel dazu verwendet, Sprengstoffe an zu zerkleinernde Feststoffmaterialien heranzutragen. So etwa bei der sprengenden Zertrümmerung von Steinkohle in einem mit Flüssigkeit gefüllten und im Abbau befindlichen Kohleflöz. Zu diesem Zwecke wird die Sprengstoff tragende Rakete durch eine Bohrung von Übertage dem Flöz zugeführt. Nach Erreichen der Abbausohle richtet sich die Rakete im allgemeinen durch Schwerpunktsregulation selbsttätig in einen beabsichtigten Höhenwinkel aus, welcher überwiegend der Horizontalen oder nur geringfügig von ihr abweichenden Richtungen entspricht. Der Azimutalwinkel bleibt dagegen unbestimmt, so daß nach erfolgter Zündung des Treibsatzes sich die Rakete in jede zufällig eingestellte horizontale Richtung bewegen wird. Es ist aber gewöhnlich erwünscht, den Kohleabbau in einer ganz bestimmten - z. B. durch die geologischen Verhältnisse bedingten - Richtung vorzunehmen.Missiles launched in liquids - e.g. B. water - are used, for example, to bring explosives to solid materials to be shredded. For example, the explosive destruction of hard coal in a coal seam filled with liquid and in the process of being mined. For this purpose, the rocket carrying the explosives is fed into the seam through a hole from above ground. After reaching the bottom of the mine, the rocket generally aligns itself automatically by regulating the center of gravity at an intended elevation angle, which predominantly corresponds to the horizontal or only slightly deviates from it. The azimuth angle, however, remains indefinite, so that after the propellant has been ignited, the rocket will move in any randomly set horizontal direction. However, it is usually desirable to mine coal in a very specific - e.g. B. due to the geological conditions - to make direction.

Es stellte sich daher die Aufgabe, eine Anordnung zu entwickeln, durch die die Bewegungs.. richtung von in Flüssigkeiten bewegten Raketen auch bezüglich ihrer azimutalen Orientierung eingestellt werden kann.The task was therefore to develop an arrangement by means of which the direction of movement of rockets moving in liquids can also be adjusted with regard to their azimuthal orientation.

Die Aufgabe wurde dadurch gelöst, daß der Raketenkörper mit einem Magneten verbunden ist und die Raketenachse und die magnetische Achse des Magneten einen azimutalen Winkel α bilden, der in bezug auf den geomagnetischen Meridian die Zielrichtung der Rakete bestimmt.The object was achieved in that the rocket body is connected to a magnet and the rocket axis and the magnetic axis of the magnet form an azimuthal angle α, which determines the target direction of the rocket with respect to the geomagnetic meridian.

Weitere Einzelheiten und Vorteile der erfindungsgemäßen Anordnung ergeben sich aus einem anhand der Zeichnung nachfolgend beschriebenen Ausführungsbeispiel. Es zeigt

  • Fig. 1 einen Raketenkörper mit einem Stabmagneten in schematischer Darstellung,
  • Fig. 2 eine sphärische Darstellung der Kursausrichtung,
  • Fig. 3 schematisch eine Schwerpunktverlagerung des Raketenkörpers mit Hilfe des Stabmagneten.
Further details and advantages of the arrangement according to the invention result from an embodiment described below with reference to the drawing. It shows
  • 1 shows a rocket body with a bar magnet in a schematic representation,
  • 2 is a spherical representation of the course orientation,
  • Fig. 3 shows schematically a shift in the center of gravity of the missile body with the help of the bar magnet.

In Fig. 1 ist die erfindungsgemäße Anordnung zur horizontalen Kursausrichtung schematisch wiedergegeben. Sie besteht aus dem zu bewegenden Raketenkörper 1 und einem außen oder innen daran befestigten Stabmagneten 2. Dieser ist durch Schrauben oder Zapfen oder andere geeignete Befestigungsmittel so am Raketenkörper festgelegt, daß die Raketenachse 3 und die Achse 4 des Stabmagneten 2 einen azimutalen Winkel a bilden, der in bezug auf den geomagnetischen Meridian 5 die Zielrichtung der Rakete bestimmt (Fig. 2).In Fig. 1 the arrangement according to the invention for horizontal course alignment is shown schematically. It consists of the rocket body 1 to be moved and a bar magnet 2 attached to it on the outside or inside. This is fixed to the rocket body by screws or pins or other suitable fastening means in such a way that the rocket axis 3 and the axis 4 of the bar magnet 2 form an azimuthal angle a, which determines the direction of the missile with respect to the geomagnetic meridian 5 (FIG. 2).

Die ausrichtende Kraft K ist definiert durch das am Drehpunkt des Raketenkörpers wirkende Drehmoment nach der mathematischen Beziehung

Figure imgb0001
wobei mit a der Kraftarm bezeichnet ist und H die erdmagnetische Feldstärke, M das magnetische Moment des Stabmagneten 2 und n der azimutale Winkel bedeuten.The aligning force K is defined by the torque acting at the pivot point of the rocket body according to the mathematical relationship
Figure imgb0001
where a is the force arm and H is the earth's magnetic field strength, M is the magnetic moment of the bar magnet 2 and n is the azimuthal angle.

Das erdmagnetische Feld ist verhältnismäßig schwach. Durch geeignete Wahl des magnetischen Moments des Stabmagneten kann jedoch die erforderliche Direktionskraft K erreicht werden. Die aufzuwendende Kraft K dient der Überwindung sowohl von Trägheitskräften, die dem Trägheitsmoment

Figure imgb0002
der zu orientierenden Rakete entsprechen, worin α die Winkelbeschleunigung ist, wie auch der in einer Flüssigkeit bereits merklichen Reibungskräfte. Die verfügbaren Dauermagnete besitzen ausreichend hohe Remanenzflußdichten, mit denen sich sowohl die Trägheitskräfte wie auch die Reibungskräfte leicht überwinden lassen. Die Reibungskräfte erwiesen sich in einer Hinsicht sogar als nützlich, indem sie das Einpendeln in die Endlage durch starkes Dämpfen der Drehbewegung unterstützen.The geomagnetic field is relatively weak. The required directional force K can, however, be achieved by suitable selection of the magnetic moment of the bar magnet. The force K to be used serves to overcome both inertial forces and the moment of inertia
Figure imgb0002
correspond to the rocket to be oriented, where α is the angular acceleration, as well as the frictional forces that are already noticeable in a liquid. The permanent magnets available have sufficiently high residual flux densities with which both the inertial forces and the frictional forces can be easily overcome. The friction forces even proved useful in one respect by supporting the swinging into the end position by strongly damping the rotary movement.

Der Stabmagnet 2 kann als zusätzlicher Ballast mit der Rakete verbunden werden, wie es etwa Fig. 3 veranschaulicht. Durch Verlagern des Ra ketenschwerpunktes Sp kann hierdurch gleichzeitig auch noch eine Orientierung des Höhenwinkels /l der Raketenrichtung bewirkt werden. Durch diese kombinierte Maßnahme ist praktisch jeder Punkt P eines kugelförmigen Bezugsraumes um den Schwerpunkt der Rakete erreichbar (Fig. 2).The bar magnet 2 can be connected to the rocket as additional ballast, as illustrated, for example, by FIG. 3. By shifting the center of gravity of the rocket Sp, an orientation of the elevation angle / l of the direction of the missile can be effected at the same time. This combined measure means that practically every point P of a spherical reference space around the center of gravity of the rocket can be reached (FIG. 2).

Als Werkstoffe für den Stabmagneten eignen sich besonders Bariumferrite oder auch gegossene Magnete aus Aluminium-Nickel-Cobalt-Legierung.Barium ferrites or cast magnets made of aluminum-nickel-cobalt alloy are particularly suitable as materials for the bar magnets.

Nachfolgendes Beispiel veranschaulicht die Wirkungsweise der erfindungsgemäßen Anordnung.The following example illustrates the operation of the arrangement according to the invention.

Beispielexample

Eine Rakete von 20 cm Länge und einem Durchmesser von 3,5 cm hat einen Treibsatz von 25 g gepreßtem Schwarzpulver. Sie trägt außerdem eine Beiladung von 250 g Sprengstoff. Zur Kursstabilisierung ist am Ende der Rakete ein Hülsenleitwerk von 10cm Länge und 5 cm Durchmesser koaxial über den Raketenkörper geschoben, so daß das Hülsenende 5 cm über die Düsenöffnung hinausragt. Unterhalb der Rakete befindet sich ein Stabmagnet von 50 g Gewicht und einem magnetischen Moment von 5 · 10 7V · s · m, dessen magnetische Nord-Süd-Achse um 45" gegen die Raketenachse verdreht ist, so daß nach Ausrichtung die Raketenspitze etwa nach Nordwest weist. Gleichzeitig mit der Magnetbefestigung ist eine schweremä- ßige Ausgleichung vorgenommen, so daß einerseits die Raketenachse waagerecht liegt und andererseits in der tragenden Flüssigkeit etwa der Schwebezustand erreicht wird. Die vollständige Raketenanordnung wird mit zufälliger Richtungsorientierung in eine konzentrierte CaC12-Lösung (Dichte 1,40 g/cm3) eingebracht, welche unter einem Druck von 150 bar steht. Nach etwa 2 Sekunden hat sich die Rakete in die vorgesehene Richtung eingependelt und weist auf den Zielort. Die Zündung des Treibsatzes erfolgt anschließend mit zeitlich um 5 Sekunden verzögertem Überdruckzünder. Sie bewegt sich darauf mit stabilem Kurs auf den Zielort zu, wo durch einen Aufschlagzünder die Sprengladung gezündet wird.A rocket 20 cm long and 3.5 cm in diameter has a propellant charge of 25 g of pressed black powder. It also carries a load of 250 g explosives. To stabilize the course, a sleeve tail of 10 cm length and 5 cm diameter is pushed coaxially over the missile body at the end of the missile, so that the sleeve end protrudes 5 cm beyond the nozzle opening. Below the rocket is a bar magnet of 50 g weight and a magnetic moment of 5 · 10 7 V · s · m, whose magnetic north-south axis is rotated 45 "against the rocket axis, so that the rockets after alignment pointed towards the northwest. At the same time as the magnet attachment, a heavy adjustment is carried out, so that on the one hand the rocket axis is horizontal and on the other hand the floating state is approximately in the state of suspension. The complete rocket arrangement is introduced with a random directional orientation into a concentrated CaC1 2 solution (density 1.40 g / cm 3 ), which is under a pressure of 150 bar. After about 2 seconds the rocket has leveled off in the intended direction and points to the target location. The propellant charge is then ignited with an overpressure igniter delayed by 5 seconds. It then moves towards the destination at a stable course, where the explosive charge is detonated by a detonator.

Claims (3)

1. An arrangement for achieving the horizontal orientation of a rocket moving in a liquid, wherein a magnet (2) is attached to the rocket body (1), and the axis (3) of the rocket and the magnetic axis (4) of the magnet form an azimuthal angle α, which determines the direction of the rocket relative to the geomagnetic meridian (5).
2. An arrangement as claimed in claim 1, wherein the magnet (2) is a bar magnet.
3. An arrangement as claimed in claims 1 and 2, wherein the angle of elevation β of the direction of motion of the rocket (1) can be adjusted by displacing the center of gravity (Sp) of the rocket by means of the magnet arrangement.
EP82105259A 1981-06-26 1982-06-16 Device for the course stabilization of a rocket moving in a liquid medium Expired EP0068300B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3125108 1981-06-26
DE19813125108 DE3125108A1 (en) 1981-06-26 1981-06-26 "ARRANGEMENT FOR THE ORIENTATION OF ROCKETS MOVED IN LIQUIDS"

Publications (3)

Publication Number Publication Date
EP0068300A2 EP0068300A2 (en) 1983-01-05
EP0068300A3 EP0068300A3 (en) 1983-03-16
EP0068300B1 true EP0068300B1 (en) 1985-03-06

Family

ID=6135417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82105259A Expired EP0068300B1 (en) 1981-06-26 1982-06-16 Device for the course stabilization of a rocket moving in a liquid medium

Country Status (6)

Country Link
US (1) US4601251A (en)
EP (1) EP0068300B1 (en)
AU (1) AU8534382A (en)
DE (2) DE3125108A1 (en)
IN (1) IN155804B (en)
ZA (1) ZA824530B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8015922B2 (en) * 2009-03-07 2011-09-13 Lockheed Martin Corporation Control system for right circular cylinder bodies
CN110260714B (en) * 2019-05-21 2020-07-10 中国人民解放军海军工程大学 Guided ammunition outer trajectory semi-physical simulation platform and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US333008A (en) * 1885-12-22 Island
US1228364A (en) * 1916-10-18 1917-05-29 A J Macy Automatic pilot mechanism.
US1378740A (en) * 1917-07-30 1921-05-17 Walkup Samuel Thomas Autogubernator
US1410872A (en) * 1920-05-07 1922-03-28 Frederick W Baldwin Torpedo
FR581367A (en) * 1924-05-07 1924-11-27 Torpedo steering device
US2363363A (en) * 1940-08-30 1944-11-21 George A Rubissow Automatic system for controlling the direction of moving bodies
US2338322A (en) * 1942-02-28 1944-01-04 Antonio R Ferrer Torpedo
US2493788A (en) * 1942-09-29 1950-01-10 Joseph D Turlay Resilient support for the firing control mechanism of a marine mine
US2596120A (en) * 1949-10-13 1952-05-13 Thomas C Boyle Variable length torpedo head
US2937824A (en) * 1955-07-11 1960-05-24 Aerojet General Co Bi-medium rocket-torpedo missile
US3060854A (en) * 1959-12-21 1962-10-30 Perma Pier Inc Underwater rocket
US3134353A (en) * 1962-03-20 1964-05-26 Thiokol Chemical Corp Underwater propulsion system
DE3108425A1 (en) * 1981-03-06 1982-09-23 Basf Ag, 6700 Ludwigshafen METHOD FOR DEVELOPING A VERY DEEP COAL

Also Published As

Publication number Publication date
EP0068300A3 (en) 1983-03-16
US4601251A (en) 1986-07-22
DE3262491D1 (en) 1985-04-11
EP0068300A2 (en) 1983-01-05
ZA824530B (en) 1983-05-25
AU8534382A (en) 1983-01-06
IN155804B (en) 1985-03-09
DE3125108A1 (en) 1983-01-13

Similar Documents

Publication Publication Date Title
DE2741984C2 (en) Warhead for an anti-tank missile with at least one spiked shaped charge
DE3229474C2 (en) Control device of a missile
DE3337987C2 (en) Missiles for attacking target objects, especially armored objects when flying over them
EP0068300B1 (en) Device for the course stabilization of a rocket moving in a liquid medium
DE1963533B2 (en) System for controlling the position of an artificial earth satellite capsule
DE1703427A1 (en) BOLT GUN
DE2750128A1 (en) METHOD AND DEVICE FOR GRAVITATION COMPENSATION IN DIRECTABLE AIRCRAFT
EP0211149B1 (en) Device for destroying sea mines, especially anchor-line mines
DE2320398A1 (en) APPLICATION DEVICE FOR STORIES
DE2518266A1 (en) FLOOR FIRE FOR A TWIST FLOOR, CONTAINS A IGNITION CAP AND AN ELECTROMAGNETIC IGNITION CURRENT GENERATOR
DE102010018756A1 (en) Exploration device for use in e.g. country vehicle for exploring e.g. earth, has arms are rotated around specific degree for variably controlling travel type of device and motion sequence of arms and laterally attached at housing
DE2509705B2 (en) Mine, especially land mine
EP0090914A2 (en) Method of changing the attitude of a satellite
DE3203078C2 (en) Rotation-stabilized cross-shot body
EP3007966B1 (en) Device and method for neutralizing weapons
DE309505C (en)
DE2509699C2 (en) Mine, especially land mine
DE102022128360A1 (en) Pyrotechnic impact ram, cartridge kit and method for determining a quantity of pyrotechnic material for pyrotechnically driving a ram into a substrate
DE2632864A1 (en) POSITION CONTROL SYSTEM FOR ARTIFICIAL SATELLITES
DE4327214C1 (en) Laying device for penetrators having built-in sensors
DE102009007668B4 (en) Steering module for a ballistic projectile
DE1431217C (en) Short-range missile with flight path control
DE144206C (en)
DE3727988A1 (en) Device for automatic alignment of an underwater body on the bed of the water course
DE2230068A1 (en) PERFORATING DEVICE FOR DRILLING HOLES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19821211

AK Designated contracting states

Designated state(s): BE DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3262491

Country of ref document: DE

Date of ref document: 19850411

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890524

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890613

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890620

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 8

Ref country code: GB

Payment date: 19890630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST