EP0068165B1 - Brenner zum thermochemischen Trennen und/oder Abhobeln von Werkstücken aus Stahl - Google Patents

Brenner zum thermochemischen Trennen und/oder Abhobeln von Werkstücken aus Stahl Download PDF

Info

Publication number
EP0068165B1
EP0068165B1 EP82104845A EP82104845A EP0068165B1 EP 0068165 B1 EP0068165 B1 EP 0068165B1 EP 82104845 A EP82104845 A EP 82104845A EP 82104845 A EP82104845 A EP 82104845A EP 0068165 B1 EP0068165 B1 EP 0068165B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
bore
burner according
outlet
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82104845A
Other languages
English (en)
French (fr)
Other versions
EP0068165A2 (de
EP0068165B2 (de
EP0068165A3 (en
Inventor
Franz Hennecke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aute AG Gesellschaft fuer Autogene Technik
Original Assignee
Aute AG Gesellschaft fuer Autogene Technik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6134032&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0068165(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aute AG Gesellschaft fuer Autogene Technik filed Critical Aute AG Gesellschaft fuer Autogene Technik
Priority to AT82104845T priority Critical patent/ATE25760T1/de
Publication of EP0068165A2 publication Critical patent/EP0068165A2/de
Publication of EP0068165A3 publication Critical patent/EP0068165A3/de
Application granted granted Critical
Publication of EP0068165B1 publication Critical patent/EP0068165B1/de
Publication of EP0068165B2 publication Critical patent/EP0068165B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/56Nozzles for spreading the flame over an area, e.g. for desurfacing of solid material, for surface hardening, or for heating workpieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/52Nozzles for torches; for blow-pipes
    • F23D14/54Nozzles for torches; for blow-pipes for cutting or welding metal

Definitions

  • the invention relates to a burner for thermochemical cutting or planing of thick workpieces made of steel with a thickness between 150 to 600 mm, with a cutting oxygen jet, the burner consisting essentially of a nozzle with a cutting oxygen inlet bore, a nozzle bore and a cutting oxygen outlet bore and there is a nozzle holder.
  • burners which are used for a wide variety of work, e.g. B. Separating thinner, thicker or thickest steel workpieces or for planing narrow joints up to the widest areas of steel workpieces.
  • thermochemical cutting and planing of workpieces made of steel the endeavor has to achieve ever greater performance, i. H.
  • To achieve greater flame speeds, greater flame width, greater flame depth, greater cutting speed and greater cutting thicknesses led to a large number of burner developments, including issues of the lowest possible gas consumption and narrow kerf widths and problems of safety, environmental friendliness, e.g. B. in terms of noise and less harmful emissions, as well as a long life of the nozzles and cheap maintenance played a role.
  • the cutting speeds achieved cannot be regarded as satisfactory, as the cutting speeds reach only a fraction of the chemical reaction speed despite the greatest oxygen purity if the reaction location is sufficiently heated by the burner heating and the exothermic heat generated during cutting.
  • This is due to the fact that the iron oxide skin that forms over the reactive iron always has to be removed by the kinetic energy of the cutting oxygen jet.
  • the kinetic energy of the cutting oxygen jet which is obtained from the conversion of the pressure of the supplied oxygen, there are, however, restrictions due to friction and shock losses when the nozzle is narrowed or enlarged, and due to insufficient jet formation.
  • Laval nozzle shapes or approximate designs (AU-B-417 614). These nozzles can only be used with thin material and are, apart from the manufacturing complexity of Laval nozzles, very sensitive to pressure fluctuations in terms of their effectiveness.
  • Another known nozzle embodiment consists of a central oxygen channel which tapers conically to a narrowed section and in turn widens conically from this section to the nozzle outlet (DE-A-2251 632). In this embodiment too, pressure losses are largely avoided, and the nozzle is only suitable for cutting metal sheets of smaller thickness.
  • Another problem is the formation of the kerf in the workpiece. If the kerf width is too large, a lot of material is lost, which also increases the amount of beard and increases the amount of rework.
  • the invention is therefore based on the object of making a burner available which, in the case of insensitivity to pressure fluctuations, has a long service life due to a simple, inexpensive design and enables the formation of thin kerfs at a maximum working speed. In this way, the smallest possible beards are created with sharp edges and few pearls on the top, so that little rework is required.
  • nozzle bore is cylindrically shaped on its length lying between 0.5 and 10 mm and provided with a diameter between 1.5 and 3.6 mm and in that the transition from the Cutting oxygen inlet bore for the nozzle bore is sharp-edged.
  • an outlet bore with a final outlet diameter between 3 and 5.4 mm adjoins the nozzle bores on the outlet side.
  • the cylindrical outlet bore located on the outlet side of the nozzle bore expediently has a length of 10 to 35 mm.
  • the outlet bore can also widen conically, the conical widening being between 5 and 10 °.
  • the sharp-edged transition can advantageously be arranged at the start of the nozzle bore, or, taking into account the dependence on pressure, nozzle bore diameter and nozzle bore length, a slight rounding of the transition is provided to avoid maximum shock loss.
  • An advantageous embodiment of the invention is that the cone of the outlet hole directly attaches to the bottom of the larger diameter inlet bore.
  • the inlet bore tapers in the direction of the outlet bore or the nozzle bore shortly before entry into it.
  • FIG. 1 shows a burner in which a nozzle 1 is fastened to a nozzle holder 3 by means of a nozzle screw 2.
  • a shaft tube 5 and a heating gas feed tube 6, a heating oxygen feed tube 7 and a cutting oxygen feed tube 8 are soldered into the nozzle receptacle 4.
  • Heating mixture bores 10 lead from ring channels 9, which are formed between the nozzle holder 3 or 4 and the nozzle 2, to the nozzle outlet and surround a cutting oxygen nozzle bore 11 with their cutting oxygen outlet bore 12.
  • the cutting oxygen reaches the nozzle bore 11 from the shaft tube 8 via a cutting oxygen Inlet bore 13.
  • the length I D of the nozzle bore 11 has been significantly shortened and at the same time the diameter d A of the outlet bore 12 has been significantly increased.
  • the pressure loss in the nozzle bore could be greatly reduced, which in turn was only possible if the transition 14 from the inlet bore 13 of the nozzle bore 11 was designed in such a way that only a small outlet distance in the nozzle bore 11 was required.
  • the transition 14 from the inlet bore 13 to the nozzle bore 11 consists of a sharp-edged corner 14 and, taking into account the dependence on pressure, nozzle bore diameter d D and nozzle bore length I D, can be rounded slightly to avoid a maximum impact loss.
  • the cylindrically shaped nozzle bore 11 for the cutting oxygen jet is to be provided with a short, not greater than 10 mm to zero, length, preferably a length of 0.5 to 5 mm.
  • a comparatively small diameter of 4 mm or less is to be provided, with 1.5 mm to 3.6 mm being the preferred range.
  • the outlet bore adjoining on the outlet side should have a final outlet diameter of 6 mm or less, preferably 3 to 5.4 mm. Good results were achieved with a nozzle whose nozzle bore diameter was 1.8 mm with an outlet diameter of 3.3 mm and a further nozzle with a nozzle bore diameter of 2.8 mm and an outlet diameter of 4.8 mm. Further advantageous dimensions are indicated in the characterizing part of subclaims 15, 16, 17 and 18.
  • the bores are cylindrical, apart from chamfers, rounded edges, drill angles and sealing surfaces.
  • a cone angle of approximately ⁇ A occurs through the smoothing tool between the outlet bore 12 and the nozzle bore 11 and a drill angle or chamfer ⁇ E at the transition from the inlet bore to the nozzle bore.
  • the outlet bore can have a slight conical widening a A.
  • the cone of the outlet bore 12 leaves only a small length of the nozzle bore 11, the inlet bore 13 narrowing conically at 15. It is also possible for the cone of the outlet bore 11 to attach directly to the bottom of the inlet bore 13 having a larger diameter, or for the nozzle bore 12 to have a somewhat longer length than is shown in FIG. 3.
  • the nozzle shown in Fig. Practically consists of the cylinder and the truncated cone Input bore 13, the short cylinder bore 11 and the inverted truncated cone of the outlet bore 12 together.
  • the production requires three work steps: Either firstly the cylindrical hole d e is made, secondly the inlet hole d E is drilled and thirdly the outlet hole d A is drilled and the cone is reamed, or firstly the inlet hole d E is made and secondly the nozzle hole d o then drilled out and thirdly the cone d A preferably rubbed between 6 and 8 °.
  • the length of the outlet cone with diameter depends on the pressure and quantity ratios.
  • the ratio of the nozzle diameter to the nozzle outlet edge is preferably in the range from 0.5 to 0.8, or there were favorable values with a ratio of the cross sections of the nozzle bore to the nozzle outlet cross section in the range from 0.3 to 0.35 .
  • a cutting speed of 150 to 250 mm / min could be achieved at an oxygen working pressure of 16 to 20 bar, with a kerf of no more than 6 to 7 mm or 6.5 to 9 mm.
  • the length of the nozzle bore was 3.25 or 0.65 mm with a bore diameter of 1.8 or 2.6 mm.
  • Fig. 4 shows the adaptation of the short nozzle shape to a long nozzle.
  • the diameter d E of the inlet bore 13 is substantially larger than the diameter d o of the nozzle bore 11. In this way, practically no pressure loss is achieved through the inlet bore 13.
  • FIG. 5 shows a further development of the invention.
  • An outer shaft tube 23 and an inner shaft tube 24 are soldered to the nozzle 22.
  • the chamber 25 surrounded by the inner shaft tube 24 is provided with an oxygen supply nozzle 26, while the intermediate space 27, which is formed by the outer shaft tube 23 and the inner shaft tube 24 arranged concentrically at a distance from one another, is provided with a gas supply nozzle 28.
  • From the space 27 lead to the heating gas bores 29 connecting channels 30, and the heating gas bores 29 are also connected by connecting channels 31 to the oxygen chamber 25, so that the bores 29 are supplied with a mixture of heating gas and heating oxygen.
  • a cutting oxygen nozzle bore 32 which opens into the cutting oxygen outlet bore 33, runs from the oxygen chamber 25 in accordance with the previously described nozzle shapes. In this way, a burner is made available which consists of a uniform nozzle part with an integrated holding part with connections.
  • the invention can also be useful for nozzles that are screwed in directly.
  • the shorter nozzle part is provided with a thread for screwing into the holding part below the sealing head and with key surfaces on the foot near the outlet.
  • the threaded nozzle part or a nozzle screw with an attached guide can be provided for secure attachment and thus easier screwing in, the initial nut thread being interrupted in two areas on the circumference and the screw thread begins sharply at the nozzle part.
  • markings on the nozzle part and holding part can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

  • Die Erfindung betrifft einen Brenner zum thermochemischen Trennen oder Abhobeln von dicken Werkstücken aus Stahl mit einer Dicke zwischen 150 bis 600 mm, mit einem Schneidsauerstoffstrahl, wobei der Brenner im wesentlichen aus einer Düse mit einer Schneidsauerstoff-Eintrittsbohrung, einer Düsenbohrung und einer Schneidsauerstoff-Austrittsbohrung sowie einem Düsenhalter besteht.
  • Es sind viele Arten derartiger Brenner bekannt, die für die verschiedensten Arbeiten, z. B. Trennen dünnerer, dickerer oder dickster Werkstücke aus Stahl oder zum Hobeln schmaler Fugen bis hin zu breitesten Flächen an Werkstücken aus Stahl eingesetzt werden.
  • Beim thermochemischen Trennen und Abhobeln von Werkstücken aus Stahl hat das Bestreben, eine immer größere Leistungsfähigkeit zu erreichen, d. h. größere Flämmgeschwindigkeiten, größere Flämmbreite, größere Flämmtiefe, größere Schneidgeschwindigkeit und größere Schneiddicken, zu erzielen, zu einer Vielzahl von Brennerentwicklungen geführt, wobei auch Fragen eines möglichst geringen Gasverbrauchs sowie geringe Schnittfugenbreiten und Probleme der Sicherheit, Umweltfreundlichkeit, z. B. in Bezug auf Geräuschentwicklung und wenig schädliche Abgase, sowie eine lange Lebensdauer der Düsen und günstige Wartung eine Rolle spielten.
  • Insbesondere die erzielten Schneidgeschwindigkeiten können nicht als befriedigend angesehen werden, den bei ausreichender Erhitzung des Reaktionsortes durch die Brennerheizung und die beim Schneiden entstehenden exotherme Wärmeentwicklung erreichen, die Schneidgeschwindigkeiten trotz größter Sauerstoffreinheit nur einen Bruchteil der chemischen Reaktionsgeschwindigkeit. Das rührt daher, daß die sich jeweils bildende Eisenoxidhaut über dem reaktionsfähigen Eisen erst durch die kinetische Energie des Schneidsauerstoffstrahles immer entfernt werden muß. Hinsichtlich der kinetischen Energie des Schneidsauerstoffstrahls, gewonnen aus der Umsetzung des Drucks des zugeführten Sauerstoffs, ergeben sich jedoch Beschränkungen durch Reibungs- und Stoßverluste bei der Düsenverengung bzw. Düsenerweiterung und durch ungenügende Strahlausbildung.
  • Es ist bekannt, zum Schneiden von großen Dicken relativ lange Düsen mit sich verengenden oder erweiternden konischen Führungen bei relativ niedrigen Drücken von 5 bis 8 bar am Düseneingang einzusetzen. Für höhere Drücke und Leistungen werden teure Brenner mit Düsen von größerem Durchmesser eingesetzt, weil man auf diese Weise Druckverluste zu vermeiden sucht.
  • Ein anderer bekannter Weg, Druckverluste zu vermieden, besteht in der Anwendung von Lavaldüsenformen oder angenäherten Ausführungen (AU-B-417 614). Diese Düsen können nur bei dünnem Material eingesetzt werden und sind, abgesehen von dem fertigungstechnischen Aufwand von Lavaldüsen, in Bezug auf ihre Effektivität sehr empfindlich bei Druckschwankungen. Eine weitere bekannte Düsenausführungsform besteht in einem mittigen Sauerstoffkanal, der sich konisch zu einem verengten Abschnitt verjüngt und von diesem Abschnitt sich wiederum konisch zum Düsenauslaß erweitert (DE-A-2251 632). Auch bei dieser Ausführungsform werden Druckverluste weitgehend vermieden, und die Düse ist nur zum Schneiden von Blechen geringerer Dicke geeignet.
  • Ein weiteres Problem stellt die Ausbildung der Schnittfuge im Werkstück dar. Durch eine zu große Schnittfugenbreite geht sehr viel Material verloren, wodurch auch die Bartausbildung verstärkt wird und sich dadurch der Aufwand für die Nacharbeit erhöht.
  • Der Erfindung liegt daher die Aufgabe zugrunde, einen Brenner verfügbar zu machen, der bei einer Unempfindlichkeit gegenüber Druckschwankungen sich durch eine einfache, kostengünstige Bauart mit einer hohen Standzeit ausziechnet und bei einer maximalen Arbeitsgeschwindigkeit die Ausbildung dünner Schnittfugen ermöglicht. Auf diese Weise sollen möglichst kleine Bärte entstehen bei scharfen Kanten und wenig Perlen auf der Oberseite, so daß ein geringer Nacharbeitsaufwand erforderlich ist.
  • Erfindungsgemäß wird das bei einem Brenner der eingangs genannten Art dadurch erzielt, daß die Düsenbohrung auf ihrer zwischen 0,5 und 10 mm liegenden Länge zylindrisch geformt und mit einem Durchmesser zwischen 1,5 und 3,6 mm versehen ist und daß der Übergang von der Schneidsauerstoff-Eintrittsbohrung zur Düsenbohrung scharfkantig ausgebildet ist.
  • Durch diese Ausbildung der Düse, insbesondere durch die geringe Länge, werden in Kauf genommene Druckverluste in Grenzen gehalten. Damit ist nur eine geringe Auslaufstrecke zur Strahlausbildung in der Düsenbohrung erforderlich, wobei ein höherer Stoßverlust in Kauf genommen wird.
  • Dabei ist mit Vorteil vorgesehen, daß an die Düsenbohrungen sich auslaufseitig eine Austrittsbohrung mit einem abschließenden Austrittsdurchmesser zwischen 3 bis 5,4 mm anschließt.
  • Zweckmäßig besitzt die auf der Ausgangsseite der Düsenbohrung befindliche zylindrische Austrittsbohrung eine Länge von 10 bis 35 mm.
  • In vorteilhafter Weise kann die Austrittsbohrung sich auch konisch erweitern, wobei die konische Erweiterung zwischen 5 und 10° beträgt.
  • Der scharfkantige Übergang kann vorteilhafterweise am Beginn der Düsenbohrung angeordnet sein, oder es ist unter Berücksichtigung der Abhängigkeit von Druck, Düsenbohrungsdurchmesser und Düsenbohrungslänge eine leichte Abrundung des Überganges zur Vermeidung eines maximalen Stoßverlustes vorgesehen.
  • Eine vorteilhafte Ausbildung der Erfindung besteht darin, daß der Konus der Austrittsbohrung direkt an den Boden der einen größeren Durchmesser aufweisenden Eintrittsbohrung ansetzt.
  • Dabei ist zweckmäßig vorgesehen, daß die Eintrittsbohrung in Richtung auf die Austrittsbohrung bzw. die Düsenbohrung sich kurz vor dem Eintritt in diese konisch verjüngt.
  • Weitere Einzelheiten der Erfindung und insbesondere vorteilhafte Abmessungen sind in weiteren Unteransprüchen gekennzeichnet.
  • Die Erfindung soll nachstehend anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert werden.
  • In den Zeichnungen zeigen :
    • Figur 1 einen Brenner mit einem herkömmlichen Halteteil, in dem ein Düsenteil gemäß der Erfindung sitzt ;
    • Figur 2 eine Kurzdüsenform in schematischer Darstellung ;
    • Figur 3 eine abgewandelte Kurzdüsenform in schematischer Darstellung,
    • Figur4 eine an die Kurzdüsenform angepaßte Langdüse und
    • Figur5 eine Weiterbildung der Erfindung, bei der Düsenteil und Halteteil zu einer Brennereinheit integriert sind.
  • In Fig. 1 ist ein Brenner dargestellt, bei dem eine Düse 1 mittels einer Düsenschraube 2 an einen Düsenhalter 3 befestigt ist. In die Düsenaufnahme 4 sind ein Schaftrohr 5 sowie ein Heizgaszuführungsrohr 6, ein Heizsauerstoffzuführungsrohr 7 und ein Schneidsauerstoffzuführungsrohr 8 eingelötet. Von Ringkanälen 9, die zwischen dem Düsenhalter 3 bzw. 4 und der Düse 2 ausgebildet sind, führen Heizgemischbohrungen 10 zum Düsenaustritt und umgeben eine Schneidsauerstoffdüsenbohrung 11 mit ihrer Schneidsauerstoff-Austrittsbohrung 12. Der Schneidsauerstoff gelangt in die Düsenbohrung 11 vom Schaftrohr 8 über eine Schneidsauerstoff-Eintrittsbohrung 13. Gemäß der vorliegenden Erfindung wurde die Länge ID der Düsenbohrung 11 wesentlich verkürzt und gleichzeitig der Durchmesser dA der Austrittsbohrung 12 wesentlich vergrößert. Auf diese Art und Weise konnte der Druckverlust in der Düsenbohrung stark herabgesetzt werden, was wiederum nur möglich war, wenn der Übergang 14 von der Eintrittsbohrung 13 der Düsenbohrung 11 so ausgebildet war, daß nur eine geringe Auslaufstrecke in der Düsenbohrung 11 erforderlich wurde. Der Übergang 14 von der Einlaufbohrung 13 zur Düsenbohrung 11 besteht aus einer scharfkantigen Ecke 14 und kann unter Berücksichtigung der Abhängigkeit von Druck, Düsenbohrungsdurchmesser dD und Düsenbohrungslänge ID eine leichte Abrundung der Ecke 14 zur Vermeidung eines maximalen Stoßverlustes erfahren.
  • Auf diese Weise ist es möglich, unter Vermeidung eines großen Druckverlustes einen Schneidstrahl mit dem gewünschten geringen Durchmesser zu erhalten, der erforderlich ist, um optimale Wärmeableitbedingungen zu gewährleisten. Bei einer Kurzdüsenform, wie sie aus den Fig. 1 und 2 zu entnehmen ist, wurde bei einer Düsenbohrung 11 mit dem Durchmesser dD von 3 mm und einer Gesamtdüsenlänge L, wobei die Austrittsbohrung über eine Länge IA von 10 mm auf einen Durchmesser dA von 4 mm aufgebohrt war, eine Druckerhöhung auf 10 bar ermöglicht, und bei einem nachfolgenden Schneidversuch wurden 220 mm/min bei annehmbarer Schnittqualität erreicht. Eine Vergrößerung des Durchmessers dD der Düsenbohrung 11 auf 4 mm ergab eine Schnittgeschwindigkeit von 260 mm/min bei annehmbarer Qualität und guter Strahlform bei 12 bar. Mit einem Aufbohren des Durchmessers dA der Austrittsbohrung 12 auf 5 mm von der Austrittsseite her über eine Länge IA von 15 mm erlaubte eine Druckerhöhung auf 14 bar bei einer Schneidgeschwindigkeitserhöhung auf 290 mm/min bei guter Schnittqualität.
  • Ganz allgemein wurde gefunden, daß die zylindrisch geformte Düsenbohrung 11 für den Schneidsauerstoffstrahl mit einer geringen, nicht größer als 10 mm bis gegen 0 gehenden Länge zu versehen ist, wobei vorzugsweise eine Länge von 0,5 bis 5 mm einzuhalten ist. Dabei ist ein vergleichsweise geringer Durchmesser von 4 mm oder weniger vorzusehen, wobei 1,5 mm bis 3,6 mm als Vorzugsbereich anzusehen sind. Die sich auslaufseitig anschließende Austrittsbohrung sollte einen abschließenden Austrittsdurchmesser von 6 mm oder weniger, vorzugsweise 3 bis 5,4 mm, aufweisen. Gute Ergebnisse wurden mit einer Düse erzielt, deren Düsenbohrungsdurchmesser 1,8 mm betrug bei einem Austrittsdurchmesser von 3,3 mm und einer weiteren Düse mit einem Düsenbohrungsdurchmesser von 2,8 mm und einem Austrittsdurchmesser von 4,8 mm. Weitere vorteilhafte Bemaßungen sich im Kennzeichen der Unteransprüche 15, 16, 17 und 18 angegeben.
  • Wie im einzelnen aus Fig. 2 näher zu entnehmen ist, sind die Bohrungen zylindrisch, abgesehen von Fasen, Kantenabrundungen, Bohrerwinkeln und Dichtungsflächen. So tritt ein Kegelwinkel etwa βA durch das Glättwerkzeug zwischen Austrittsbohrung 12 und Düsenbohrung 11 auf und ein Bohrerwinkel bzw. Fase βE am Übergang von Eintrittsbohrung zur Düsenbohrung. Diese geringen Abweichungen von den grundsätzlich glatten zylindrisch ausgestalteten Düsenbohrungen bzw. Austrittsbohrungen sind als nicht wesentlich anzusehen und weitgehend durch die Fertigung bedingt.
  • Wie die Fig. und 4 zeigen, kann die Austrittsbohrung eine geringe konische Erweiterung aA aufweisen. Wie Fig. zeigt, läßt der Konus der Austrittsbohrung 12 nur eine geringe Länge der Düsenbohrung 11 übrig, wobei die Eintrittsbohrung 13 sich bei 15 konisch verjüngt. Es ist auch möglich, daß der Konus der Austrittsbohrung 11 direkt an den Boden der einen größeren Durchmesser aufweisenden Eintrittsbohrung 13 ansetzt oder die Düsenbohrung 12 eine etwas größere Länge aufweist, als es in Fig. 3 dargestellt ist.
  • Die in Fig. dargestellte Düse setzt sich praktisch aus dem Zylinder und Kegelstumpf der Eingangsbohrung 13, der kurzen Zylinderbohrung 11 und dem umgekehrten Kegelstumpf der Austrittsbohrung 12 zusammen. Die Herstellung erfordert drei Arbeitsgänge : Entweder wird zunächst erstens die zylindrische Bohrung de hergestellt, zweitens die Eintrittsbohrung dE aufgebohrt und drittens die Austrittsbohrung dA aufgebohrt und der Konus aufgerieben, oder es wird erstens die Eingangsbohrung dE hergestellt, zweitens die Düsenbohrung do anschließend aufgebohrt und drittens der Konus dA vorzugsweise zwischen 6 und 8° aufgerieben. Die Länge des Austrittskonus mit Durchmesser hängt im einzelnen von den Druck- und Mengenverhältnissen ab. Es wurde festgestellt, daß das Verhältnis von Düsendurchmesser und Düsenaustrittskante vorzugsweise im Bereich von 0,5 bis 0,8 liegt, bzw. es ergaben sich günstige Werte bei einem Verhältnis der Querschnitte von Düsenbohrung zu Düsenaustrittsquerschnitt im Bereich von 0,3 bis 0,35. Mit derartigen Düsen konnte bei einem Sauerstoffarbeitsdruck von 16 bis 20 bar eine Schneidgeschwindigkeit von 150 bis 250 mm/min erzielt werden, wobei sich eine Schnittfuge von nicht mehr als 6 bis 7 mm bzw. 6,5 bis 9 mm ergab. Bei diesen Düsen war die Länge der Düsenbohrung 3,25 bzw. 0,65 mm bei einem Bohrungsdurchmesser von 1,8 bzw. 2,6 mm.
  • Fig. 4 zeigt die Anpassung der Kurzdüsenform an eine Langdüse. Der Durchmesser dE der Eintrittsbohrung 13 ist wesentlich größer als der Durchmesser do der Düsenbohrung 11. Auf diese Weise wird durch die Eintrittsbohrung 13 praktisch kein Druckverlust erzielt.
  • In Fig. 5 ist eine Weiterbildung der Erfindung dargestellt. An die Düse 22 ist ein äußeres Schaftrohr 23 und ein inneres Schaftrohr 24 angelötet. Die vom inneren Schaftrohr 24 umgebene Kammer 25 ist mit einem Sauerstoffzuführstutzen 26 versehen, während der Zwischenraum 27, der vom konzentrisch im Abstand voneinander angeordneten äußeren Schaftrohr 23 und innerem Schaftrohr 24 gebildet wird, mit einem Gaszufuhrstutzen 28 versehen ist. Vom Zwischenraum 27 führen zu den Heizgasbohrungen 29 Verbindungskanäle 30, und die Heizgasbohrungen 29 sind außerdem durch Verbindungskanäle 31 mit der Sauerstoffkammer 25 verbunden, so daß den Bohrungen 29 ein Gemisch von Heizgas und Heizsauerstoff zugeführt wird. Von der Sauerstoffkammer 25 verläuft entsprechend den bisher geschilderten Düsenformen eine Schneidsauerstoff-Düsenbohrung 32 ab, die in die Schneidsauerstoff-Austrittsbohrung 33 einmündet. Auf diese Weise ist ein Brenner verfügbar gemacht, der aus einem einheitlichen Düsenteil mit integriertem Halteteil mit Anschlüssen besteht.
  • Die Erfindung kann auch sinnvoll bei Düsen Anwendung finden, die direkt eingeschraubt werden. Der Kürzer gestaltete Düsenteil ist dazu mit einem zum Einschrauben im Halteteil unterhalb des dichtenden Kopfes mit einem Gewinde und am Fuß in Austrittsnähe mit Schlüsselflächen versehen. In einer Weiterbildung, was im einzelnen in den Zeichnungen nicht dargestellt ist, kann der mit Gewinde versehene Düsenteil oder eine Düsenschraube mit angearbeiteter Führung zum sicheren Ansetzen und damit leichterem Einschrauben versehen sein, wobei das anfängliche Muttergewinde in zwei Bereichen am Umfang unterbrochen ist und das Schraubengewinde am Düsenteil scharf abgesetzt beginnt. Um etwaige Zusammensteckstellung vor dem Verschrauben anzuzeigen, können Markierungen am Düsenteil und Halteteil vorgesehen sein.

Claims (25)

1. Brenner zum thermochemischen Trennen oder Abhobeln von dicken Werkstücken aus Stahl mit einer Dicke zwischen 150 bis 600 mm, mit einem Schneidsauerstoffstrahl, wobei der Brenner im wesentlichen aus einer Düse (1) mit einer Schneidsauerstoff-Eintrittsbohrung (13), einer Düsenbohrung (11) und einer Schneidsauerstoff-Austrittsbohrung (12) sowie einem Düsenhalter (3) besteht, dadurch gekennzeichnet, daß die Düsenbohrung (11) auf ihrer zwischen 0,5 und 10 mm liegenden Länge zylindrisch geformt und mit einem Durchmesser zwischen 1,5 und 3,6 mm versehen ist und daß der Übergang (14) von der Schneidsauerstoff-Eintrittsbohrung (13) zur Düsenbohrung (11) scharfkantig ausgebildet ist.
2. Brenner nach Anspruch 1, dadurch gekennzeichnet, daß an die Düsenbohrung (11, 32) sich auslaufseitig eine Austrittsbohrung (12, 33) mit einem abschließenden Austrittsdurchmesser (αA) zwischen 3 bis 5,4 mm anschließt.
3. Brenner nach Anspruch 2, dadurch gekennzeichnet, daß die Düsenbohrung (11, 32) einen Durchmesser von 1,8 mm aufweist und daß die Austrittsöffnung (12, 33) einen abschließenden Außendurchmesser (a/J von 3,3 mm besitzt.
4. Brenner nach Anspruch 2, dadurch gekennzeichnet, daß die Düsenbohrung (11, 32) einen Durchmesser von 2,8 mm aufweist und die Austrittsbohrung (12, 33) einen abschließenden Austrittsdurchmesser (aA) von 4,8 mm besitzt.
5. Brenner nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die auf der Ausgangsseite der Düsenbohrung (11, 32) befindliche zylindrische Austrittsbohrung (12, 33) eine Länge von 10 bis 35 mm besitzt.
6. Brenner nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Austrittsbohrung (12) sich zur Austrittsseite hin konisch erweitert.
7. Brenner nach Anspruch 6, dadurch gekennzeichnet, daß die konische Erweiterung zwischen 5 und 10°, vorzugsweise bei 7°, liegt.
8. Brenner nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der scharfkantige Übergang (14) am Beginn der Düsenbohrung (11) angeordnet ist.
9. Brenner nach Anspruch 8, dadurch gekennzeichnet, daß der Übergang (14) eine leichte Abrundung aufweist.
10. Brenner nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Konus der Austrittsbohrung (12) direkt an den Boden der einen größeren Durchmesser aufweisenden Eintrittsbohrung (13) ansetzt.
11. Brenner nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Eintrittsbohrung (13) in Richtung auf die Austrittsbohrung (12) bzw. Düsenbohrung (11) sich kurz vor dem Eintritt in diese konisch verjüngt.
12. Brenner nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Düse (1) eine verlängerte Eintrittsbohrung (13) eines gegenüber der Düsenbohrung (11) wesentlich vergrößerten Durchmessers aufweist.
13. Brenner nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Verhältnis der Durchmesser von Düse und Düsenaustrittskante im Bereich von 0,5 bis 0,8 liegt.
14. Brenner nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Verhältnis der Querschnitte von Düsenbohrung zu Düsenaustrittsquerschnitt im Bereich von 0,25 bis 0,45, vorzugsweise bei 0,3 bis 0,36 liegt.
15. Brenner nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Düse (1) mit Düsenbohrung (11) und Austrittsbohrung (12) für den Sauerstoffstrom die folgenden Abmessungen aufweist :
Figure imgb0001
16. Brenner nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Düsenbohrung (11) für den Sauerstoffstrom folgende Abmessungen besitzt :
Figure imgb0002
17. Brenner nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Austrittsbohrung (12) für den Sauerstoffstrom die folgenden Abmessungen hat:
Figure imgb0003
18. Brenner nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Eintrittsbohrung (13) im Halteteil (3) ausgebildet ist und daß die Düse (1) mit seiner Düsenbohrung (11) anschließt, so daß Halteteil (3) und Düse (1) den Übergang (14) von Eintrittsbohrung (13) zur Düsenbohrung (11) bilden.
19. Brenner nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß Düse (22) und Halteteil (23, 24) eine Einheit bilden, indem auf der außen mehrfach abgesetzten Düse (22) mindestens zwei Schaftrohre (23, 24) aufgelötet sind und daß innen (25) der Schneidsauerstoff und der Heizsauerstoff und durch den gebildeten Zwischenraum (27) Gas in die Düse (22) geführt werden.
20. Brenner nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die mit Gewinde versehene Düse (1, 22) in den mit entsprechendem Gegengewinde versehene Halteteil eingeschraubt wird und damit austauschbar ist.
21. Brenner nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Düse (1, 22) ohne Gewinde mittels einer Düsen-Druckschraube in das entsprechend ausgestattete Halteteil einschraubbar ist.
22. Brenner nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß eine Düse, die länger ist als die erforderliche Düse, von der Halteteilseite aus bis zur erforderlichen Düsenteillänge hin mit dem größtmöglichen Durchmesser der Schneidsauerstoff-Zuführungsbohrung im Halteteil entsprechend aufgebohrt ist.
23. Brenner nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß die kürzer gestaltete Düse (1) zum Einschrauben in dem Halteteil (3) unterhalb des dichtenden Kopfes mit einem Gewinde und am Fuß in Austrittsnähe mit Schlüsselflächen versehen ist.
24. Brenner nach Anspruch 23, dadurch gekennzeichnet, daß die mit Gewinde versehene Düse (1) oder eine Düsenschraube eine angearbeitete Führung zum sicheren Ansetzen und damit leichterem Einschrauben besitzt, wobei das anfängliche Muttergewinde in zwei Bereichen am Umfang unterbrochen ist und das Schraubengewinde an der Düse (1) scharf abgesetzt beginnt.
25. Brenner nach Anspruch 24, dadurch gekennzeichnet, daß Markierungen an der Düse (1) und am Halteteil (3) vorgesehen sind.
EP82104845A 1981-06-05 1982-06-03 Brenner zum thermochemischen Trennen und/oder Abhobeln von Werkstücken aus Stahl Expired - Lifetime EP0068165B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82104845T ATE25760T1 (de) 1981-06-05 1982-06-03 Brenner zum thermochemischen trennen und/oder abholen von werkstuecken aus stahl.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3122404 1981-06-05
DE19813122404 DE3122404A1 (de) 1981-06-05 1981-06-05 Brenner zum thermochemischen brennen und/oder abhobeln von werkstuecken aus stahl

Publications (4)

Publication Number Publication Date
EP0068165A2 EP0068165A2 (de) 1983-01-05
EP0068165A3 EP0068165A3 (en) 1983-09-07
EP0068165B1 true EP0068165B1 (de) 1987-03-04
EP0068165B2 EP0068165B2 (de) 1994-09-28

Family

ID=6134032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82104845A Expired - Lifetime EP0068165B2 (de) 1981-06-05 1982-06-03 Brenner zum thermochemischen Trennen und/oder Abhobeln von Werkstücken aus Stahl

Country Status (3)

Country Link
EP (1) EP0068165B2 (de)
AT (1) ATE25760T1 (de)
DE (2) DE3122404A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097883B1 (de) * 1982-06-26 1987-09-16 AUTE Gesellschaft für autogene Technik mbH Einteilige Kurzdüse für einen Brenner zum thermochemischen Trennen oder Hobeln
ES2103243T3 (es) * 1995-12-20 2001-04-01 Aute Ag Ges Fur Autogene Techn Dispositivo para el corte transversal y longitudinal de barras de acero calientes y frias.
EP1632303A1 (de) * 2004-09-02 2006-03-08 Aute AG Gesellschaft für autogene Technik Brennschneidwerkzeug zum schnelleren, glatteren und sicheren Sauerstofftrennen von dickeren Werkstücken aus heissem oder kalten Stahl mit verbesserter Wartungsmöglichkeit und verbesserter Nutzung des sicher verfügbaren Sauerstoffvordruckes
CN107116479B (zh) * 2017-05-15 2018-11-20 四川大学 用于光学元件加工的数控湿法化学刻蚀组合喷嘴

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU417614B2 (en) * 1967-03-22 1971-10-01 Iwatani & Company Limited Flame cutting method and apparatus
JPS5236107B2 (de) * 1971-10-27 1977-09-13
GB1497793A (en) * 1974-10-24 1978-01-12 Boc International Ltd Cutting nozzles

Also Published As

Publication number Publication date
EP0068165A2 (de) 1983-01-05
DE3275582D1 (en) 1987-04-09
EP0068165B2 (de) 1994-09-28
EP0068165A3 (en) 1983-09-07
DE3122404A1 (de) 1983-01-05
ATE25760T1 (de) 1987-03-15

Similar Documents

Publication Publication Date Title
DE2130394A1 (de) Lichtbogenschneidverfahren
EP1407848B1 (de) Gewindewerkzeug mit Kühlmittelzufuhr
EP0097883B1 (de) Einteilige Kurzdüse für einen Brenner zum thermochemischen Trennen oder Hobeln
EP1753574A1 (de) Spiralbohrer
DE2633719A1 (de) Verfahren zum betreiben eines schneidbrenners
DE3321697C2 (de)
EP0068165B1 (de) Brenner zum thermochemischen Trennen und/oder Abhobeln von Werkstücken aus Stahl
DE102013106511B4 (de) Düse zum Schneiden von Stahlwerkstücken
DE1552320A1 (de) Bohrwerkzeug
DE3630127A1 (de) Vorrichtung zum schneiden von werkstuecken mittels eines energiereichen strahles
DE102017208039B4 (de) Verfahren zur Herstellung eines Rotationswerkzeugs und Rotationswerkzeug
WO2005105351A1 (de) Schnittstelle für ein schneidwerkzeug
DE10342763A1 (de) Gasbrenner für flüssigen Brennstoff
WO2009030431A2 (de) Laserbearbeitungskopf zur bearbeitung eines werkstücks mittels eines laserstrahls mit lösbar verbundenem gehäuse, aufnahmevorrichtung und düse; düsenelement mit einem verrundeten verjüngungsbereich; aufnahmevorrichtung
EP0962277B1 (de) Plasma-Schweissbrenner
DE2046414C3 (de) Schneidbrenner
EP3228411A1 (de) Werkzeug zur materialabtragenden bearbeitung eines werkstücks
DE3810620C1 (en) Plasma burner
DE2151294C3 (de) Brennermundstück
DE3144574A1 (de) "brennerdueseneinheit zur verbrennung eines gas-luft-gemisches"
DE1529194C (de) Schweißbrennereinsatz
DE3645047C2 (en) Cutting nozzle for laser or electron beam gun
DE10122147A1 (de) Zweistoffdüse
DE2211110A1 (de) Mehrteilige schneidduese fuer gasgefeuerte brenner an brennschneidmaschinen und verfahren zur herstellung einer solchen schneidduese
DE2107810A1 (de) Flammbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI

17P Request for examination filed

Effective date: 19831220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI

REF Corresponds to:

Ref document number: 25760

Country of ref document: AT

Date of ref document: 19870315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3275582

Country of ref document: DE

Date of ref document: 19870409

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MESSER GRIESHEIM GMBH

Effective date: 19871202

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AUTE AG GESELLSCHAFT FUER AUTOGENE TECHNIK

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: AUTE AG GESELLSCHAFT FUER AUTOGENE TECHNIK

BECA Be: change of holder's address

Free format text: 911009 *AUTE AG -G. FUR AUTOGENE TECHNIK:10 RUE SAINT-HONORE, 2000 NEUCHTEL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920615

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930630

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

PUAA Information related to the publication of a b2 document modified

Free format text: ORIGINAL CODE: 0009299PMAP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19940928

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): GB

R27A Patent maintained in amended form (corrected)

Effective date: 19940928

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960530

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960628

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960730

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960828

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Owner name: AUTE AG -G. FUR AUTOGENE TECHNIK

Effective date: 19970630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST