EP0062985B1 - Verfahren zur Herstellung von naphthenischen Schmierölen aus Rohdestillat, durch Kombination von Hydroentparaffinierung und Hydrierung - Google Patents
Verfahren zur Herstellung von naphthenischen Schmierölen aus Rohdestillat, durch Kombination von Hydroentparaffinierung und Hydrierung Download PDFInfo
- Publication number
- EP0062985B1 EP0062985B1 EP82301524A EP82301524A EP0062985B1 EP 0062985 B1 EP0062985 B1 EP 0062985B1 EP 82301524 A EP82301524 A EP 82301524A EP 82301524 A EP82301524 A EP 82301524A EP 0062985 B1 EP0062985 B1 EP 0062985B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zeolite
- zsm
- weight percent
- naphthenic
- pour point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000005984 hydrogenation reaction Methods 0.000 title claims description 9
- 239000010457 zeolite Substances 0.000 claims description 56
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 42
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 41
- 229910021536 Zeolite Inorganic materials 0.000 claims description 35
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 14
- 230000005484 gravity Effects 0.000 claims description 13
- 239000010687 lubricating oil Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000001354 calcination Methods 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000001993 wax Substances 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 229910001657 ferrierite group Inorganic materials 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- -1 trialkylammonium compound Chemical class 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 125000001477 organic nitrogen group Chemical group 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 150000002892 organic cations Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000036619 pore blockages Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000064895 Cucumis melo subsp melo Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical group O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 235000013844 butane Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229910001649 dickite Inorganic materials 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- NLPVCCRZRNXTLT-UHFFFAOYSA-N dioxido(dioxo)molybdenum;nickel(2+) Chemical compound [Ni+2].[O-][Mo]([O-])(=O)=O NLPVCCRZRNXTLT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 229910052677 heulandite Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 229910052678 stilbite Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/043—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/10—Lubricating oil
Definitions
- This invention relates to a process for making naphthenic lubestocks from raw distillate by combination hydrodewaxing/hydrogenation.
- the present invention provides a process for the production of low pour point lube oil basestocks from raw distillate fractions derived from low wax content marginal naphthenic crudes, said fraction having a boiling range from 260° to 566°C (500° to 1050°F), containing from 25 to 50 weight percent aromatics, from 25 to 40 weight percent naphthenes, less than 50 weight percent paraffins, having a pour point below 2°C (35°F) and an API gravity from 20 to 25, which comprises contacting the fraction in the presence of added hydrogen at a temperature from 260° to 357°C (500 to 675°F), a liquid hourly space velocity ranging from 0.1 to 10 and a hydrogen pressure, ranging from 1480 to 13890 kPa (200 to 2000 psig) with a dewaxing catalyst comprising an aluminosilicate zeolite having a silica/alumina ratio above 12 and a constraint index between 1 and 12, hydrogenating the resultant product by contact at a temperature from 260°
- V.I. viscosity index
- automotive lubricating oils low pour naphthenic lubricants
- They are not suitable for the manufacture of high V.I. lubricating oils because they are poor in paraffinic content and yield little or no refined stock having a viscosity index above about 60.
- They are not suitable for the manufacture of naphthenic lubricants by the conventional solvent dewaxing equipment because it is impractical to apply solvent dewaxing technology to produce oils of very low pour point ( ⁇ -23°C) ( ⁇ -10°F).
- the wax contents of crudes vary widely from less than 1 % such as the Coastal Low Pour crude which is a typical crude used for the manufacture of naphthenic lubricating oils up to wax contents of 40% or more for such waxy crudes as the Chinese Teaching Crude or Utah's Altamont crude.
- This invention is particularly directed to the upgrading of low wax content marginal naphthenic distillate fractions to naphthenic lube basestocks by a combination process involving first hydrodewaxing to a pour point below -23°C (-10°F) over a ZSM-5 type catalyst, followed by hydrogenation with a standard hydrogenation catalyst in order to obtain the desired product and maintain the below -23°C (-10°F) pour point.
- marginal naphthenic we mean that the oil contains too high a wax content to be classified as "naphthenic" and can be classified as belonging to the low end of "intermediate” according to the classification method outlined by the Bureau of Mines.
- the Bureau of Mines method consists of determining the gravity of two key boiling fractions of the crude as shown in the following table:
- the gravity of "key” fraction #1 determines the first word used in the classification, while the gravity of "key” fraction #2 determines the second word of the classification. If both words are the same, only one word is used to classify the crude.
- High specific gravity is indicative of condensed molecules such as naphthenes and aromatics whereas low specific gravity indicates long chain paraffins.
- the gravity values of these two key fractions determine the wording of the classification, e.g. paraffinic-intermediate or intermediate-naphthenic.
- the gravity of the second key fraction is the gravity of the second key fraction. It should be greater than 20 API but less than 25 API. Truly naphthenic oils having API gravity of the second key fraction less than 20 are suitable as feed materials for the conventional technology. Those higher than 25 API are not preferable feed materials for the manufacture of naphthenic basestocks because of poor lube oil yield or poor quality.
- Naphthenic lube oil basestocks are key ingredients of lubricating greases and other specialty oils such as transformer oils and refrigerator oils. They represent a significant (more than 25%) percentage of the total lubricating oil products. Because the supply of truly naphthenic crudes is being exhausted, there is a great need to find alternate sources of raw materials. One of the specific objectives of the present invention is to fulfill this need.
- Another specific objective of the present invention is to devise an all-catalytic route for lubricating oil production to replace solvent refining such as aromatic extraction or acid treating.
- the novel process of this invention is concerned with a raw distillate fraction of a marginal naphthenic crude that has a boiling range of from 260° to 566°C (500° to 1050°F).
- the marginal naphthenic crudes are defined by a method similar to the method described by the Bureau of Mines in classifying whole crudes. The method consists of distilling a fraction boiling between 391° and 420°C (736° and 788°F) from the crude and measuring the gravity of the distillate.
- the distillates from marginal naphthenic crudes should have API gravity between 20 and 25.
- the raw distillate fraction from various marginal naphthenic crudes vary in chemical composition but generally contain from 25 to 50% aromatics, from 25 to 40% naphthenes and less than 50% paraffins. They are low in wax and generally have a pour point below 2°C (35°F).
- the novel process of this invention is carried out by subjecting the naphthenic charge stock without the necessity of any solvent extraction step whatsoever to a catalytic conversion step which is conducted at temperatures ranging from 260° to 357°C (500° to 675°F), at liquid hourly space velocities ranging from 0.1 to 10, and hydrogen pressures ranging from 1480 to 13890 kPa (200 to 2000 psig).
- the conversion catalyst is a composite of hydrogenation metal, preferably a metal of Group VIII of the Periodic Table, associated with the acid form of an aluminosilicate zeolite having a silica/ alumina ratio above 12 and a constraint index of 1 to 12.
- the crystal structure of this class of zeolites provides constrained access to, and egress from the intracrystalline free space by virtue of having a pore dimension greater than about 0.5 nm and pore windows of about a size such as would be provided by 10-membered rings of oxygen atoms. It is to be understood, of course, that these rings are those formed by the regular disposition of the tetrahedra making up the anionic framework of the crystalline aluminosilicate, the oxygen atoms themselves being bonded to the silicon or aluminum atoms at the centers of the tetrahedra.
- the preferred type zeolites useful in this invention possess, in combination: a silica to alumina mole ratio of at least about 12; and a structure providing constrained access to the crystalline free space.
- the silica to alumina ratio referred to may be determined by conventional analysis. This ratio is meant to represent as closely as possible, the ratio in the rigid anionic framework of the zeolite crystal and to exclude aluminum in the binder or in cationic or other form within the channels.
- zeolites with a silica to alumina ratio of at least 12 are useful, it is preferred to use zeolites having higher ratios of at least about 30. Such zeolites, after activation, acquire an intracrystalline sorption capacity for normal hexane which is greater than that for water, i.e. they exhibit "hydrophobic" properties. It is believed that this hydrophobic character is advantageous in the present invention.
- the type zeolites useful in this invention freely sorb normal hexane and benzene and have a pore dimension greater than about 0,5 nm.
- the structure must provide constrained access to larger molecules. It is sometimes possible to judge from a known crystal structure whether such constrained access exists. For example, if the only pore windows in a crystal are formed by 8-membered rings of oxygen atoms, then access by molecules of larger cross-section than normal hexane is excluded and the zeolite is not of the desired type. Windows of 10-membered rings are preferred, although, in some instances, excessive puckering or pore blockage may render these zeolites ineffective.
- a simple determination of the "constraint index" may be made by passing continuously a mixture of an equal weight of normal hexane and 3-methylpentane over a small sample, approximately 1 gram or less, of catalyst at atmospheric pressure according to the following procedure.
- a sample of the zeolite, in the form of pellets or extrudate, is crushed to a particle size about that of coarse sand and mounted in a glass tube.
- the zeolite Prior to testing, the zeolite is treated with a stream of air at 538°C (1000°F) for at least 15 minutes.
- the zeolite is then flushed with helium and the temperature adjusted between 288° and 510°C (550° and 950°F) to give an overall conversion between 10% and 60%.
- the mixture of hydrocarbons is passed at 1 liquid hourly space velocity (i.e. 1 volume of liquid hydrocarbon per volume of zeolite per hour) over the zeolite with a helium dilution to give a helium to total hydrocarbon mole ratio of 4:1.
- a sample of the effluent is taken and analyzed, most conveniently by gas chromatography, to determine the fraction remaining unchanged for each of the two hydrocarbons.
- the "constraint index” is calculated as follows:
- the constraint index approximates the ratio of the cracking rate constants for the two hydrocarbons.
- Zeolites suitable for the present invention are those having a constraint index in the approximate range of 1 to 12.
- Constraint Index (CI) values for some typical zeolites are:
- the above constraint index values typically characterize the specified zeolites but that such are the cumulative result of several variables used in determination and calculation thereof.
- the constraint index may vary within the indicated approximate range of 1 to 12.
- other variables such as the crystal size of the zeolite, the presence of possible occluded contaminants and binders intimately combined with the zeolite may affect the constraint index.
- the constraint index while affording a highly useful means for characterizing the zeolites of interest is approximate, taking into consideration the manner of its determination, with probability, in some instances, of compounding variable extremes. However, in all instances, at a temperature within the above- specified range of 288° to 510°C (550° to 950°F), the constraint index will have a value for any given zeolite of interest herein within the approximate range of 1 to 12.
- the class of zeolites defined herein is exemplified by ZSM-5, ZSM-11, ZSM-12, ZSM-35, ZSM-38 and other similar materials.
- U.S. A 3,702,886 describees ZSM-5, ZSM-11 is described in U.S. A 3,709,979, ZSM-12 is described in U.S. A 3,832,449, ZSM-38 is described U.S. A 4,046,859.
- This zeolite can be identified, in terms of mole ratios of oxides and in the anhydrous state, as follows:
- these zeolites have a formula, in terms of mole ratios of oxides and in the anhydrous state, as follows: wherein R is an organic nitrogen-containing cation derived from a 2-(hydroxyalkyl) trialkylammonium compound, wherein alkyl is methyl, ethyl or a combination thereof, M is an alkali metal, especially sodium, and x is from greater than 8 to about 50.
- the synthetic ZSM-38 zeolite possesses a definite distinguishing crystalline structure whose X-ray diffraction pattern shows substantially the significant lines set forth in Table 2. It is observed that this X-ray diffraction pattern (significant lines) is similar to that of natural ferrierite with a notable exception being that neutral ferrierite patterns exhibit a significant line at 1.133 nm.
- a further characteristic of ZSM-38 is its sorptive capacity providing the zeolite with increased capacity for 2-methylpentane (with respect to n-hexane sorption by the ratio n-hexane/2-methylpentane) when compared with a hydrogen form of natural ferrierite resulting from calcination of an ammonium exchanged form.
- the characteristic sorption ratio n-hexane/2-methylpentane for ZSM-38 (after calcination at 600°C) is less than 10, whereas the ratio for the natural ferrierite is substantially greater than 10, for example, as high as 34 or higher.
- Zeolite ZSM:38 can be suitably prepared by preparing a solution containing sources of an alkali metal oxide, preferably sodium oxide, an organic nitrogen-containing oxide, an oxide of aluminum, an oxide of silicon and water and having a composition, in terms of mole ratios of oxides, falling within the following ranges: wherein R is an organic nitrogen-containing cation derived from a 2-(hydroxyalkyl) trialkylammonium compound and M is an alkali metal ion, and maintaining the mixture until crystals of the zeolite are formed. (The quantity of OH- is calculated only from the inorganic sources of alkali without any organic base contribution). Thereafter, the crystals are separated from the liquid and recovered.
- an alkali metal oxide preferably sodium oxide
- an organic nitrogen-containing oxide an oxide of aluminum, an oxide of silicon and water
- M is an alkali metal ion
- Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from 90°C to 400°C for a period of time of from 6 hours to 100 days.
- a more preferred temperature ranges from 150°C to 400°C with the amount of time at a temperature in such range being from 6 hours to 80 days.
- the digestion of the gel particles is carried out until crystals form.
- the solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering and water washing.
- the crystalline product is thereafter dried, e.g. at 110°C (230°F) for from 8 to 24 hours.
- the specific zeolites described, when prepared in the presence of organic cations, are catalytically inactive, possibly because the intracrystalline free space is occupied by organic cations from the forming solution. They may be activated by heating in an inert atmosphere at 538°C (1000°F) for one hour, for example, followed by base exchange with ammonium salts followed by calcination at 538°C (1000°F) in air.
- the presence of organic cations in the forming solution may not be absolutely essential to the formation of this type zeolite; however, the presence of these cations does appear to favor the formation of this special type of zeolite. More generally, it is desirable to activate this type of catalyst by base exchange with ammonium salts followed by calcination in air at about 538°C (1000°F) for from 15 minutes to 24 hours.
- Natural zeolites may sometimes be converted to this type zeolite catalyst by various activation procedures and other treatments such as base exchange, steaming, alumina extraction and calcination, in combinations.
- Natural minerals which may be so treated include ferrierite, brewsterite, stilbite, dachiardite, epistilbite, heulandite, and clinoptilolite.
- the preferred crystalline aluminosilicates are ZSM-5, ZSM-11, ZSM-12, ZSM-35 and ZSM-38, with ZSM-5 particularly preferred.
- the zeolites hereof are selected as those having a crystal framework density, in the dry hydrogen form, of not substantially below about 1.6 grams per cubic centimeter. It has been found that zeolites which satisfy all three of these criteria are most desired. Therefore, the preferred zeolites of this invention are those having a constraint index as defined above of about 1 to about 12, a silica to alumina ratio of at least about 12 and a desired crystal density of not less than about 1.6 grams per cubic centimeter.
- the dry density for known structures may be calculated from the number of silicon plus aluminum atoms per 1000 cubic Angstroms, as given, e.g., on page 19 of the article on Zeolite Structure by W. M.
- the crystal framework density may be determined by classical pyknometer techniques. For example, it may be determined by immersing the dry hydrogen form of the zeolite in an organic solvent which is not sorbed by the crystal. It is possible that the unusual sustained activity and stability of this class of zeolites is associated with its high crystal anionic framework density of not less than about 1.6 grams per cubic centimeter. This high density, of course, must be associated with a relatively small amount of free space within the crystal, which might be expected to result in more stable structures. This free space, however, is important as the locus of catalytic activity.
- Crystal framework densities of some typical zeolites are:
- the zeolite When synthesized in the alkali metal form, the zeolite is conveniently converted to the hydrogen form, generally by intermediate formation of the ammonium form as a result of ammonium ion exchange and calcination of the ammonium form to yield the hydrogen form.
- the hydrogen form In addition to the hydrogen form, other forms of the zeolite wherein the original alkali metal has been reduced to less than about 1.5 percent by weight may be used.
- the original alkali metal of the zeolite may be replaced by ion exchange with other suitable ions of Groups IB to VIII of the Periodic Table including for example, nickel, copper, zinc, palladium, calcium or rare earth metals.
- Such matrix materials include synthetic or naturally occurring substances as well as inorganic materials such as clay, silica and/or metal oxides.
- the latter may be either naturally occurring or in the form of gelatinous precipitates or gels including mixtures of silica and metal oxides.
- Naturally occurring clays which can be composited with the zeolite include those of the montmorillonite and kaolin families, which families include the sub-bentonites and the kaolins commonly known as Dixie, McNamee-Georgia and Florida clays or others in which the main mineral constituent is halloysite, kaolinite, dickite, nacrite or anauxite.
- Such clays can be used in the raw state as originally mined or initially subjected to calcination, acid treatment or chemical modification.
- the zeolites employed herein may be composited with a porous matrix material, such as alumina, silica - alumina, silica - magnesia, silica - zirconia, silica - thoria, silica - beryllia, silica - titania, as well as ternary compositions, such as silica - alumina - thoria, silica - alumina - zirconia, silica - alumina - magnesia and silica - magnesia - zirconia.
- the matrix may be in the form of a co-gel.
- the relative proportions of zeolite component and inorganic oxide gel matrix may vary widely with the zeolite content ranging from 1 to 99 percent by weight and more usually in the range of from 5 to 80 percent by weight of the composite.
- the effluent of the first step including the hydrogen is cascaded into a hydrotreating reactor of the type not generally employed for finishing of lubricating oil stocks.
- the distillation necessary to remove light products for conformance to fire and flash point specifications may be conducted between the dewaxing and hydrotreating steps.
- cascade type operation is preferred.
- any of the known hydrotreating catalysts consisting of a hydrogenation component on a non-acidic support may be employed, for example, cobalt-molybdate, or nickel-molybdate, or molybdenum oxide, on an alumina support.
- temperature control is required for production of high quality product, the hydrotreater being held at 260° to 357°C (500° to 675°F) at a pressure of 1480 to 13890 kPa (200 to 2000 psig).
- the effluent of the hydrotreater is topped by distillation, i.e. the most volatile components are removed, to meet flash and fire point specifications.
- a raw distillate was obtained from a Venezuelan Melones crude by vacuum distillation to yield a 288° to 416°C (550° to 780°F) fraction. It has a pour point of -23°C (-10°F). High molecular weight mass spectrometric analysis shows that it contains 30% aromatics, 30% naphthenes and 40% paraffins.
- the conversion product was found to yield 3 weight percent gaseous products including 0.3 weight percent dry gas (ethane and lighter), 1.2 weight percent propane and 1.5 weight percent butanes, and 97 weight percent C s + liquid product.
- the liquid product is fractionated to yield (based on distillate charged) 6.9 weight percent C 5 to 166°C (330°F) naphtha, 3.1 weight percent 166° to 288°C (330 to 550°F) diesel fuel and 87 weight percent 288°C+ (550°F+) liquid.
- the 288°C+ (550°F+) liquid has a pour point of -51°C (-60°F) and has the following chemical composition: 32.3 weight percent aromatics, 31.5 weight percent naphthenes, and 36.2 weight percent paraffins.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Lubricants (AREA)
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT82301524T ATE22110T1 (de) | 1981-04-02 | 1982-03-24 | Verfahren zur herstellung von naphthenischen schmieroelen aus rohdestillat, durch kombination von hydroentparaffinierung und hydrierung. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US25035781A | 1981-04-02 | 1981-04-02 | |
| US250357 | 1981-04-02 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0062985A1 EP0062985A1 (de) | 1982-10-20 |
| EP0062985B1 true EP0062985B1 (de) | 1986-09-10 |
Family
ID=22947389
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP82301524A Expired EP0062985B1 (de) | 1981-04-02 | 1982-03-24 | Verfahren zur Herstellung von naphthenischen Schmierölen aus Rohdestillat, durch Kombination von Hydroentparaffinierung und Hydrierung |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP0062985B1 (de) |
| JP (1) | JPH0631330B2 (de) |
| KR (1) | KR860001880B1 (de) |
| AR (1) | AR241776A1 (de) |
| AT (1) | ATE22110T1 (de) |
| CA (1) | CA1188247A (de) |
| DE (1) | DE3273102D1 (de) |
| YU (1) | YU44421B (de) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4695364A (en) * | 1984-12-24 | 1987-09-22 | Mobil Oil Corporation | Lube or light distillate hydrodewaxing method and apparatus with light product removal and enhanced lube yields |
| ATE45177T1 (de) * | 1984-12-27 | 1989-08-15 | Mobil Oil Corp | Verfahren zur hydrocracking und katalytischen entwachsung. |
| US4597854A (en) * | 1985-07-17 | 1986-07-01 | Mobil Oil Corporation | Multi-bed hydrodewaxing process |
| IN168775B (de) * | 1985-12-24 | 1991-06-01 | Shell Int Research | |
| US5057206A (en) * | 1988-08-25 | 1991-10-15 | Uop | Process for the production of white oils |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3438887A (en) * | 1967-07-11 | 1969-04-15 | Texaco Inc | Production of lubricating oils |
| US3974060A (en) * | 1969-11-10 | 1976-08-10 | Exxon Research And Engineering Company | Preparation of high V.I. lube oils |
| US3730876A (en) * | 1970-12-18 | 1973-05-01 | A Sequeira | Production of naphthenic oils |
| US3894938A (en) * | 1973-06-15 | 1975-07-15 | Mobil Oil Corp | Catalytic dewaxing of gas oils |
| US4137148A (en) * | 1977-07-20 | 1979-01-30 | Mobil Oil Corporation | Manufacture of specialty oils |
| CA1117455A (en) * | 1977-12-20 | 1982-02-02 | Mobil Oil Corporation | Manufacture of lube base stock oil |
| US4176050A (en) * | 1978-12-04 | 1979-11-27 | Mobil Oil Corporation | Production of high V.I. lubricating oil stock |
-
1982
- 1982-03-23 CA CA000399097A patent/CA1188247A/en not_active Expired
- 1982-03-24 EP EP82301524A patent/EP0062985B1/de not_active Expired
- 1982-03-24 AT AT82301524T patent/ATE22110T1/de not_active IP Right Cessation
- 1982-03-24 DE DE8282301524T patent/DE3273102D1/de not_active Expired
- 1982-04-01 JP JP57052366A patent/JPH0631330B2/ja not_active Expired - Lifetime
- 1982-04-02 YU YU749/82A patent/YU44421B/xx unknown
- 1982-04-02 KR KR8201450A patent/KR860001880B1/ko not_active Expired
- 1982-04-05 AR AR82289003A patent/AR241776A1/es active
Also Published As
| Publication number | Publication date |
|---|---|
| JPS57174387A (en) | 1982-10-27 |
| KR860001880B1 (ko) | 1986-10-24 |
| DE3273102D1 (en) | 1986-10-16 |
| JPH0631330B2 (ja) | 1994-04-27 |
| KR830010174A (ko) | 1983-12-26 |
| ATE22110T1 (de) | 1986-09-15 |
| EP0062985A1 (de) | 1982-10-20 |
| YU74982A (en) | 1985-04-30 |
| CA1188247A (en) | 1985-06-04 |
| AR241776A1 (es) | 1992-12-30 |
| YU44421B (en) | 1990-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4137148A (en) | Manufacture of specialty oils | |
| US4181598A (en) | Manufacture of lube base stock oil | |
| US4437975A (en) | Manufacture of lube base stock oil | |
| US4097367A (en) | Conversion of olefinic naphtha | |
| US4810357A (en) | Catalytic dewaxing of light and heavy oils in dual parallel reactors | |
| EP0056718B1 (de) | Vorbehandlung von Einsatzmaterialien für katalytische Umwandlungen | |
| US4229282A (en) | Catalytic dewaxing of hydrocarbon oils | |
| US4259170A (en) | Process for manufacturing lube base stocks | |
| US4357232A (en) | Method for enhancing catalytic activity | |
| US4211635A (en) | Catalytic conversion of hydrocarbons | |
| EP0693102B1 (de) | Verfahren zur herstellung eines schweren schmieröls mit niedrigem fliesspunkt | |
| US4210521A (en) | Catalytic upgrading of refractory hydrocarbon stocks | |
| EP0057071B1 (de) | Vorbehandlung von Einsatzmaterialien für die katalytische Entwachsung | |
| US4648957A (en) | Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields | |
| US4269695A (en) | Reclaiming wax contaminated lubricating oils | |
| EP0140468B1 (de) | Kombinationsprozess zur Herstellung Schmieröle aus Grenzbereich-Rohölen | |
| US4376036A (en) | Production of high V. I. lubricating oil stock | |
| US5053117A (en) | Catalytic dewaxing | |
| US4483760A (en) | Process for dewaxing middle distillates | |
| US3960705A (en) | Conversion of foots oil to lube base stocks | |
| EP0062985B1 (de) | Verfahren zur Herstellung von naphthenischen Schmierölen aus Rohdestillat, durch Kombination von Hydroentparaffinierung und Hydrierung | |
| EP0104807B1 (de) | Verwendung von Hochdruck zur Verbesserung der Produktqualität und zur Verlängerung des Zyklusses beim katalytischen Entwacksen von Schmierölen | |
| EP0168146A1 (de) | Verfahren zur Herstellung verbesserter Schmieröle aus einem schweren Einsatzprodukt | |
| GB2141733A (en) | Improved catalytic hydrodewaxing process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19820407 |
|
| AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT NL |
|
| REF | Corresponds to: |
Ref document number: 22110 Country of ref document: AT Date of ref document: 19860915 Kind code of ref document: T |
|
| REF | Corresponds to: |
Ref document number: 3273102 Country of ref document: DE Date of ref document: 19861016 |
|
| ET | Fr: translation filed | ||
| ITF | It: translation for a ep patent filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| ITTA | It: last paid annual fee | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010302 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010306 Year of fee payment: 20 Ref country code: AT Payment date: 20010306 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010307 Year of fee payment: 20 Ref country code: DE Payment date: 20010307 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010410 Year of fee payment: 20 |
|
| BE20 | Be: patent expired |
Free format text: 20020324 *MOBIL OIL CORP. |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020323 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020324 Ref country code: AT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020324 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20020323 |
|
| NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20020324 |
|
| NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20020324 |