EP0065208B1 - Method and installation for producing thick-walled hollow castings - Google Patents

Method and installation for producing thick-walled hollow castings Download PDF

Info

Publication number
EP0065208B1
EP0065208B1 EP82103856A EP82103856A EP0065208B1 EP 0065208 B1 EP0065208 B1 EP 0065208B1 EP 82103856 A EP82103856 A EP 82103856A EP 82103856 A EP82103856 A EP 82103856A EP 0065208 B1 EP0065208 B1 EP 0065208B1
Authority
EP
European Patent Office
Prior art keywords
mould
cooling
casting
core
castings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82103856A
Other languages
German (de)
French (fr)
Other versions
EP0065208B2 (en
EP0065208A1 (en
Inventor
Helmut Derp
Horst Dr. Dipl.-Chem. Keese
Elmar Dr. Schlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
TNH Transporte und Dienstleistungen Abwicklungsgesellschaft mbH
Thyssen Industrie AG
Transnuklear GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6132150&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0065208(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TNH Transporte und Dienstleistungen Abwicklungsgesellschaft mbH, Thyssen Industrie AG, Transnuklear GmbH filed Critical TNH Transporte und Dienstleistungen Abwicklungsgesellschaft mbH
Priority to AT82103856T priority Critical patent/ATE15338T1/en
Publication of EP0065208A1 publication Critical patent/EP0065208A1/en
Application granted granted Critical
Publication of EP0065208B1 publication Critical patent/EP0065208B1/en
Publication of EP0065208B2 publication Critical patent/EP0065208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould

Definitions

  • the invention relates to a method and a device for the feeder-free production of thick-walled, container-like castings made of spheroidal graphite cast iron.
  • the mold is closed with the exception of the gates, and the cast iron does not flow after the mold has been filled from funnel-shaped feeders attached to various parts of the mold, but only for a short time through the gates.
  • Castings of this type are required, for example, as transport containers for used fuel elements from nuclear power plants. This places particularly high demands on the quality of the casting. It must have a fine-grained and tough cast structure that is free from volume deficit errors, in particular free from micropores.
  • Thick-walled sand castings have long solidification times, since the considerable amounts of heat released can only be dissipated via the insulating molding material. In the case of spheroidal graphite cast iron, this can result in a rough globulitic cast structure. In addition, under these conditions, flat temperature gradients occur between the residual melt and the solidifying edge shell, which favor the occurrence of volume deficit errors, in particular micropores. In the case of a coarse cellular cast structure, the volume expansion, which predominates locally in graphitic eutectic crystallization and exerts a pressure that saturates to feed, cannot completely feed the micropores. The harmful consequences are micro-voids, which lead to indications in non-destructive testing methods and which limit micro segregation or, in extreme cases, even carbide deposits on the eutectic grain (cell), which impair the toughness of the material.
  • DE-A-28 27 091 it is known in conventional casting of steel into slabs or blocks to build a mold from individual walls from water-cooled cooling boxes.
  • DE-C-665119 relates to the production of hollow bodies, in particular cast steel hollow bodies in a centrifugal casting mold which rotates about a vertical axis, the lower part of the inner wall of the casting body being additionally cooled with a coolant in order to counteract the formation of voids.
  • the object of the invention is seen in obtaining a fine-grained, low-segregation and non-porous casting structure in a thick-walled, container-like casting via a steeper temperature gradient which favors the shell-like solidification in conjunction with a shortened solidification time, as is otherwise only possible in thin-walled casting structures Castings can be reached.
  • This object is achieved in a method of the type mentioned at the outset in that the entire shape of the mandrel and the outer shape is built up relentlessly, that the castings are cooled both on their outer and on their inner surface, the cooling on the inner surface by cooling the Mold core is done by coolant and that the gates are dimensioned so that the cast iron starts in them before the eutectic solidification of the casting begins.
  • the accelerated solidification of the cast iron, particularly in the core area, and the corresponding formation of a steep temperature gradient in the mold cavity promote the formation of a fine cellular cast structure and shift the largely globulitic solidification in the direction of a solidifying edge shell. Both factors reduce the risk of micropores forming.
  • the unrelenting structure of the entire mold causes the cooling casting to shrink onto the core so that no gap is formed and the good heat transfer is retained.
  • the invention can be advantageously configured as follows.
  • the good heat dissipation can be promoted by the fact that the cooling of the mandrel is metered and regulated by liquid, non-combustible coolants that evaporate in the system, such as liquid nitrogen.
  • the cooling of the castings on the outer surface also contributes to the effective pressure increase in the mold cavity during the eutectic solidification.
  • castings such as containers for Fuel elements in which the outer jacket surface has to be provided with cooling fins for later practical use can already achieve sufficient cooling on the outer surface by forming the castings on their outer surface with large cooling fins. Then the outer shape can be built up, for example, from dimensionally stable, cold resin-bonded quartz sand.
  • the cooling of the outer surface of the casting can e.g. with smaller cooling fins or a smooth outer surface, can be improved by a metallic outer shape.
  • the metallic outer shape improves the dissipation of the heat to the outside due to its greater thermal conductivity compared to a ceramic shape and thus convection cooling by the ambient air due to the higher temperature. This can be improved by cooling fins on the outer shape.
  • you can cool the metallic outer shape mainly by. cool and evaporate liquid, non-flammable coolants evaporating in the system in a controlled manner
  • the measures to improve the external cooling of the castings promote shell-like solidification and thereby increase the pressure increase in the residual melt which improves the tightness of the casting during the eutectic solidification.
  • the outer contour of the mold core is formed by a lost mold made of sheet steel, on the inner surface of which cooling elements through which coolant is arranged and the space between the lost mold, the cooling elements and the free space inside the mold core is filled with moldable, fine-grained substances.
  • Sheet steel with a thickness of 10 to 20 mm is suitable for the lost shape.
  • the fine-grained substances serve to stabilize the core and promote heat transfer between the lost mold shape and the cooling elements, in which cooling is effected by the coolant flowing through.
  • the outer surface of the core is generally provided with a size customary in foundries in order to avoid welding.
  • the cooling elements can be designed as cooling boxes in which inflow and outflow pipes are arranged next to one another in order to enable uniform heat dissipation.
  • the cooling boxes are advantageously held by metallic elements such as wedges and pressed against the lost shape.
  • cooling coils can also be used.
  • the fine-grained substances with which the spaces between the cooling elements, the lost formwork and the free space are filled can be ceramic molding materials, as are common in foundries.
  • fine-grained metallic materials preferably steel gravel, can also be used, or metallic materials can also be added to the molding material.
  • the outer shape is advantageously made of sheet steel and is provided with cooling elements. These can either be cooling boxes or cooling coils. Additional cooling fins improve heat dissipation.
  • the entire mold was made up of a mold core 6 and a metallic or non-metallic outer mold 3 and the cast piece 1 both on its outer and on its inner surface cooled, the cooling on the inner surface by cooling the mandrel 6 with liquid nitrogen.
  • the gates 2 were dimensioned such that the cast iron solidified in them before the eutectic solidification of the casting 1 began.
  • the outer shape 3 was made of dimensionally stable, cold resin-bonded quartz sand. To produce the outer mold 3, cores 4 were used for the cooling fins 5 to be produced on the outer surface of the casting 1.
  • the lost mandrel 6 consisted on the outside of an approximately 6 m long cylindrical iron sheet jacket 7 with 15 mm wall thickness with a 30 mm thick welded-on cover 8.
  • the cooling boxes 9, 10 were introduced in two planes and countered with steel wedges 11 pressed the sheet metal jacket 7.
  • a good cooling of the cooling boxes 9, 10 was achieved by a system of parallel, vertical cooling pipes, distributed over the entire circumference, a lower feed line and an upper discharge line laid alternately and each connected to a feed and discharge ring line.
  • the lid 8 was also provided with a cooler 12.
  • the core 6 was arranged upright. The casting was poured upwards.
  • the casting temperature was 1320 ° C, the amount of magnesium-treated and inoculated iron was 115 t.
  • the composition of the melt corresponded to a GGG-40.3, DIN 1693.
  • the approximate dimensions of the casting 1 were 6 400 mm with respect to the length, the outer diameter with ribs 2 500 mm, the inner diameter 1 200 mm; the floor thickness was 400 mm.
  • the core 6 was cooled with liquid nitrogen in such a way that evaporation occurred when it flowed into the cooling elements 9, 10, 12.
  • the gates 2 were designed to freeze when the melt in the mold had a temperature of 1160 to 1200 ° C had achieved. Cooling was maintained throughout the solidification time. The coolant supply was only switched off shortly above the ya conversion in order not to disturb the ferrite formation. Overall, the setting time was shortened by 56% compared to pure sand casting.
  • the casting was drawn and the fine-grained penetrations in the core were removed, the cooling elements arranged in several planes were removed and finally the formwork, that is, the sheet metal jacket 7 with the lid 8 was removed by cutting and pulling. The rest of the casting was cleaned in the usual way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Casting Devices For Molds (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

1. Method for the feederless production of thick-walled container-type castings (1) of spheroidal graphite cast iron, characterised in that the entire mould (3, 6) is of nonyieldable construction comprising a mould core (6) and an outer mould (3), that the castings (1) are cooled both at their inner and at their outer surface, the cooling at the inner surface being effected by cooling of the mould core (6) by coolant, and that the ingates (2) are so dimensioned that the cast iron solidifies in them before the eutectic solidification of the casting (1) sets in.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur speiserlosen Herstellung von dickwandigen, behälterartigen Gussstücken aus Gusseisen mit Kugelgraphit. Beim speiserlosen Giessen ist die Form mit Ausnahme der Eingüsse abgeschlossen und ein Nachfliessen des Gusseisens nach Füllung der Form erfolgt nicht von auf verschiedenen Stellen der Form angebrachten trichterförmigen Speisern, sondern nur während kurzer Zeit durch die Eingüsse. Derartige Gussstücke werden zum Beispiel benötigt als Transportbehälter für gebrauchte Brennelemente aus Kernkraftwerken. Dabei werden an die Qualität des Gussstücks besonders hohe Anforderungen gestellt. Es muss eine feinkörnige und zähe Gussstruktur haben, die frei von Volumendefizitfehlern, insbesondere frei von Mikroporen ist.The invention relates to a method and a device for the feeder-free production of thick-walled, container-like castings made of spheroidal graphite cast iron. In the case of feeder-free casting, the mold is closed with the exception of the gates, and the cast iron does not flow after the mold has been filled from funnel-shaped feeders attached to various parts of the mold, but only for a short time through the gates. Castings of this type are required, for example, as transport containers for used fuel elements from nuclear power plants. This places particularly high demands on the quality of the casting. It must have a fine-grained and tough cast structure that is free from volume deficit errors, in particular free from micropores.

Dickwandiger Sandguss weist lange Erstarrungszeiten auf, da die frei werdenden beträchtlichen Wärmemengen nur über den isolierenden Formstoff abgeführt werden können. Dies kann im Falle von Gusseisen mit Kugelgraphit eine grobe globulitische Gussstruktur zur Folge haben. Hinzu kommt, dass unter diesen Bedingungen sich flache Temperaturgradienten zwischen der Restschmelze und der erstarrenden Randschale einstellen, die das Entstehen von Volumendefizitfehlern, insbesondere Mikroporen, begünstigen. Im Falle einer groben zellularen Gussstruktur kann die Volumenausdehnung, die bei der graphitischen eutektischen Kristallisation örtlich vorherrscht und einen zur Speisung sättigenden Druck ausübt, die Mikroporen nicht vollständig zuspeisen. Die schädlichen Folgen sind Mikrohohlräume, die zu Anzeigen bei zerstörungsfreien Prüfverfahren führen und Mikroseigerungen oder in Extremfällen sogar Karbidausscheidungen an den eutektischen Korn(Zell)grenzen, die die Zähigkeit des Werkstoffs beeinträchtigen.Thick-walled sand castings have long solidification times, since the considerable amounts of heat released can only be dissipated via the insulating molding material. In the case of spheroidal graphite cast iron, this can result in a rough globulitic cast structure. In addition, under these conditions, flat temperature gradients occur between the residual melt and the solidifying edge shell, which favor the occurrence of volume deficit errors, in particular micropores. In the case of a coarse cellular cast structure, the volume expansion, which predominates locally in graphitic eutectic crystallization and exerts a pressure that saturates to feed, cannot completely feed the micropores. The harmful consequences are micro-voids, which lead to indications in non-destructive testing methods and which limit micro segregation or, in extreme cases, even carbide deposits on the eutectic grain (cell), which impair the toughness of the material.

Aus der DE-B-21 13267 ist beim Elektroschlackeumschmelzen bei der Erzeugung von dickwandigen Hohlkörpern bekannt, als Kern einen monolitischen Stützkörper mit Kühlung einzusetzen, der nach Ausschalten der Kühlung und damit verbundener Ausdehnung, sowie anschliessendem Wiedereinschalten der Kühlung aus dem erschmolzenen Block gezogen werden kann. Mit dem Problem der Herstellung von Gussstücken aus Gusseisen mit Kugelgraphit ohne Mikroporen beschäftigt sich die Schrift nicht, sondern mit einem Verfahren zum Ziehen des Kerns. Das gleiche Problem löst die DE-B-1952009 mit einem wassergekühlten Kern beim Elektroschlackeumschmelzen durch Zurückziehen von keilförmigen Teilen des Kerns mittels eines Spindeltriebs, wobei zum Ziehen der Kerndurchmesser verkleinert wird. Aus der DE-A-28 27 091 ist es beim konventionellen Giessen von Stahl zu Brammen oder Blöcken bekannt, eine Kokille aus Einzelwänden aus wassergekühlten Kühlkästen aufzubauen. Die DE-C-665119 betrifft die Herstellung von Hohlkörpern, insbesondere Stahlgusshohlkörpern in einer um eine senkrechte Achse umlaufenden Schleudergussform, wobei der untere Teil der Innenwand des Gusskörpers mit einem Kühlmittel zusätzlich beschleunigt abgekühlt wird, um einer Lunkerbildung entgegenzuwirken. Mit dem Problem der Erfindung des porenfreien Giessens von Gusseisen mit Kugelgraphit befassen sich auch diese beiden Schriften nicht.From DE-B-21 13267 it is known in the case of electroslag remelting in the production of thick-walled hollow bodies that a monolithic support body with cooling is used as the core, which can be pulled out of the melted block after the cooling has been switched off and the expansion associated therewith, and then the cooling has been switched on again . The document does not deal with the problem of producing cast iron from spheroidal graphite without micropores, but rather with a method for drawing the core. DE-B-1952009 solves the same problem with a water-cooled core during electro-slag remelting by pulling back wedge-shaped parts of the core by means of a spindle drive, the core diameter being reduced for pulling. From DE-A-28 27 091 it is known in conventional casting of steel into slabs or blocks to build a mold from individual walls from water-cooled cooling boxes. DE-C-665119 relates to the production of hollow bodies, in particular cast steel hollow bodies in a centrifugal casting mold which rotates about a vertical axis, the lower part of the inner wall of the casting body being additionally cooled with a coolant in order to counteract the formation of voids. These two documents do not deal with the problem of the invention of the pore-free casting of spheroidal graphite cast iron.

Ausgehend von diesem Stand der Technik wird die Aufgabe der Erfindung darin gesehen, bei einem dickwandigen, behälterartigen Gussstück über einen die schalenförmige Erstarrung begünstigenden steileren Temperaturgradienten in Verbindung mit einer verkürzten Erstarrungszeit ein feinkörniges, seigerungsarmes und porenfreies Gussgefüge zu erhalten, wie es sonst nur in dünnwandigeren Gussstücken zu erreichen ist.Based on this prior art, the object of the invention is seen in obtaining a fine-grained, low-segregation and non-porous casting structure in a thick-walled, container-like casting via a steeper temperature gradient which favors the shell-like solidification in conjunction with a shortened solidification time, as is otherwise only possible in thin-walled casting structures Castings can be reached.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Gattung dadurch gelöst, dass die gesamte Form aus Formkern und Aussenform unnachgiebig aufgebaut wird, dass die Gussstücke sowohl an ihrer Aussen- als auch an ihrer Innenfläche gekühlt werden, wobei die Kühlung an der Innenfläche durch Kühlung des Formkerns durch Kühlmittel erfolgt und dass die Eingüsse so bemessen werden, dass das Gusseisen in ihnen erstart, bevor die eutektische Erstarrung des Gussstücks einsetzt. Durch die beschleunigte Erstarrung des Gusseisens insbesondere im Kernbereich und die entsprechende Ausbildung eines steilen Temperaturgradienten im Formhohlraum wird die Bildung eines feinen zellularen Gussgefüges gefördert und die bei Sandguss weitgehend globulitische Erstarrung in Richtung auf eine erstarrende Randschale verschoben. Beide Faktoren vermindern die Gefahr einer Mikroporenbildung. Der unnachgiebige Aufbau der gesamten Form bewirkt, dass das abkühlende Gussstück auf den Kern aufschrumpft, damit eine Spaltbildung vermieden wird und so der gute Wärmeübergang erhalten bleibt. Die Massnahme, dass die Eingüsse so bemessen werden, dass das Gusseisen in ihnen erstart, bevor die eutektische Erstarrung des Gussstücks einsetzt, d.h., mit Abkühlung der Restschmelze auf Liquidustemperatur, bewirkt zusammen mit dem unnachgiebigen Aufbau der gesamten Form, dass sich die Ausdehnung des Metalls während der graphitischen eutektischen Erstarrung voll als Druckerhöhung im Formhohlraum auswirken kann. Das hat zur Folge, dass im erstarrenden Guss die Bildung von Mikroporen vermieden wird.This object is achieved in a method of the type mentioned at the outset in that the entire shape of the mandrel and the outer shape is built up relentlessly, that the castings are cooled both on their outer and on their inner surface, the cooling on the inner surface by cooling the Mold core is done by coolant and that the gates are dimensioned so that the cast iron starts in them before the eutectic solidification of the casting begins. The accelerated solidification of the cast iron, particularly in the core area, and the corresponding formation of a steep temperature gradient in the mold cavity, promote the formation of a fine cellular cast structure and shift the largely globulitic solidification in the direction of a solidifying edge shell. Both factors reduce the risk of micropores forming. The unrelenting structure of the entire mold causes the cooling casting to shrink onto the core so that no gap is formed and the good heat transfer is retained. The measure that the castings are dimensioned in such a way that the cast iron starts in them before the eutectic solidification of the casting begins, i.e. with the residual melt cooling to the liquidus temperature, together with the unyielding build-up of the overall shape, causes the expansion of the metal during graphitic eutectic solidification can fully act as a pressure increase in the mold cavity. As a result, the formation of micropores is avoided in the solidifying casting.

Im einzelnen kann die Erfindung wie folgt vorteilhaft ausgestaltet sein.In particular, the invention can be advantageously configured as follows.

Die gute Wärmeabfuhr kann dadurch gefördert werden, dass die Kühlung des Formkerns durch flüssige, im System verdampfende, nicht brennbare Kühlmittel, wie flüssiger Stickstoff dosiert und geregelt erfolgt.The good heat dissipation can be promoted by the fact that the cooling of the mandrel is metered and regulated by liquid, non-combustible coolants that evaporate in the system, such as liquid nitrogen.

Zur wirksamen Druckerhöhung im Formhohlraum während der eutektischen Erstarrung trägt ausser der stabilen Ausbildung der Form auch die Kühlung der Gussstücke an der äusseren Oberfläche bei. Bei Gussstücken, wie Behältern für Brennelemente, bei denen die äussere Mantelfläche für den späteren, praktischen Einsatz mit Kühlrippen versehen sein muss, kann man schon eine ausreichende Kühlung an der Aussenoberfläche dadurch erreichen, dass die Gussstücke an ihrer äusseren Oberfläche mit gross dimensionierten Kühlrippen ausgebildet werden. Dann kann die Aussenform z.B. aus formstabilem, kaltharzgebundenem Quarzsand aufgebaut werden.In addition to the stable design of the mold, the cooling of the castings on the outer surface also contributes to the effective pressure increase in the mold cavity during the eutectic solidification. For castings, such as containers for Fuel elements in which the outer jacket surface has to be provided with cooling fins for later practical use can already achieve sufficient cooling on the outer surface by forming the castings on their outer surface with large cooling fins. Then the outer shape can be built up, for example, from dimensionally stable, cold resin-bonded quartz sand.

Die Kühlung der äusseren Oberfläche des Gussstücks kann, z.B. bei kleineren Kühlrippen oder einer glatten äusseren Oberfläche, durch eine metallische Aussenform verbessert werden. Die metallische Aussenform verbessert durch ihr grösseres Wärmeleitvermögen gegenüber einer keramischen Form die Abfuhr der Wärme nach aussen und dadurch infolge höherer Temperatur die Konvektionskühlung durch die Umgebungsluft. Diese kann noch durch Kühlrippen auf der Aussenform verbessert werden. Ausserdem kann man die metallische Aussenform durch Kühlmittel, vornehmlich durch. flüssige, im System verdampfende, nicht brennbare Kühlmittel dosiert und geregelt kühlen.The cooling of the outer surface of the casting can e.g. with smaller cooling fins or a smooth outer surface, can be improved by a metallic outer shape. The metallic outer shape improves the dissipation of the heat to the outside due to its greater thermal conductivity compared to a ceramic shape and thus convection cooling by the ambient air due to the higher temperature. This can be improved by cooling fins on the outer shape. In addition, you can cool the metallic outer shape, mainly by. cool and evaporate liquid, non-flammable coolants evaporating in the system in a controlled manner

Die Massnahmen zur Verbesserung der Aussenkühlung der Gussstücke fördern eine schalenförmige Erstarrung und erhöhen dadurch den die Dichtheit des Gussstücks verbessernden Druckanstieg in der Restschmelze während der eutektischen Erstarrung.The measures to improve the external cooling of the castings promote shell-like solidification and thereby increase the pressure increase in the residual melt which improves the tightness of the casting during the eutectic solidification.

Bei einer für das Verfahren besonders geeigneten Giessform aus einem Formkern und aus einer Aussenform ist die äussere Kontur des Formkerns durch eine verlorene Form aus Stahlblech gebildet, an deren innerer Oberfläche von Kühlmittel durchflossene Kühlelemente angeordnet sind und der Zwischenraum zwischen der verlorenen Form, den Kühlelementen und der freie Raum im Inneren des Formkerns durch formbare, feinkörnige Substanzen ausgefüllt sind. Für die verlorene Form eignet sich Stahlblech mit 10 bis 20 mm Stärke. Die feinkörnigen Substanzen dienen der gestaltlichen Stabilisierung des Kerns und fördern den Wärmetransport zwischen der verlorenen Kokillenform und den Kühlelementen, in denen die Kühlung durch die durchfliessenden Kühlmittel bewirkt wird. Die Aussenoberfläche des Kerns wird im allgemeinen mit einer giessereiüblichen Schlichte versehen, um ein Anschweissen zu vermeiden.In the case of a mold which is particularly suitable for the process and consists of a mold core and an outer mold, the outer contour of the mold core is formed by a lost mold made of sheet steel, on the inner surface of which cooling elements through which coolant is arranged and the space between the lost mold, the cooling elements and the free space inside the mold core is filled with moldable, fine-grained substances. Sheet steel with a thickness of 10 to 20 mm is suitable for the lost shape. The fine-grained substances serve to stabilize the core and promote heat transfer between the lost mold shape and the cooling elements, in which cooling is effected by the coolant flowing through. The outer surface of the core is generally provided with a size customary in foundries in order to avoid welding.

Die Kühlelemente können als Kühlkästen ausgebildet sein, in denen Ein- und Ausströmrohre nebeneinander angeordnet sind, um eine gleichmässige Wärmeabfuhr zu ermöglichen. Die Kühlkästen sind vorteilhaft durch metallische Elemente wie Keile gehalten und gegen die verlorene Form gedrückt. Anstelle von Kühlkästen kann auch mit Kühlschlangen gearbeitet werden.The cooling elements can be designed as cooling boxes in which inflow and outflow pipes are arranged next to one another in order to enable uniform heat dissipation. The cooling boxes are advantageously held by metallic elements such as wedges and pressed against the lost shape. Instead of cooling boxes, cooling coils can also be used.

Die feinkörnigen Substanzen, mit denen die Zwischenräume zwischen den Kühlelementen, der verlorenen Schalung und der Freiraum ausgefüllt sind, können keramische Formstoffe sein, wie sie in Giessereibetrieben üblich sind. Zur Erhöhung des Wärmeleitvermögens können aber auch feinkörnige metallische Stoffe, vorzugsweise Stahlkies eingesetzt sein oder auch metallische Stoffe dem Formstoff zugesetzt werden.The fine-grained substances with which the spaces between the cooling elements, the lost formwork and the free space are filled can be ceramic molding materials, as are common in foundries. To increase the thermal conductivity, fine-grained metallic materials, preferably steel gravel, can also be used, or metallic materials can also be added to the molding material.

Vorteilhaft besteht die Aussenform aus Stahlblech und ist mit Kühlelementen versehen. Dies können entweder Kühlkästen oder auch Kühlschlangen sein. Zusätzliche Kühlrippen verbessern die Wärmeabfuhr.The outer shape is advantageously made of sheet steel and is provided with cooling elements. These can either be cooling boxes or cooling coils. Additional cooling fins improve heat dissipation.

Im folgenden wird anhand einer Zeichnung ein Ausführungsbeispiel der Erfindung erläutert.An exemplary embodiment of the invention is explained below with reference to a drawing.

Es zeigen im einzelnen

  • Fig. 1 einen gegossenen Behälter für Brennelemente aus Kernkraftwerken in perspektivischer Darstellung.
  • Fig. 2 eine schematische Darstellung einer Giessform für das Giessen des Behälters nach Fig. 1 im senkrechten Schnitt.
It show in detail
  • Fig. 1 shows a cast container for fuel elements from nuclear power plants in a perspective view.
  • Fig. 2 is a schematic representation of a mold for casting the container of FIG. 1 in a vertical section.

Zur speiserlosen Herstellung eines dickwandigen, behälterartigen Gussstücks 1 aus Gusseisen mit Kugelgraphit, nämlich eines Behälters für Brennelemente wurde die gesamte Form aus einem Formkern 6 und einer metallischen oder nichtmetallischen Aussenform 3 unnachgiebig aufgebaut und das Gussstück 1 sowohl an seiner Aussen- als auch an seiner Innenfläche gekühlt, wobei die Kühlung an der Innenfläche durch Kühlung des Formkerns 6 mit flüssigem Stickstoff erfolgte. Die Eingüsse 2 waren so bemessen, dass das Gusseisen in ihnen erstarrte, bevor die eutektische Erstarrung des Gussstückes 1 einsetzte. Die Aussenform 3 war aus formstabilem, kaltharzgebundenem Quarzsand aufgebaut. Zur Herstellung der Aussenform 3 wurden Kerne 4 für die auf der Aussenfläche des Gussstücks 1 zu erzeugenden Kühlrippen 5 eingesetzt. Der verlorene Formkern 6 bestand aussen aus einem ca. 6 m langen zylindrischen Eisenblechmantel 7 mit 15 mm Wandstärke mit einem 30 mm starken aufgeschweissten Deckel 8. Vor dem Anschweissen des Deckels 8 wurden die Kühlkästen 9, 10 in zwei Ebenen eingebracht und mit Stahlkeilen 11 gegen den Blechmantel 7 angepresst. Eine gute Kühlung der Kühlkästen 9, 10 wurde erreicht durch ein System von parallelen, senkrecht verlaufenden Kühlrohren, wobei über den Gesamtumfang verteilt, jeweils eine untere Zuleitung und eine obere Ableitung abwechselnd verlegt und an je eine Zuführungs- und Abführungsringleitung angeschlossen waren. Auch der Deckel 8 war mit einem Kühlkasten 12 versehen. Der Kern 6 war stehend angeordnet. Das Gussstück wurde steigend gegossen. Die Giesstemperatur betrug 1320 °C, die Menge an magnesiumbehandeltem und geimpften Eisen lag bei 115 t. Die Zusammensetzung der Schmelze entsprach einem GGG-40.3, DIN 1693. Die ungefähren Abmessungen des Gussstücks 1 betrugen bezüglich der Länge 6 400 mm, des äusseren Durchmessers mit Rippen 2 500 mm, des inneren Durchmessers 1 200 mm; die Bodenstärke lag bei 400 mm.For the feeder-free production of a thick-walled, container-like cast piece 1 from spheroidal graphite cast iron, namely a container for fuel assemblies, the entire mold was made up of a mold core 6 and a metallic or non-metallic outer mold 3 and the cast piece 1 both on its outer and on its inner surface cooled, the cooling on the inner surface by cooling the mandrel 6 with liquid nitrogen. The gates 2 were dimensioned such that the cast iron solidified in them before the eutectic solidification of the casting 1 began. The outer shape 3 was made of dimensionally stable, cold resin-bonded quartz sand. To produce the outer mold 3, cores 4 were used for the cooling fins 5 to be produced on the outer surface of the casting 1. The lost mandrel 6 consisted on the outside of an approximately 6 m long cylindrical iron sheet jacket 7 with 15 mm wall thickness with a 30 mm thick welded-on cover 8. Before the cover 8 was welded on, the cooling boxes 9, 10 were introduced in two planes and countered with steel wedges 11 pressed the sheet metal jacket 7. A good cooling of the cooling boxes 9, 10 was achieved by a system of parallel, vertical cooling pipes, distributed over the entire circumference, a lower feed line and an upper discharge line laid alternately and each connected to a feed and discharge ring line. The lid 8 was also provided with a cooler 12. The core 6 was arranged upright. The casting was poured upwards. The casting temperature was 1320 ° C, the amount of magnesium-treated and inoculated iron was 115 t. The composition of the melt corresponded to a GGG-40.3, DIN 1693. The approximate dimensions of the casting 1 were 6 400 mm with respect to the length, the outer diameter with ribs 2 500 mm, the inner diameter 1 200 mm; the floor thickness was 400 mm.

Nach dem Abguss wurde der Kern 6 mit flüssigem Stickstoff in der Weise gekühlt, dass beim Einströmen in die Kühlelemente 9, 10, 12 eine Verdampfung erfolgte. Die Eingüsse 2 waren so ausgelegt, dass sie zufroren, als die Schmelze in der Form eine Temperatur von 1160 bis 1200 °C erreicht hatte. Die Kühlung wurde über die gesamte Erstarrungszeit beibehalten. Erst kurz oberhalb der y-a-Umwandlung wurde die Kühlmittelzufuhr abgestellt, um die Ferritbildung nicht zu stören. Insgesamt wurde durch den Einsatz der Kühlung die Erstarrungszeit gegenüber einem reinen Sandguss um 56% verkürzt.After the casting, the core 6 was cooled with liquid nitrogen in such a way that evaporation occurred when it flowed into the cooling elements 9, 10, 12. The gates 2 were designed to freeze when the melt in the mold had a temperature of 1160 to 1200 ° C had achieved. Cooling was maintained throughout the solidification time. The coolant supply was only switched off shortly above the ya conversion in order not to disturb the ferrite formation. Overall, the setting time was shortened by 56% compared to pure sand casting.

Nach erfolgter Erstarrung und Abkühlung in der Form wurden das Gussstück gezogen und die feinkörnigen Einstampfungen im Kern beseitigt, die in mehreren Ebenen angeordneten Kühlelemente herausgeholt und schliesslich die Ausschalung, das ist der Blechmantel 7 mit dem Dekkel 8 durch Aufschneiden und Ziehen entfernt. Das übrige Gussstück ist auf dem üblichen Wege geputzt worden.After solidification and cooling in the mold, the casting was drawn and the fine-grained penetrations in the core were removed, the cooling elements arranged in several planes were removed and finally the formwork, that is, the sheet metal jacket 7 with the lid 8 was removed by cutting and pulling. The rest of the casting was cleaned in the usual way.

Die Ultraschallprüfung des geputzten und innen bearbeiteten Gussstückes mit verschiedenen Winkel-Prüfköpfen und mit Frequenzen von 1 bis 2 MHz ergab keine Anzeigen bei einer Erkennbarkeit von einer Ersatzfehlergrösse von 3 mm.The ultrasound inspection of the cleaned and internally machined casting with various angle probes and with frequencies of 1 to 2 MHz did not show any indications with an identifiable substitute defect size of 3 mm.

Claims (14)

1. Method for the feederless production of thick-walled container-type castings (1) of spheroidal graphite cast iron, characterised in that the entire mould (3, 6) is of nonyieldable construction comprising a mould core (6) and an outer mould (3), that the castings (1) are cooled both at their inner and at their outer surface, the cooling at the inner surface being effected by cooling of the mould core (6) by coolant, and that the in- gates (2) are so dimensioned that the cast iron solidifies in them before the eutectic solidification of the casting (1) sets in.
2. Method according to claim 1, characterised in that the cooling of the mould core (6) is effected in a quantity-regulated and controlled manner by liquid non-combustible coolants which evaporate in the system, such as liquid nitrogen.
3. Method according to one of the above claims, characterised in that the cooling of the castings (1) at their outer surface is effected by constructing the outer surface with large-dimensioned cooling ribs (5).
4. Method according to one of the above claims, characterised in that the cooling of the castings (1) at the outer surface is effected by means of a metallic outer mould (3).
5. Method according to claim 4, characterised in that the metallic outer mould (3) is cooled by cooling ribs.
6. Method according to claim 4, characterised in that the metallic outer mould (3) is cooled in quantity-regulated and controlled manner by liquid coolants which are non-combustible and which evaporate in the system, such as liquid nitrogen or water.
7. Casting mould comprising a mould core (6) and an outer mould (3) for carrying out the method according to one of the above claims, characterised in that the outer contour of the mould core (6) is formed by a lost mould made of steel plate (7, 8) on whose inner surface there are arranged cooling elements (9, 10, 12) through which coolant flows, and the spaces between the lost mould (7, 8) and the cooling elements (9, 10, 12) and the free space in the interior of the mould core (6) are filled with mouldable, fine-particle substances.
8. Casting mould according to claim 7, characterised in that the cooling elements are constructed as cooling boxes (9, 10) in which inflow and outflow pipes are arranged side by side.
9. Casting mould according to claim 8, characterised in that the cooling boxes (9, 10) are held by metallic elements such as wedges (11) and pressed thereby against the lost mould (7).
10. Casting mould according to claim 7, characterised in that the cooling elements are cooling pipe coils.
11. Casting mould according to one of claims 7 to 10, characterised in that the fine-paritcle-size substances are metallic substances, preferably steel shot.
12. Casting mould according to one of claims 7 to 11, characterised in that the outer mould (3) is made of steel plate.
13. Casting mould according to claim 12, characterised in that the outer mould (3) is provided with cooling elements.
14. Casting mould according to claim 12 or 13, characterised in that the outer mould consists of cooling ribs.
EP82103856A 1981-05-13 1982-05-05 Method and installation for producing thick-walled hollow castings Expired - Lifetime EP0065208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82103856T ATE15338T1 (en) 1981-05-13 1982-05-05 METHOD AND DEVICE FOR THE MANUFACTURE OF THICK-WALLED, HOLLOW CASTINGS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3118928 1981-05-13
DE19813118928 DE3118928A1 (en) 1981-05-13 1981-05-13 METHOD AND DEVICE FOR PRODUCING THICK-WALLED, HOLLOW CASTING PIECES

Publications (3)

Publication Number Publication Date
EP0065208A1 EP0065208A1 (en) 1982-11-24
EP0065208B1 true EP0065208B1 (en) 1985-09-04
EP0065208B2 EP0065208B2 (en) 1990-12-27

Family

ID=6132150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82103856A Expired - Lifetime EP0065208B2 (en) 1981-05-13 1982-05-05 Method and installation for producing thick-walled hollow castings

Country Status (7)

Country Link
US (1) US5058655A (en)
EP (1) EP0065208B2 (en)
JP (1) JPS5825859A (en)
AT (1) ATE15338T1 (en)
CA (1) CA1224325A (en)
DE (2) DE3118928A1 (en)
ZA (1) ZA822691B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120221C2 (en) * 1981-05-21 1989-08-10 Siempelkamp Gießerei GmbH & Co, 4150 Krefeld Production of thick-walled shielding transport and storage containers made of spherical cast iron
DE3216327C1 (en) * 1982-05-03 1983-05-19 Siempelkamp Gießerei GmbH & Co, 4150 Krefeld Production of thick-walled shielded transport and storage containers of spherulitic cast iron
JPS59105045U (en) * 1982-12-29 1984-07-14 日産ディーゼル工業株式会社 Cylinder liner installation structure
DE3324929A1 (en) * 1983-07-09 1985-01-17 Buderus Ag, 6330 Wetzlar Process for the production of a thick-walled container base of high notch toughness
JPH0226745U (en) * 1988-08-08 1990-02-21
EP0890400B1 (en) * 1997-06-17 2002-07-31 Wärtsilä Schweiz AG Casting method for making metallic mouldings
CA2282636A1 (en) * 1999-09-16 2001-03-16 Philippe Viarouge Power transformers and power inductors for low frequency applications using isotropic composite magnetic materials with high power to weight ratio
DE102004027592A1 (en) * 2004-06-05 2005-12-22 Man Nutzfahrzeuge Ag Method and apparatus for low-feeder or gingerless casting of hypoeutectic cast iron alloys
US7342989B2 (en) * 2005-06-23 2008-03-11 Nac International, Inc. Apparatuses and methods for mechanical shielding and cooling
DE102007017690A1 (en) 2007-04-14 2008-10-16 Siempelkamp Giesserei Gmbh Production of large castings comprises controlling temperatures of different areas of mold and core to produce desired structure
DE102012103884A1 (en) 2012-05-03 2013-11-07 Fritz Winter Eisengiesserei Gmbh & Co. Kg Method for casting a casting provided with at least one passage opening
EP2945760B1 (en) 2013-01-18 2022-01-05 Nemak Wernigerode GmbH Casting mold for producing castings, in particular cylinder blocks and cylinder heads, having functional connection of the feeder
WO2015051076A1 (en) 2013-10-02 2015-04-09 Nac International, Inc. Systems and methods for transferring spent nuclear fuel from wet storage to dry storage
US9793021B2 (en) 2014-01-22 2017-10-17 Nac International Inc. Transfer cask system having passive cooling
CN103990762A (en) * 2014-05-23 2014-08-20 马鞍山市晨光高耐磨科技发展有限公司 Casting device specially used for annular long casting part
EP3088537A1 (en) * 2015-04-27 2016-11-02 Georg Fischer GmbH Production method for hpi cast iron
CN104941548A (en) * 2015-05-27 2015-09-30 含山县宏记精工铸造厂 Mixing reaction bucket of chemical reagents
GB201612294D0 (en) * 2016-07-15 2016-08-31 Rolls Royce Plc Method and apparatus for particle injection moulding
CN106862497A (en) * 2016-12-20 2017-06-20 广西玉柴机器配件制造有限公司 A kind of production method of Sand-Faced Metal Mould Casting truck pusher bar support
CN106799467A (en) * 2016-12-20 2017-06-06 广西玉柴机器配件制造有限公司 A kind of production method of Sand-Faced Metal Mould Casting spheroidal graphite cast-iron truck spring perch
CN106862496A (en) * 2016-12-20 2017-06-20 广西玉柴机器配件制造有限公司 A kind of production method of Sand-Faced Metal Mould Casting spheroidal graphite cast-iron truck end cap
CN107377890B (en) * 2017-07-11 2023-05-12 宜昌船舶柴油机有限公司 Method and device for improving wear resistance of inner hole of cylinder liner of marine diesel engine
CN114147182B (en) * 2021-12-07 2024-01-23 勤威(天津)工业有限公司 Casting model structure of high-quality high-step stay support for sand core molding
US11766716B2 (en) 2022-01-04 2023-09-26 GM Global Technology Operations LLC System and method of increasing cooling rate of metal sand casting during solidification

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE566085C (en) * 1932-12-10 Fritz Halbrock Mold core for casting hollow blocks
DE665119C (en) * 1937-04-03 1938-09-17 Dr Franz Bartscherer Method and device for the production of hollow bodies
DE961290C (en) * 1951-01-18 1957-04-04 Otto Junker G M B H Process for casting alloyed iron castings
DE1952209A1 (en) * 1968-11-11 1970-09-24 I I Elektrosvarki Im E O Paton Device for producing hollow metal blocks
AT295765B (en) * 1969-10-13 1972-01-25 Vnii Elektrotermicheskogo Obor Mold for the production of hollow blocks from metal or metal alloys
AU5265273A (en) * 1972-04-08 1974-08-29 Wako Kinzoku Kogyo Co. Ltd a CASTING METHOD AND METAL MOLD ANDA COOLING MOLD USED IN SAW METHOD
JPS5225358B2 (en) * 1973-07-17 1977-07-07
JPS545820A (en) * 1977-06-17 1979-01-17 Hitachi Metals Ltd Casting method
US4278124A (en) * 1978-04-11 1981-07-14 Kawasaki Steel Corporation Method of producing hollow steel ingot and apparatus therefor
DE2827091A1 (en) * 1978-06-21 1980-01-10 Seybold Rolf Prof Dr Ing Upright chilled mould for casting steel slabs or ingots - where each mould wall consists of copper plate fixed on box through which which cooling water flows
DE2831842A1 (en) * 1978-07-20 1980-02-07 Leybold Heraeus Gmbh & Co Kg THORN FOR CHILLERS FOR ELECTRIC MELTING OF METALS TO HOLLOW BLOCKS

Also Published As

Publication number Publication date
CA1224325A (en) 1987-07-21
JPS5825859A (en) 1983-02-16
EP0065208B2 (en) 1990-12-27
DE3265991D1 (en) 1985-10-10
JPH0329500B2 (en) 1991-04-24
DE3118928A1 (en) 1982-12-02
EP0065208A1 (en) 1982-11-24
ATE15338T1 (en) 1985-09-15
ZA822691B (en) 1983-02-23
US5058655A (en) 1991-10-22

Similar Documents

Publication Publication Date Title
EP0065208B1 (en) Method and installation for producing thick-walled hollow castings
DE3902151A1 (en) CASTING FOR METAL CASTING AND SLEEVE HERE
DE3322424C2 (en)
DE2738635A1 (en) MULTIPLE CASTING FORM
WO2011098213A2 (en) Method and device for producing motor vehicle chassis parts
EP0872295B1 (en) Casting mould and method for the production of hollow castings and hollow castings
EP3768447A1 (en) Method for producing a casting mould for filling with melt and casting mould
EP2059356B1 (en) Single-part expendable casting mould with a controlled temperature for cast metal parts and associated production method
DE69110532T2 (en) Process and device for indirect casting of billets from metallic alloys in the semi-liquid or pasty state.
DE3120221C2 (en) Production of thick-walled shielding transport and storage containers made of spherical cast iron
EP0890400B1 (en) Casting method for making metallic mouldings
DE1953716A1 (en) Method of manufacturing an ingot
DE1483593A1 (en) Device for the continuous casting of hollow metal blocks
EP0951369B1 (en) Method and device for producing cast parts
DE640080C (en) Casting mold for making ingots
DE846900C (en) Casting mold for the continuous casting of metals
DE7616404U1 (en) AUXILIARY DEVICE FOR POURING
DE3216327C1 (en) Production of thick-walled shielded transport and storage containers of spherulitic cast iron
DE553653C (en) Process to achieve dense cast blocks from metals that form strong crystals, especially light metals
DE102018106725A1 (en) Process for producing a casting mold for filling melt and casting mold
DE102004034802B4 (en) Metallic permanent mold for the production of large castings from metal alloys
AT128886B (en) Mold unit for casting hollow metal bodies.
DE7729772U1 (en) LOW PRESSURE CASTING DEVICE FOR CASTINGS
DE1912379A1 (en) Process for casting materials in single crystal molds
DE876752C (en) Mold for casting cylinder blocks, cylinder heads or the like.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820514

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 15338

Country of ref document: AT

Date of ref document: 19850915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3265991

Country of ref document: DE

Date of ref document: 19851010

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMPELKAMP GIESSEREI GMBH & CO.

Effective date: 19860228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860514

Year of fee payment: 5

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMPELKAMP GIESSEREI GMBH & CO.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870531

Year of fee payment: 6

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TNH TRANSPORTE UND DIENSTLEISTUNGEN ABWICKLUNGSGE

Owner name: THYSSEN INDUSTRIE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890509

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: THYSSEN INDUSTRIE AG TE ESSEN EN TNH TRANSPORTE UN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900506

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19901227

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;NUKEM GMBH

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET3 Fr: translation filed ** decision concerning opposition
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO SEDE;NUKEM GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Free format text: THYSSEN INDUSTRIE AG

Ref country code: CH

Ref legal event code: PFA

Free format text: NUKEM GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940420

Year of fee payment: 13

Ref country code: CH

Payment date: 19940420

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940421

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940525

Year of fee payment: 13

EUG Se: european patent has lapsed

Ref document number: 82103856.9

Effective date: 19910115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST