EP0061407B1 - Method to adjust the composition of a zinc alloy for tempered galvanization by adding concentrated metallic alloying additives, and compositions of the additives - Google Patents
Method to adjust the composition of a zinc alloy for tempered galvanization by adding concentrated metallic alloying additives, and compositions of the additives Download PDFInfo
- Publication number
- EP0061407B1 EP0061407B1 EP82400522A EP82400522A EP0061407B1 EP 0061407 B1 EP0061407 B1 EP 0061407B1 EP 82400522 A EP82400522 A EP 82400522A EP 82400522 A EP82400522 A EP 82400522A EP 0061407 B1 EP0061407 B1 EP 0061407B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- zinc
- magnesium
- aluminium
- beryllium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims description 72
- 239000000654 additive Substances 0.000 title claims description 43
- 229910001297 Zn alloy Inorganic materials 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 18
- 238000005275 alloying Methods 0.000 title description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 84
- 239000011701 zinc Substances 0.000 claims description 84
- 229910052725 zinc Inorganic materials 0.000 claims description 80
- 229910052782 aluminium Inorganic materials 0.000 claims description 76
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 76
- 239000011777 magnesium Substances 0.000 claims description 70
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 63
- 229910045601 alloy Inorganic materials 0.000 claims description 63
- 239000000956 alloy Substances 0.000 claims description 63
- 229910052749 magnesium Inorganic materials 0.000 claims description 63
- 229910052790 beryllium Inorganic materials 0.000 claims description 49
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 48
- 239000011135 tin Substances 0.000 claims description 31
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 25
- 229910052718 tin Inorganic materials 0.000 claims description 25
- 230000000996 additive effect Effects 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 239000011133 lead Substances 0.000 claims description 18
- 238000007792 addition Methods 0.000 claims description 17
- 229910000831 Steel Inorganic materials 0.000 claims description 16
- 239000010959 steel Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 15
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 13
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 229910000952 Be alloy Inorganic materials 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 230000002950 deficient Effects 0.000 claims description 4
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 17
- 230000007812 deficiency Effects 0.000 claims 2
- 230000000295 complement effect Effects 0.000 claims 1
- 238000005246 galvanizing Methods 0.000 description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 230000003647 oxidation Effects 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 17
- 230000008018 melting Effects 0.000 description 15
- 238000002844 melting Methods 0.000 description 15
- 150000002739 metals Chemical class 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 230000005496 eutectics Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000003570 air Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000010953 base metal Substances 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 230000006735 deficit Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 4
- SOWHJXWFLFBSIK-UHFFFAOYSA-N aluminum beryllium Chemical compound [Be].[Al] SOWHJXWFLFBSIK-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- 229910017532 Cu-Be Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000001572 beryllium Chemical class 0.000 description 1
- ATBAMAFKBVZNFJ-YPZZEJLDSA-N beryllium-7 Chemical compound [7Be] ATBAMAFKBVZNFJ-YPZZEJLDSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- -1 magnesium metals Chemical class 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
Definitions
- the invention relates to a process for adjusting the composition of a zinc alloy, intended for the dip galvanizing of steels, including silicon steels, the alloy consisting of zinc of commercial purity with a weighted content. from 1000 to 15000 ppm of lead and as additives of aluminum, tin and magnesium at weight contents selected in the respective ranges (AI) 100 to 5000 ppm, (Sn) 300 to 20 000 ppm, and (Mg) 10 to 1000 ppm, the process consisting in adding, to the molten zinc alloy, deficient in at least one additive, at least one metallic composition, soluble in molten zinc, and comprising with a relatively high content at least one additive in quantity such that the deficit is compensated for.
- the invention also relates to metallic compositions suitable for implementing the method.
- Zinc with commercial purity corresponding to AFNOR NFA standards, classes Z6 and Z7 has maximum contents defined in Copper, Cadmium and Iron. In addition, it has maximum lead contents (15,000 p.p.m. for class Z6, 5,000 p.p.m. for class Z7). These lead contents, originally defined by the conditions for the production of zinc, have proved to be favorable for galvanization by lowering the viscosity of the molten zinc, so that they have been maintained while the evolution of the processes metallurgical allows the production of zinc with lead contents lower than 1000 ppm Frequently the categories Z6 and Z7 are currently obtained by adding lead to zinc.
- the invention therefore proposes a method for adjusting the composition of a zinc alloy, intended for the dip galvanizing of steels, including silicon steels, the alloy consisting of zinc of commercial purity with a weight content of 1 000 to 15000 ppm lead, and as additives, aluminum, tin and magnesium at weight contents selected from the respective ranges (AI) 100 to 5,000 ppm, (Sn) 300 to 20,000 ppm and (Mg) 10 to 1,000 ppm, process according to which we add. to the molten zinc alloy, deficient in at least one additive, at least one metallic composition soluble in the molten zinc and comprising at relatively high content at least one additive, in an amount such that the deficit is compensated for.
- the magnesium composition is a ternary zinc, magnesium, aluminum alloy with by weight 5000 to 50,000 p: pm of magnesium and 10 to 500 ppm of aluminum
- the aluminum composition, n added in quantity which takes account of the possible addition of ternary zinc / magnesium / aluminum is a binary zinc / aluminum alloy, with an aluminum content by weight close to 5%.
- composition chosen from the zinc alloy for galvanization will correspond to the preferred compositions presented by French patent 2,366,376.
- Nickel and copper are metals to be avoided in the considered galvanizing coatings. Iron could have been tolerated in view of the traces of iron which inevitably dissolve in the alloy during the immersion of steel parts. But beryllium iron alloys hardly dissolve in zinc at 600 ° C.
- the beryllium supply is obtained using a ternary zinc / aluminum / beryllium alloy, produced by dissolving an aluminum beryllium alloy containing 4-8% beryllium in pure zinc.
- the weight composition of the ternary alloy is: aluminum 5,000 to 50,000 p.p.m., beryllium aluminum weight ratio 11.5 to 24 and zinc the rest.
- the term zinc is used here in its usual meaning as a base metal containing common impurities at levels where the properties of the metal, in relation to the intended application, are not appreciably affected.
- impurities from alloying elements or additives which, at the specified contents, act on the properties of the base metal, in relation to the intended application.
- the base metal contains, as initial impurity an element which is intended as an additive, at a content significantly higher than that of the initial impurity, the content as an additive is understood to be the sum of the initial content in impurity, and the amount of additive added thereafter.
- the preferred ternary alloys for supplying magnesium and beryllium respectively have weight compositions of magnesium 30,000 ⁇ 1,500 ppm, aluminum 100 ⁇ 5 ppm, and aluminum 9,000 ⁇ 450 ppm, beryllium 470 ⁇ 50 ppm, in both cases the rest being zinc.
- zinc which constitutes at least 95% of the alloy by weight, can withstand some losses by oxidation without the composition of the alloy being substantially modified; lead and tin, less oxidizable than zinc, suffer only negligible losses by oxidation.
- lead and tin less oxidizable than zinc, suffer only negligible losses by oxidation.
- aluminum and magnesium disappear by oxidation relatively quickly. The readjustment of the composition of the alloy requires preferential additions of aluminum and magnesium.
- the magnesium oxidizes in depth, and is close to its spontaneous ignition temperature in the air. Moreover, for the normal development of the galvanizing alloy, one operates so as to minimize the oxidation of aluminum and magnesium by preventing them from being in contact with air.
- each of the metal compositions used be assigned to a particular additive metal, in the sense that the concentration of the additive targeted in the composition must be much higher than the concentration in the alloy, while the concentration ratios of the other metals in the composition are not too far from what they are in the alloy or at least that the concentration ratios of the constituents of the composition compared to that of the targeted additive are significantly lower than the ratios in the alloy.
- aluminum there is a zinc aluminum alloy 5% by weight of aluminum, its composition corresponding to the eutectic at melting point 385 ° C., and is therefore suitable as a metallic composition assigned to aluminum. .
- magnesium there is a zinc / magnesium eutectic at 3% by weight of magnesium, with a melting point of 367 ° C. , or during transport and essential handling.
- the compositions sufficiently close to the eutectic to have an acceptable melting point (less than about 450 ° C.) are practically also too fragile.
- the addition of small amounts of aluminum significantly reduced the brittleness of the zinc / magnesium binaries. The effect begins to be felt at 10 p.p.m. (by weight) of aluminum.
- the presence of aluminum reduces the oxidation of magnesium when the ingot is poured. Around 100 p.p.m.
- beryllium is felt for very low contents, from 4 p.p.m. (by weight). Beyond 100 p.p.m. it is observed that there occurs, at the usual temperature of the galvanizing baths in operation, a segregation of beryllium which collects on the surface and is evacuated with the dross. It has also been found, from 15 ppm by weight of beryllium, for baths with a relatively high aluminum content, greater than 550 ppm, a synergistic action of aluminum and beryllium on the kinetics of the iron-zinc reaction (formation of intermetallic compounds).
- This table shows that, even using a binary alloy of composition corresponding to the liquidus at 696 ° C, and cooled sufficiently quickly so that the beryllium remains in supersaturation, the tonnages to be used so that the final alloy is in the range 4- 100 ppm represent from 0.5 to 12.5% of the total mass of the alloy, that is to say for a 150-ton bath, from 0.75 to 18.75 tons. Furthermore, the diffusion of beryllium in molten zinc, at temperatures far from the melting point of beryllium (1 2800C) is slow, and the development of the binary alloy at temperatures above 700 ° C is difficult due in particular to the vapor pressure of zinc (boiling point 910 ° C). The development of such alloys is prohibitive on an industrial scale.
- Example 2 In the induction furnace used in Example 1, 495 kg of zinc Z9 is melted under a neutral atmosphere. The temperature is raised to around 600 ° C. and 4.75 kg of beryllium aluminum alloy containing 5.25% beryllium are added. The temperature is maintained at 600 ° C. until intimate dispersion of the beryllium aluminum in the zinc, under the action of electromagnetic stirring. Then, as soon as the power is turned off, the alloy is poured into energy-cooled ingot molds.
- beryllium has also made it possible to somewhat reduce the tin bath contents, since tin is intended in particular to take over from magnesium when the content of the latter metal has lowered in the bath by oxidation, and that beryllium reduces the rate of magnesium oxidation.
- the consumption of the components of the bath is due, on the one hand, to the sampling of alloy constituting the coverings of part, and on the other hand to the oxidation of some of these components in contact either with the galvanizing flux, or with the air entrained by the parts upon immersion in the molten alloy.
- alloy compositions may vary within the range of the ranges indicated.
- numerical value is understood as a central value in a usual range, such as ⁇ 5%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Description
L'invention se rapporte à un procédé pour ajuster la composition d'un alliage de zinc, destiné à la galvanisation au trempé d'aciers, y compris aciers au silicium, l'alliage étant constitué de zinc de pureté commerciale avec une teneur.pondérafe de 1 000 à 15000 p.p.m. de plomb et à titre d'additifs de l'aluminium, de l'étain et du magnésium à des teneurs pondérales choisies dans les gammes respectives (AI) 100 à 5 000 p.p.m., (Sn) 300 à 20 000 p.p.m., et (Mg) 10 à 1 000 p.p.m., le procédé consistant à ajouter, à l'alliage de zinc en fusion, déficitaire en au moins un additif, au moins une composition métallique, soluble dans le zinc en fusion, et comportant à teneur relativement élevée au moins un additif en quantité telle que le déficit soit compensé. L'invention se rapporte également à des compositions métalliques adaptées à la mise en oeuvre du procédé.The invention relates to a process for adjusting the composition of a zinc alloy, intended for the dip galvanizing of steels, including silicon steels, the alloy consisting of zinc of commercial purity with a weighted content. from 1000 to 15000 ppm of lead and as additives of aluminum, tin and magnesium at weight contents selected in the respective ranges (AI) 100 to 5000 ppm, (Sn) 300 to 20 000 ppm, and (Mg) 10 to 1000 ppm, the process consisting in adding, to the molten zinc alloy, deficient in at least one additive, at least one metallic composition, soluble in molten zinc, and comprising with a relatively high content at least one additive in quantity such that the deficit is compensated for. The invention also relates to metallic compositions suitable for implementing the method.
Le brevet français 2 366 376, déposé le 1" octobre 1976 sous le n° 76 29545 et délivré le 27 octobre 1980, décrit un alliage répondant à la composition précitée, et qui s'avère efficace dans la galvanisation au trempé d'aciers au silicium, désignés usuellement par aciers semi-calmés, calmés, et à haute teneur en silicium.French Patent 2,366,376, filed on October 1, 1976 under No. 76 29545 and issued on October 27, 1980, describes an alloy corresponding to the aforementioned composition, and which proves effective in the dip-galvanizing of steels with silicon, usually designated by semi-quenched, quenched, and high silicon steels.
On rappellera brièvement l'effet des composants de cet alliage. Le zinc à pureté commerciale correspondant aux normes AFNOR NFA, classes Z6 et Z7 comporte des teneurs maximales définies en Cuivre, Cadmium et Fer. En outre il comporte des teneurs maximales en plomb (15 000 p.p.m. pour la classe Z6, 5 000 p.p.m. pour la classe Z7). Ces teneurs en plomb, définies à l'origine par les conditions d'élaboration du zinc, se sont avérées favorables à la galvanisation en abaissant la viscosité du zinc en fusion, de sorte qu'elles ont été maintenues alors que l'évolution des procédés métallurgiques permet l'élaboration de zinc avec des teneurs en plomb inférieures à 1 000 p.p.m. Fréquemment les catégories Z6 et Z7 sont obtenues actuellement par ajout de plomb au zinc.We will briefly recall the effect of the components of this alloy. Zinc with commercial purity corresponding to AFNOR NFA standards, classes Z6 and Z7 has maximum contents defined in Copper, Cadmium and Iron. In addition, it has maximum lead contents (15,000 p.p.m. for class Z6, 5,000 p.p.m. for class Z7). These lead contents, originally defined by the conditions for the production of zinc, have proved to be favorable for galvanization by lowering the viscosity of the molten zinc, so that they have been maintained while the evolution of the processes metallurgical allows the production of zinc with lead contents lower than 1000 ppm Frequently the categories Z6 and Z7 are currently obtained by adding lead to zinc.
La présence d'aluminium réduit la réactivité du couple fer/zinc, et aux teneurs indiquées précédemment, la réactivité du zinc vis-à-vis des aciers au silicium. L'étain et le magnésium sont actifs pour réduire ou supprimer les manques de recouvrement que provoque l'alumine formée par oxydation de l'aluminium. La présence simultanée d'étain et de magnésium conduit à des résultats remarquables.The presence of aluminum reduces the reactivity of the iron / zinc couple, and at the levels indicated above, the reactivity of zinc vis-à-vis silicon steels. Tin and magnesium are active in reducing or eliminating the lack of coverage caused by the alumina formed by oxidation of aluminum. The simultaneous presence of tin and magnesium leads to remarkable results.
Cependant les bains de galvanisation au trempé voient leur composition évoluer au cours des opérations, les vitesses d'oxydations des composants, zinc, plomb et additifs, à là température d'utilisation (voisine de 450 °C) et en présence de flux de galvanisation (chlorures de zinc et d'ammonium) étant différentes, et pratiquement d'autant plus élevées que le métal est oxydable. L'oxydation se produit en surface du bain, et au contact du flux et de l'air entraîné par les pièces lors de leur immersion. Les déficits d'additifs par suite de l'oxydation portent essentiellement sur le magnésium et l'aluminium.However, dip galvanizing baths see their composition evolve during operations, the oxidation rates of components, zinc, lead and additives, at the operating temperature (around 450 ° C) and in the presence of galvanizing flux (zinc and ammonium chlorides) being different, and practically all the higher as the metal is oxidizable. Oxidation occurs on the surface of the bath, and in contact with the flow and the air entrained by the parts during their immersion. The additive deficits as a result of oxidation relate mainly to magnesium and aluminum.
Or précisément les ajouts d'aluminium et de magnésium présentent des difficultés particulières, liées à la faible densité de ces métaux, à leur grande oxydabilité, et dans une certaine mesure au fait que ces métaux ne sont pas liquides à la température des bains de zinc en fusion vers 450 °C. En effet, durant la phase qui précède la dispersion complète des ajouts par diffusion, ces métaux légers flottent à la surface du bain où ils sont exposés à l'oxydation par l'air ambiant. La vitesse de diffusion est fonction de la diffusivité des métaux additifs dans le zinc à 450 °C, et de la surface effective de contact entre phases. Bien que les diffusivités de l'aluminium et du magnésium soient relativement élevées, la surface de contact se réduit à la surface des parties immergées des blocs de métaux additifs, et l'efficacité de diffusion est fortement réduite par la présence d'une couche d'oxydes à l'interface. L'oxydation des métaux aluminium et magnésium, dans ces conditions, est prépondérante sur la dispersion. Il ne sert à rien de fragmenter les métaux additifs pour augmenter la surface de contact avec le zinc en fusion, la surface offerte à l'oxydation croissant dans la même proportion. Enfin, à 450 °C, le magnésium, surtout finement fragmenté, risque de s'enflammer et de provoquer des explosions. Par contraste l'étain, à densité et points de fusion voisins de ceux du zinc, et possédant une vitesse de diffusion comparabie à celle de ces métaux, s'ajoute au zinc sans difficultés. Le plomb, qui diffusant mal aurait tendance à se rassembler au fond du bain, est le moins oxydable des éléments présents, et ne nécessite pratiquement jamais d'ajout dans le bain de galvanisation.Now precisely the additions of aluminum and magnesium present particular difficulties, linked to the low density of these metals, to their high oxidability, and to a certain extent to the fact that these metals are not liquid at the temperature of zinc baths. molten around 450 ° C. In fact, during the phase which precedes the complete dispersion of the additions by diffusion, these light metals float on the surface of the bath where they are exposed to oxidation by ambient air. The diffusion rate is a function of the diffusivity of the additive metals in zinc at 450 ° C, and of the effective contact surface between phases. Although the diffusivities of aluminum and magnesium are relatively high, the contact surface is reduced on the surface of the immersed parts of the blocks of additive metals, and the diffusion efficiency is greatly reduced by the presence of a layer of 'oxides at the interface. The oxidation of aluminum and magnesium metals, under these conditions, is preponderant over dispersion. There is no point in fragmenting the additive metals to increase the contact surface with molten zinc, the surface offered for oxidation increasing in the same proportion. Finally, at 450 ° C, magnesium, especially finely fragmented, may ignite and cause explosions. In contrast, tin, with density and melting points close to those of zinc, and having a diffusion speed comparable to that of these metals, is easily added to zinc. Lead, which diffuses badly would tend to collect at the bottom of the bath, is the least oxidizable of the elements present, and hardly ever requires addition in the galvanizing bath.
Il est connu en métallurgie, pour apporter à un métal de base des éléments d'alliage en quantité dosée, d'ajouter au métal de base fondu des compositions métalliques où les éléments d'alliage sont relativement concentrés. Mais, si ce concept est connu en soi, les natures et teneurs des constituants des compositions métalliques doivent être déterminées en fonction des propriétés nécessaires, et, si plusieurs compositions doivent être utilisées simultanément, de leur compatibilité.It is known in metallurgy, to provide a base metal with alloying elements in metered quantity, to add metallic compositions where the alloying elements are relatively concentrated to the molten base metal. However, if this concept is known per se, the natures and contents of the constituents of the metallic compositions must be determined as a function of the properties required, and, if several compositions must be used simultaneously, of their compatibility.
On remarquera que, à partir du moment où l'on est capable de combler le déficit de chacun des additifs de l'alliage de galvanisation, on sera par là même en état de constituer cet alliage à partir de zinc de pureté commerciale et on complètera l'alliage par apport, au zinc en fusion, des additifs manquants. Autrement dit ajuster la composition de l'alliage signifie aussi bien élaborer cet alliage que lui restituer sa composition antérieure.It will be noted that, from the moment when we are able to make up for the deficit of each of the additives of the galvanizing alloy, we will thereby be able to constitute this alloy from zinc of commercial purity and we will complete the alloy by adding, to the molten zinc, missing additives. In other words, adjusting the composition of the alloy means developing this alloy as well as restoring its previous composition to it.
Aussi l'invention propose un procédé pour ajuster la composition d'un alliage de zinc, destiné à la galvanisation au trempé d'aciers, y compris aciers au silicium, l'alliage étant constitué de zinc de pureté commerciale avec une teneur pondérale de 1 000 à 15000 p.p.m. de plomb, et à titre d'additifs, de l'aluminium, de l'étain et du magnésium à des teneurs pondérales choisies dans les gammes respectives (AI) 100 à 5 000 p.p.m., (Sn) 300 à 20 000 p.p.m. et (Mg) 10 à 1 000 p.p.m., procédé suivant lequel on ajoute. à l'alliage de zinc en fusion, déficitaire en au moins un additif, au moins une composition métallique soluble dans le zinc en fusion et comportant à teneur relativement élevée au moins un additif, en quantité telle que le déficit soit compensé. caractérisé en ce que, tandis que la composition d'étain est ce métal à l'état pratiquement pur, la composition de magnésium est un alliage ternaire zinc, magnésium, aluminium avec en poids 5000 à 50000 p:p.m. de magnésium et 10 à 500 p.p.m. d'aluminium, et la composition d'aluminium,n ajoutée en quantité qui tient compte de l'ajout éventuel de ternaire zinc/magnésium/aluminium, est un alliage binaire zinc/aluminium, à teneur pondérale en aluminium voisine de 5 %.The invention therefore proposes a method for adjusting the composition of a zinc alloy, intended for the dip galvanizing of steels, including silicon steels, the alloy consisting of zinc of commercial purity with a weight content of 1 000 to 15000 ppm lead, and as additives, aluminum, tin and magnesium at weight contents selected from the respective ranges (AI) 100 to 5,000 ppm, (Sn) 300 to 20,000 ppm and (Mg) 10 to 1,000 ppm, process according to which we add. to the molten zinc alloy, deficient in at least one additive, at least one metallic composition soluble in the molten zinc and comprising at relatively high content at least one additive, in an amount such that the deficit is compensated for. characterized in that, while the tin composition is this metal in the practically pure state, the magnesium composition is a ternary zinc, magnesium, aluminum alloy with by weight 5000 to 50,000 p: pm of magnesium and 10 to 500 ppm of aluminum, and the aluminum composition, n added in quantity which takes account of the possible addition of ternary zinc / magnesium / aluminum, is a binary zinc / aluminum alloy, with an aluminum content by weight close to 5%.
On a déjà signalé que l'addition d'étain au zinc en fusion ne faisait aucune difficulté. On a choisi, pour apporter de l'aluminium sans pratiquement modifier la teneur des autres additifs, un eutectique zinc aluminium, possédant un point de fusion de 385 °C. Cet alliage connu en soi, est à 450 °C nettement moins oxydable que l'aluminium, du fait de la dilution de ce métal dans le zinc. Le choix de la composition métallique pour l'apport du magnésium a présenté quelques difficultés. L'eutectique binaire zinc magnésium, à 30 000 p.p.m. de magnésium, possède un point de solidification à 367 °C ; mais les alliages binaires zinc/magnésium voisins de l'eutectique sont trop fragiles pour être façonnés en lingots manipulables. L'addition d'aluminium permet de remédier la fragilité. L'action défragilisante de l'aluminium, pour les teneurs en magnésium, proche de celle de l'eutectique commence à être sensible à partir de 10 p.p.m.It has already been reported that the addition of tin to molten zinc was not a problem. We chose, to provide aluminum without practically modifying the content of the other additives, a zinc aluminum eutectic, having a melting point of 385 ° C. This alloy known per se is at 450 ° C significantly less oxidizable than aluminum, due to the dilution of this metal in zinc. The choice of metallic composition for the supply of magnesium presented some difficulties. The binary zinc magnesium eutectic, at 30,000 p.p.m. of magnesium, has a solidification point at 367 ° C; but the binary zinc / magnesium alloys close to the eutectic are too fragile to be shaped into manipulable ingots. The addition of aluminum makes it possible to remedy the fragility. The ironing action of aluminum, for magnesium contents, close to that of eutectics, begins to be sensitive from 10 p.p.m.
Bien entendu, la composition choisie de l'alliage de zinc pour galvanisation correspondra aux compositions préférées présentées par le brevet français 2 366 376.Of course, the composition chosen from the zinc alloy for galvanization will correspond to the preferred compositions presented by French patent 2,366,376.
Cependant la poursuite des travaux qui ont conduit aux compositions d'alliages de galvanisation précitées ont fait apparaître l'intérêt d'ajouter au zinc de pureté commerciale à 1 000-15000 p.p.m. de plomb et aux additifs aluminium, étain et magnésium, du béryllium à des teneurs pondérales comprises entre 4 et 100 p.p.m. en réduisant l'oxydation superficielle de l'alliage fondu, et l'écoulement de l'alliage fondu à la surface des pièces au sortir du bain. Le béryllium est très peu soluble dans le zinc pur (vers 450 °C la.solubilité est de l'ordre de 100 p.p.m.) et il est pratiquement exclu d'apporter le béryllium sous forme de binaire zinc/béryllium. La solubilité du béryllium dans des métaux courants, n'est notable que pour le cuivre, le nickel, le fer et l'aluminium. Le nickel et le cuivre sont des métaux à éviter dans les recouvrements de galvanisation considérés. On aurait pu tolérer le fer eu égard aux traces de fer qui inévitablement se dissolvent dans l'alliage lors de l'immersion de pièces en acier. Mais les alliages fer béryllium ne se dissolvent pratiquement pas dans le zinc à 600 °C. L'apport de béryllium est obtenu à l'aide d'un alliage ternaire zinc/aluminium/béryllium, élaboré par dissolution d'un alliage aluminium béryllium à 4-8 % de béryllium dans un zinc pur. La composition pondérale de l'alliage ternaire est : aluminium 5 000 à 50 000 p.p.m., rapport pondéral aluminium béryllium 11,5 à 24 et zinc le reste.However, the continuation of the work which has led to the above-mentioned galvanizing alloy compositions has revealed the advantage of adding zinc of commercial purity to 1000-15000 ppm of lead and aluminum, tin and magnesium additives, beryllium to weight contents of between 4 and 100 ppm by reducing the surface oxidation of the molten alloy, and the flow of the molten alloy on the surface of the parts after leaving the bath. Beryllium is very poorly soluble in pure zinc (around 450 ° C. the solubility is of the order of 100 p.p.m.) and it is practically excluded to provide beryllium in the form of zinc / beryllium binary. The solubility of beryllium in common metals is only notable for copper, nickel, iron and aluminum. Nickel and copper are metals to be avoided in the considered galvanizing coatings. Iron could have been tolerated in view of the traces of iron which inevitably dissolve in the alloy during the immersion of steel parts. But beryllium iron alloys hardly dissolve in zinc at 600 ° C. The beryllium supply is obtained using a ternary zinc / aluminum / beryllium alloy, produced by dissolving an aluminum beryllium alloy containing 4-8% beryllium in pure zinc. The weight composition of the ternary alloy is: aluminum 5,000 to 50,000 p.p.m., beryllium aluminum weight ratio 11.5 to 24 and zinc the rest.
On précise que le terme zinc est utilisé ici dans son acception usuelle de métal de base contenant des impuretés courantes à des teneurs où les propriétés du métal, en relation avec l'application envisagée, ne sont pas affectées de façon appréciable. On distingue ainsi les impuretés des éléments alliants ou additifs qui, aux teneurs spécifiées, agissent sur les propriétés du métal de base, en relation avec l'application envisagée. Cependant lorsque le métal de base contient, comme impureté initiale un élément qui est prévu comme additif, à une teneur nettement supérieure à celle de l'impureté initiale, la teneur à titre d'additif s'entend de la somme de la teneur initiale en impureté, et de la quantité d'additif ajoutée par la suite.It should be noted that the term zinc is used here in its usual meaning as a base metal containing common impurities at levels where the properties of the metal, in relation to the intended application, are not appreciably affected. A distinction is thus made between impurities from alloying elements or additives which, at the specified contents, act on the properties of the base metal, in relation to the intended application. However, when the base metal contains, as initial impurity an element which is intended as an additive, at a content significantly higher than that of the initial impurity, the content as an additive is understood to be the sum of the initial content in impurity, and the amount of additive added thereafter.
Une composition pondérale préférée d'alliage de galvanisation avec additifs aluminium, étain, magnésium et béryllium correspond à : étain 500 ± 25 p.p.m., aluminium 375 = 25 p.p.m., magnésium 60 ± 3 p.p.m. et béryllium 6,5 ± 0,5 p.p.m., du zinc à 1 000-15000 p.p.m. de plomb constituant le reste.A preferred composition by weight of galvanizing alloy with aluminum, tin, magnesium and beryllium additives corresponds to: tin 500 ± 25 ppm, aluminum 375 = 25 ppm, magnesium 60 ± 3 ppm and beryllium 6.5 ± 0.5 ppm, zinc at 1000-15000 ppm of lead constituting the remainder.
Les alliages ternaires préférés pour apporter respectivement du magnésium et du béryllium ont des compositions pondérales magnésium 30 000 ± 1 500 p.p.m., aluminium 100 ± 5 p.p.m., et aluminium 9 000 ± 450 p.p.m., béryllium 470 ± 50 p.p.m., dans les deux cas le reste étant du zinc.The preferred ternary alloys for supplying magnesium and beryllium respectively have weight compositions of magnesium 30,000 ± 1,500 ppm, aluminum 100 ± 5 ppm, and aluminum 9,000 ± 450 ppm, beryllium 470 ± 50 ppm, in both cases the rest being zinc.
Pour éviter d'avoir à contrôler trop fréquemment la teneur d'un bain de galvanisation au trempé, on peut compenser systématiquement les pertes en additifs qui se consomment au cours de la galvanisation, par des ajouts de compositions métalliques. Des essais ont montré que par tonne d'articles galvanisés en acier on devait ajouter 2 à 25 kg de ternaire au béryllium et 0,5 à 5 kg de ternaire au magnésium ; les valeurs d'ajout préférables sont de 12,5 ± 0,6 kg de ternaire au béryllium et 1,4 ± 0,07 kg de ternaire au magnésium.To avoid having to control the content of a dip galvanizing bath too frequently, it is possible to systematically compensate for the losses of additives which are consumed during the galvanization, by additions of metallic compositions. Tests have shown that per tonne of galvanized steel articles, 2 to 25 kg of beryllium ternary and 0.5 to 5 kg of magnesium ternary should be added; preferable addition values are 12.5 ± 0.6 kg of beryllium ternary and 1.4 ± 0.07 kg of magnesium ternary.
Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, illustrée par des exemples.The characteristics and advantages of the invention will become apparent from the description which follows, illustrated by examples.
Les développements relatifs à l'alliage pour galvanisation objet du brevet français 2 366 376 ont fait apparaître, comme il était qualitativement prévisible, que, au cours des opérations de galvanisation au trempé, la composition de l'alliage de zinc en fusion se modifiait, avec un appauvrissement en additifs les plus oxydables au fur et à mesure que des pièces étaient galvanisées. Cette oxydation, lente sur un bain en repos sur lequel se forme une couche d'oxydes protecteurs, est accélérée fortement par l'action des flux de galvanisation (chlorures de zinc et d'ammonium), et de l'air entraîné par les pièces à l'immersion. Les produits de réaction du flux et de l'alliage, en présence d'air (chlorures, oxydes, oxychlorures...), sont pour une part volatils, et pour une autre part forment les crasses superficielles éliminées par râclage ou spatulage. Il était donc très intéressant pour utilisateurs de l'alliage de galvanisation de pouvoir périodiquement réajuster la composition de l'alliage en fusion à sa composition d'origine, afin d'éviter d'avoir à vider les cuves où l'alliage était parvenu aux limites de composition convenables, et reconstituer les bains avec de l'alliage neuf. Ces opérations de renouvellement des bains de galvanisation par immersion se révélaient coûteuses au moins en immobilisation d'installation et manutention, si le fabricant d'alliage reprenait l'alliage usagé pour le rénover.The developments relating to the alloy for galvanization which is the subject of French patent 2,366,376 have shown, as it was qualitatively foreseeable, that, during dip galvanizing operations, the composition of the zinc alloy in fusion changed, with a depletion of the most oxidizable additives as parts are galvanized. This slow oxidation on a quiescent bath on which a layer of protective oxides is formed, is greatly accelerated by the action of galvanizing fluxes (zinc and ammonium chlorides), and the air entrained by the parts. immersion. The reaction products of the flux and of the alloy, in the presence of air (chlorides, oxides, oxychlorides ...), are partly volatile, and for another part form the superficial dross eliminated by scraping or spatulation. It was therefore very advantageous for users of the galvanizing alloy to be able to periodically readjust the composition of the molten alloy to its original composition, in order to avoid having to empty the tanks where the alloy had reached the suitable composition limits, and reconstitute the baths with new alloy. These operations for renewing the dip galvanizing baths were found to be costly, at least in terms of installation and handling downtime, if the alloy manufacturer took back the used alloy to renovate it.
Parmi les constituants de l'alliage, le zinc, qui constitue au moins 95 % de l'alliage en poids, peut supporter quelques pertes par oxydation sans que la composition de l'alliage soit sensiblement modifiée ; le plomb et l'étain, moins oxydables que le zinc, ne subissent que des pertes négligeables par oxydation. Par contre l'aluminium et le magnésium disparaissent par oxydation relativement rapidement. Le réajustement de la composition de l'alliage exige des ajouts préférentiels d'aluminium et de magnésium.Among the constituents of the alloy, zinc, which constitutes at least 95% of the alloy by weight, can withstand some losses by oxidation without the composition of the alloy being substantially modified; lead and tin, less oxidizable than zinc, suffer only negligible losses by oxidation. On the other hand, aluminum and magnesium disappear by oxidation relatively quickly. The readjustment of the composition of the alloy requires preferential additions of aluminum and magnesium.
Or, si des ajouts d'étain (densité 7,34 point de fusion 231,8 °C) et de zinc de pureté commerciale (densité 7,14 point de fusion 419 °C) ne présentent aucune difficulté d'addition à un bain de zinc allié à une température d'environ 450 °C, il n'en est pas de même pour l'aluminium (densité 2.7 point de fusion 658 °C) et le magnésium (densité 1,74 point de fusion 651 °C). La dissolution de ces derniers métaux ne peut se produire que par diffusion dans le zinc en fusion ; du fait de leur faible densité ils ont tendance à flotter sur le bain de zinc. En outre la couche d'alumine en surface de l'aluminium fait écran pour la diffusion de l'aluminium. Enfin, à la température du bain de zinc, le magnésium s'oxyde en profondeur, et est proche de sa température d'inflammation spontanée dans l'air. D'ailleurs, pour l'élaboration normale de l'alliage de galvanisation, on opère en sorte de minimiser l'oxydation de l'aluminium et du magnésium en évitant qu'ils soient en contact avec de l'air.However, if additions of tin (density 7.34 melting point 231.8 ° C) and zinc of commercial purity (density 7.14 melting point 419 ° C) present no difficulty in adding to a bath zinc alloyed at a temperature of about 450 ° C, it is not the same for aluminum (density 2.7 melting point 658 ° C) and magnesium (density 1.74 melting point 651 ° C) . The dissolution of these latter metals can only occur by diffusion in molten zinc; due to their low density they tend to float on the zinc bath. In addition, the alumina layer on the surface of the aluminum forms a screen for the diffusion of the aluminum. Finally, at the temperature of the zinc bath, the magnesium oxidizes in depth, and is close to its spontaneous ignition temperature in the air. Moreover, for the normal development of the galvanizing alloy, one operates so as to minimize the oxidation of aluminum and magnesium by preventing them from being in contact with air.
Il était donc nécessaire d'effectuer les ajouts d'aluminium et de magnésium sous forme de compositions métalliques ou alliages qui répondent aux critères suivants :
- - ne contenir que des métaux entrant dans la composition de l'alliage de galvanisation ;
- - ne pas être trop rapidement oxydables à la température de fusion, et ne pas nécessiter de précautions anormales d'emploi ;
- - de préférence posséder un point de fusion voisin de 450 °C, pour aider la diffusion par une dispersion de l'additif fondu.
- - contain only metals used in the composition of the galvanizing alloy;
- - not to be too rapidly oxidizable at the melting temperature, and not to require abnormal precautions for use;
- - Preferably have a melting point close to 450 ° C, to help the diffusion by a dispersion of the molten additive.
En outre il est souhaitable, pour permettre une souplesse d'ajustement de composition de l'alliage de galvanisation, que chacune des compositions métalliques utilisées soit affectée à un métal additif particulier, en ce sens que la concentration de l'additif visé dans la composition doit être très supérieure à la concentration dans l'alliage, tandis que les rapports de concentration des autres métaux dans la composition ne soient pas trop éloignés de ce qu'ils sont dans l'alliage ou tout au moins que les rapports de concentration des constituants de la composition par rapport à celle de l'additif visé soient nettement plus faibles que les rapports dans l'alliage.In addition, to allow flexibility in adjusting the composition of the galvanizing alloy, it is desirable that each of the metal compositions used be assigned to a particular additive metal, in the sense that the concentration of the additive targeted in the composition must be much higher than the concentration in the alloy, while the concentration ratios of the other metals in the composition are not too far from what they are in the alloy or at least that the concentration ratios of the constituents of the composition compared to that of the targeted additive are significantly lower than the ratios in the alloy.
Pour ce qui est de l'aluminium, il existe un alliage zinc aluminiumm à 5 % en poids d'aluminium, sa composition correspondant à l'eutectique à point de fusion 385 °C, et convient donc comme composition métallique affectée à l'aluminium.With regard to aluminum, there is a zinc aluminum alloy 5% by weight of aluminum, its composition corresponding to the eutectic at melting point 385 ° C., and is therefore suitable as a metallic composition assigned to aluminum. .
Pour ce qui est du magnésium, il existe un eutectique zinc/magnésium à 3 % en poids de magnésium, avec un point de fusion de 367°C: Cet eutectique est malheureusement trop fragile pour être industriellement utilisable, les lingots coulés se brisant au refroidissement, ou au cours des transports et manipulations indispensables. Les compositions suffisamment voisines de l'eutectique pour avoir un point de fusion acceptable (inférieur à environ 450 °C) sont pratiquement également trop fragiles. Mais il s'est avéré que l'ajout de faibles quantités d'aluminium diminuaient de façon importante la fragilité des binaires zinc/magnésium. L'effet commence à se faire sentir à 10 p.p.m. (en poids) d'aluminium. En outre la présence d'aluminium diminue l'oxydation du magnésium à la coulée du lingot. Vers 100 p.p.m. d'aluminium la fragilité ne décroît pratiquement plus lorsque la teneur en aluminium croît ; il est inutile de dépasser 500 p.p.m. d'aluminium, aucun avantage ne venant compenser la perte de souplesse d'ajustement de la composition de l'alliage de galvanisation ; cette perte de souplesse résultant de ce qu'un déficit en magnésium seul se compense par un enrichissement en aluminium. On obtient des compositions métalliques convenables avec de 5000 à 50000 p.p.m. en poids de magnésium et les quantités d'aluminium précitées. On préfère une composition proche de l'eutectique avec 30 000 ± 1 500 p.p.m. de magnésium et 100 ± 5 p.p.m. d'aluminium.Regarding magnesium, there is a zinc / magnesium eutectic at 3% by weight of magnesium, with a melting point of 367 ° C. , or during transport and essential handling. The compositions sufficiently close to the eutectic to have an acceptable melting point (less than about 450 ° C.) are practically also too fragile. But it turned out that the addition of small amounts of aluminum significantly reduced the brittleness of the zinc / magnesium binaries. The effect begins to be felt at 10 p.p.m. (by weight) of aluminum. In addition, the presence of aluminum reduces the oxidation of magnesium when the ingot is poured. Around 100 p.p.m. of aluminum, the brittleness practically no longer decreases when the aluminum content increases; it is unnecessary to exceed 500 p.p.m. of aluminum, no advantage compensating for the loss of flexibility in adjusting the composition of the galvanizing alloy; this loss of flexibility resulting from the fact that a deficit in magnesium alone is compensated for by an enrichment in aluminum. Obtainable metal compositions are obtained with 5000 to 50,000 p.p.m. by weight of magnesium and the quantities of aluminum mentioned above. We prefer a composition close to eutectic with 30,000 ± 1,500 p.p.m. of magnesium and 100 ± 5 p.p.m. of aluminum.
Dans un four à induction à fréquence industrielle, avec un creuset de 150 litres, équipé pour travailler en atmosphère contrôlée, on met en fusion sous atmosphère neutre 485 kg de zinc qualité Z9 ; on porte la température du zinc liquide à 600 °C et on ajoute 15 kg de magnésium à 99,9 % de pureté ; puis on ajoute 50 g d'aluminium à 99,5 % de pureté. La température est alors abaissée à environ 500 °C et maintenue à cette température pendant 15 minutes, pour que le brassage électromagnétique assure l'homogénéité de l'alliage. Puis on coupe le chauffage, et on coule l'alliage en lingotières refroidies alors que la température est comprise entre 450° et 420 °C.In an industrial frequency induction furnace, with a 150 liter crucible, equipped to work in a controlled atmosphere, 485 kg of Z9 quality zinc is melted under a neutral atmosphere; the temperature of the liquid zinc is brought to 600 ° C. and 15 kg of magnesium at 99.9% purity are added; then 50 g of aluminum at 99.5% purity are added. The temperature is then lowered to around 500 ° C and maintained at this temperature for 15 minutes, so that the electromagnetic stirring ensures the homogeneity of the alloy. Then the heating is switched off, and the alloy is poured into cooled ingot molds when the temperature is between 450 ° and 420 ° C.
Dans une cuve de galvanisation de capacité 150 tonnes de zinc, on met 80 tonnes de zinc Z6 à 1,4 % de plomb, 67,3 tonnes de zinc Z7 à 0,45 % de plomb, 375 kg d'étain, et 1,8 tonne d'alliage zinc aluminium à 5 % en poids d'aluminium. Après fusion des métaux, on ajoute 500 kg d'alliage élaboré selon l'exemple 1. Une analyse du bain donne en poids Plomb 9 500 p.p.m., Etain 2 500 p.p.m., Aluminium 60C p.p.m., Magnésium 99 p.p.m., le reste étant du Zinc avec les impuretés usuelles à teneur tolérée.In a galvanizing tank with a capacity of 150 tonnes of zinc, 80 tonnes of zinc Z6 at 1.4% lead are put, 67.3 tonnes of zinc Z7 at 0.45% lead, 375 kg of tin, and 1 , 8 tonnes of zinc aluminum alloy at 5% by weight of aluminum. After melting the metals, 500 kg of alloy produced according to Example 1 are added. An analysis of the bath gives by weight Lead 9,500 ppm, Tin 2,500 ppm, Aluminum 60C ppm, Magnesium 99 ppm, the remainder being Zinc with the usual impurities with a tolerated content.
Des travaux complémentaires sur les alliages pour galvanisation par immersion précédents ont montré que le béryllium, connu comme élément réduisant la vitesse d'oxydation d'alliages de fonderies à base d'aluminium ou de zinc, avait des effets faborables sur les alliages pour galvanisation :
- - une réduction de la vitesse de formation d'une couche superficielle d'oxyde sur les bains en fusion ;
- - un meilleur écoulement du zinc fondu sur la surface de pièces à la sortie du bain de galvanisation, cet effet résultant sembie-t-il de la réduction de l'épaisseur et de la ténacité de la couche d'oxyde sur le recouvrement de zinc, cette couche d'oxyde retenant l'excès de zinc ;
- - une amélioration de la facilité d'évacuation des crasses superficielles vers les bords de cuve en préalable à l'émersion des pièces, opération dite couramment spatulage.
- a reduction in the rate of formation of a surface layer of oxide on the molten baths;
- - a better flow of the molten zinc on the surface of parts at the exit of the galvanizing bath, does this effect seem to result from the reduction in the thickness and the tenacity of the oxide layer on the zinc coating , this oxide layer retaining excess zinc;
- - An improvement in the ease of evacuation of superficial dirt towards the edges of the tank prior to the emersion of the parts, an operation commonly known as spatulation.
L'action du béryllium se fait sentir pour des teneurs très faibles, à partir de 4 p.p.m. (en poids). Au-delà de 100 p.p.m. on constate qu'il se produit, à la température usuelle des bains de galvanisation en opération, une ségrégation du béryllium qui se rassemble en surface et est évacué avec les crasses. On a constaté en outre, à partir de 15 p.p.m. en poids de béryllium, pour des bains à teneur en aluminium relativement élevée, supérieure à 550 p.p.m., une action synergique de l'aluminium et du béryllium sur la cinétique de la réaction fer-zinc (formation de composés intermétalliques).The action of beryllium is felt for very low contents, from 4 p.p.m. (by weight). Beyond 100 p.p.m. it is observed that there occurs, at the usual temperature of the galvanizing baths in operation, a segregation of beryllium which collects on the surface and is evacuated with the dross. It has also been found, from 15 ppm by weight of beryllium, for baths with a relatively high aluminum content, greater than 550 ppm, a synergistic action of aluminum and beryllium on the kinetics of the iron-zinc reaction (formation of intermetallic compounds).
Lors des travaux préparatoires, on a consulté des études sur la solubilité du béryllium dans le zinc, en partant d'alliages frittés de béryllium à 99% de pureté et de zinc pur. La courbe de liquidus sur le diagramme binaire passe par les points suivants :
Ce tableau fait ressortir que, même en utilisant un alliage binaire de composition correspondant au liquidus à 696 °C, et refroidi suffisamment rapidement pour que le béryllium reste en sursaturation, les tonnages à utiliser pour que l'alliage final soit dans la gamme 4-100 p.p.m. représentent de 0,5 à 12,5 % de la masse totale de l'alliage, soit pour un bain de 150 tonnes, de 0,75 à 18,75 tonnes. Par ailleurs, la diffusion du béryllium dans le zinc en fusion, à des températures éloignées du point de fusion du béryllium (1 2800C) est lente, et l'élaboration de l'alliage binaire à des températures au-delà de 700 °C est difficile en raison notamment de la tension de vapeur du zinc (point d'ébullition 910 °C). L'élaboration de tels alliages est prohibitive à l'échelle industrielle.This table shows that, even using a binary alloy of composition corresponding to the liquidus at 696 ° C, and cooled sufficiently quickly so that the beryllium remains in supersaturation, the tonnages to be used so that the final alloy is in the range 4- 100 ppm represent from 0.5 to 12.5% of the total mass of the alloy, that is to say for a 150-ton bath, from 0.75 to 18.75 tons. Furthermore, the diffusion of beryllium in molten zinc, at temperatures far from the melting point of beryllium (1 2800C) is slow, and the development of the binary alloy at temperatures above 700 ° C is difficult due in particular to the vapor pressure of zinc (boiling point 910 ° C). The development of such alloys is prohibitive on an industrial scale.
Pour introduire des teneurs relativement élevées de béryllium dans le zinc, on a imaginé d'apporter ce béryllium sous forme d'un alliage aisément soluble dans le zinc en fusion à des températures raisonnablement élevées, cet alliage étant de préférence un alliage commercialisé, pour des raisons évidentes de prix de revient. On a trouvé des alliages usuels Cu-Be à 4 %, AI-Be à 5 %, Fe-Be à 10 % et Ni-Be à 25 %. La présence de cuivre ou de nickel dans les bains de galvanisation au trempé est pratiquement exclue ou tout au moins strictement limitée. comme le fer est toujours présent dans les bains de galvanisation de pièces en acier par suite de la dissolution du fer des pièces en acier par suite de la dissolution du fer des pièces, on aurait pu tolérer d'ajouter un peu de fer. Le binaire fer béryllium s'est avéré pratiquement insoluble dans le zinc à 600 °C ; après 48 heures à cette température, les quantités d'alliage fer-béryllium dissoutes sont impondérables.To introduce relatively high contents of beryllium in zinc, it has been imagined to bring this beryllium in the form of an alloy readily soluble in molten zinc at reasonably high temperatures, this alloy preferably being a commercially available alloy, for obvious reasons of cost price. Common alloys Cu-Be at 4%, AI-Be at 5%, Fe-Be at 10% and Ni-Be at 25% have been found. The presence of copper or nickel in dip galvanizing baths is practically excluded or at least strictly limited. as iron is always present in the galvanizing baths of steel parts due to the dissolution of iron from steel parts as a result of the dissolution of the iron of the pieces, we could have tolerated adding a little iron. The beryllium iron binary was found to be practically insoluble in zinc at 600 ° C; after 48 hours at this temperature, the quantities of dissolved iron-beryllium alloy are imponderable.
On a par contre obtenu de bons résultats en dissolvant de l'alliage aluminium béryllium à 5 % dans le zinc, à une température où cet alliage est fondu. Pratiquement on peut utiliser un alliage binaire contenant 4 à 8 % de béryllium en poids, de sorte que le rapport pondéral aluminium/béryllium dans l'alliage ternaire sera compris entre 24 et 11,5. Les teneurs en aluminium du ternaire doivent être telles que 'le point de fusion soit de l'ordre de 450 °C, soit 0,5-5 % en poids. Toutefois il est préférable d'utiliser une teneur en aluminium vers le bas de la gamme indiquée pour réduire la tendance à la ségrégation du béryllium.On the other hand, good results have been obtained by dissolving 5% aluminum beryllium alloy in zinc, at a temperature where this alloy is molten. In practice, a binary alloy containing 4 to 8% beryllium by weight can be used, so that the weight ratio aluminum / beryllium in the ternary alloy will be between 24 and 11.5. The aluminum contents of the ternary must be such that the melting point is of the order of 450 ° C., ie 0.5-5% by weight. However, it is preferable to use an aluminum content at the bottom of the indicated range to reduce the tendency for beryllium to segregate.
Dans le four à induction utilisée à l'exemple 1, on porte à fusion, sous atmosphère neutre 495 kg de zinc Z9. On élève la température vers 600 °C et on ajoute 4,75 kg d'alliage aluminium béryllium à 5,25 % de béryllium. On maintient la température de 600 °C jusqu'à dispersion intime de l'aluminium béryllium dans le zinc, sous l'action du brassage électromagnétique. Puis, dès la coupure de l'alimentation, on coule l'alliage dans des lingotières énergétiquement refroidies.In the induction furnace used in Example 1, 495 kg of zinc Z9 is melted under a neutral atmosphere. The temperature is raised to around 600 ° C. and 4.75 kg of beryllium aluminum alloy containing 5.25% beryllium are added. The temperature is maintained at 600 ° C. until intimate dispersion of the beryllium aluminum in the zinc, under the action of electromagnetic stirring. Then, as soon as the power is turned off, the alloy is poured into energy-cooled ingot molds.
L'addition de béryllium a permis en outre de réduire quelque peu les teneurs de bain en étain, étant donné que l'étain est prévu notamment pour prendre le relais du magnésium lorsque la teneur de ce dernier métal s'est abaissée dans le bain par suite d'oxydation, et que le béryllium réduit la vitesse d'oxydation du magnésium.The addition of beryllium has also made it possible to somewhat reduce the tin bath contents, since tin is intended in particular to take over from magnesium when the content of the latter metal has lowered in the bath by oxidation, and that beryllium reduces the rate of magnesium oxidation.
Dans une cuve de galvanisation de capacité 150 tonnes, on met 147 tonnes de zinc Z7, à 0,31 % en poids de plomb, 75 kg d'étain et 750 kg de binaire zinc aluminium à 5 % d'aluminium. On porte à température de fusion. Puis lorsque tout le bain est en fusion, on ajoute 300 kg de ternaire zincmagnésium-aluminium préparé suivant l'exemple 1, et 2020 kg de ternaire zinc-aluminium-béryllium préparé suivant l'exemple 3.In a 150-ton capacity galvanizing tank, 147 tonnes of zinc Z7, 0.31% by weight of lead, 75 kg of tin and 750 kg of binary zinc aluminum to 5% aluminum are put. It is brought to melting temperature. Then, when the whole bath is in fusion, 300 kg of zincmagnesium-aluminum ternary prepared according to Example 1 are added, and 2020 kg of zinc-aluminum-beryllium ternary prepared according to Example 3.
Une analyse du bain donne en poids : plomb 3 000 p.p.m., étain 500 p.p.m., aluminium 370 p.p.m., magnésium 60 p.p.m., béryllium 7 p.p.m.An analysis of the bath gives by weight: lead 3,000 p.p.m., tin 500 p.p.m., aluminum 370 p.p.m., magnesium 60 p.p.m., beryllium 7 p.p.m.
on a déjà signalé que la mise au point de l'utilisation de combinaisons métalliques concentrées en un additif avait été faite plus spécialement pour permettre de réajuster les teneurs en additifs des alliages de galvanisation au fur et à mesure de l'épuisement en additifs consécutif à la galvanisation de pièces, la première constitution des bains de galvanisation au trempé bénéficiant de la souplesse de composition permise par l'utilisation de ces combinaisons métalliques.it has already been reported that the development of the use of metallic combinations concentrated in an additive had been made more specifically to allow the readjustment of the additive contents of the galvanizing alloys as the additives were used up following the galvanization of parts, the first constitution of dip galvanizing baths benefiting from the flexibility of composition allowed by the use of these metallic combinations.
La consommation des composants du bain est due, d'une part, au prélèvement d'alliage constituant les recouvrements de pièce, et d'autre part à l'oxydation de certains de ces composants au contact soit du flux de galvanisation, soit de l'air entraîné par les pièces à l'immersion dans l'alliage en fusion.The consumption of the components of the bath is due, on the one hand, to the sampling of alloy constituting the coverings of part, and on the other hand to the oxidation of some of these components in contact either with the galvanizing flux, or with the air entrained by the parts upon immersion in the molten alloy.
Les travaux effectués par le Demandeur ont établi que, si de façon stricte les consommations en aluminium, magnésium et béryllium étaient sensiblement proportionnelles à la quantité de flux mis en ceuvre, c'est-à-dire à la surface des pièces à recouvrir, il s'établissait une péréquation entre des pièces minces et des pièces épaisses (en considérant une épaisseur fictive rapport du volume à la surface de pièce), de sorte que les apports en compositions métalliques peuvent être proportionnels au tonnage de pièces galvanisées, sans que la composition du bain de galvanisation évolue trop vite. Ceci permet d'espacer les analyses de composition, et les réajustements de composition qui y correspondent.The work carried out by the Applicant established that, if in a strict manner the consumption of aluminum, magnesium and beryllium were appreciably proportional to the quantity of flux implemented, that is to say to the surface of the parts to be covered, it there was an equalization between thin parts and thick parts (considering a fictitious thickness ratio of volume to the surface of the part), so that the contributions in metallic compositions can be proportional to the tonnage of galvanized parts, without the composition of the galvanizing bath evolves too quickly. This makes it possible to space composition analyzes, and the corresponding readjustments of composition.
Pour un alliage de galvanisation élaboré suivant l'exemple 4, on a déterminé que le maintien de la composition nécessitait des ajouts de compositions métalliques élaborées suivant les exemples 1 et 3, respectivement dans les gammes 0,5-5,0 kg et 2,25 kg par tonne d'acier galvanisé.For a galvanizing alloy produced according to Example 4, it was determined that maintaining the composition required the addition of metallic compositions prepared according to Examples 1 and 3, respectively in the ranges 0.5-5.0 kg and 2, 25 kg per ton of galvanized steel.
Entretien d'un bain de galvanisation au trempé.Maintenance of a dip galvanizing bath.
Dans une cuve de galvanisation de capacité 150 tonnes, contenant cette quantité d'alliage de galvanisation élaboré suivant l'exemple 4, on galvanise des pièces en acier de construction au silicium, à la cadence moyenne de 20 tonnes/jour.In a galvanizing tank with a capacity of 150 tonnes, containing this quantity of galvanizing alloy prepared according to Example 4, parts of structural steel are galvanized with silicon, at an average rate of 20 tonnes / day.
Des essais ont montré que, pour des pièces de ce genre la composition du bain était stabilisée au mieux par ajout de 1,4 kg d'alliage ternaire suivant l'exemple 1, et 12,5 kg d'aliiage ternaire suivant l'exemple 3. En conséquence, on ajoute chaque jour au bain, de préférence dans une période d'inactivité, 28 kg de composition métallique au magnésium suivant l'exemple 1, et 250 kg de composition métallique au béryllium suivant l'exemple 3.Tests have shown that, for parts of this kind, the composition of the bath was stabilized at best by adding 1.4 kg of ternary alloy according to Example 1, and 12.5 kg of ternary alloy according to Example 3. Consequently, the bath is added daily, preferably during a period of inactivity, 28 kg of metallic composition with magnesium according to example 1, and 250 kg of metallic composition with beryllium according to example 3.
On peut envisager l'élaboration de composition métallique quaternaire, telle que celle qui résulterait du mélange des ternaires suivant les exemples 1 et 3, dans les proportions correspondant aux ajouts d'entretien de l'exemple 5.It is possible to envisage the preparation of a quaternary metallic composition, such as that which would result from mixing the ternaries according to Examples 1 and 3, in the proportions corresponding to the maintenance additions of Example 5.
Pour réaliser une telle composition métallique, on porte à fusion 494 kg de zinc Z9 sous atmosphère neutre, et on élève la température jusqu'à 675 °C. On ajoute 1,5 kg de magnésium, on laisse descendre la température à 625 °C, on ajoute 4,25 kg d'alliage aluminium-béryllium à 5,25 % en poids de béryllium, et, dès que le brassage électromagnétique a assuré la dispersion de l'aluminium-béryllium, on coule en lingotières énergiquement refroidies.To produce such a metallic composition, 494 kg of zinc Z9 is melted under a neutral atmosphere, and the temperature is raised to 675 ° C. 1.5 kg of magnesium are added, the temperature is allowed to drop to 625 ° C., 4.25 kg of aluminum-beryllium alloy at 5.25% by weight of beryllium is added, and, as soon as the electromagnetic stirring has ensured the aluminum-beryllium dispersion, it is poured into energy-cooled ingot molds.
Bien entendu l'invention n'est pas limitée aux exemples décrit, mais en embrasse toutes les variantes d'exécution. Notamment les compositions d'alliages peuvent varier dans l'étendue des fourchettes indiquées. En outre, là où une composition est indiquée par une teneur chifrée pour chaque composant, il va de soi que la valeur chiffrée s'entend comme valeur centrale dans une fourchette usuelle, telle que ±5%.Of course the invention is not limited to the examples described, but embraces all the variant embodiments. In particular, the alloy compositions may vary within the range of the ranges indicated. In addition, where a composition is indicated by an encrypted content for each component, it goes without saying that the numerical value is understood as a central value in a usual range, such as ± 5%.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8105955A FR2502641B1 (en) | 1981-03-25 | 1981-03-25 | PROCESS FOR ADJUSTING THE COMPOSITION OF A ZINC ALLOY FOR QUENCHING GALVANIZATION, BY ADDING CONCENTRATED METAL COMPOSITIONS AS AN ALLOY ADDITIVE, AND ADDITION COMPOSITIONS |
FR8105955 | 1981-03-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0061407A1 EP0061407A1 (en) | 1982-09-29 |
EP0061407B1 true EP0061407B1 (en) | 1985-07-17 |
Family
ID=9256631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82400522A Expired EP0061407B1 (en) | 1981-03-25 | 1982-03-23 | Method to adjust the composition of a zinc alloy for tempered galvanization by adding concentrated metallic alloying additives, and compositions of the additives |
Country Status (6)
Country | Link |
---|---|
US (1) | US4439397A (en) |
EP (1) | EP0061407B1 (en) |
CA (1) | CA1177678A (en) |
DE (1) | DE3264732D1 (en) |
FR (1) | FR2502641B1 (en) |
NO (1) | NO820994L (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1335867C (en) * | 1988-09-02 | 1995-06-13 | Verdun Hildreth Farnsworth | Rare earth and aluminium containing galvanising bath |
ZA971076B (en) * | 1996-02-23 | 1997-08-25 | Union Miniere Sa | Hot-dip galvanizing bath and process. |
US6569268B1 (en) | 2000-10-16 | 2003-05-27 | Teck Cominco Metals Ltd. | Process and alloy for decorative galvanizing of steel |
US7182824B2 (en) * | 2003-06-17 | 2007-02-27 | Nisshin Steel Co., Ltd. | Method of manufacturing zinc alloy ingot |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2195566A (en) * | 1938-04-23 | 1940-04-02 | American Zinc Products Company | Zinc base alloy |
DE810222C (en) * | 1950-06-10 | 1951-08-06 | Karl Dipl-Ing Lorenz | Process and device for galvanizing sheet metal and objects in aluminum-alloyed baths |
NL252995A (en) * | 1959-08-29 | |||
US3164464A (en) * | 1961-01-09 | 1965-01-05 | Dow Chemical Co | Method of introducing magnesium into galvanizing baths |
US3320040A (en) * | 1963-08-01 | 1967-05-16 | American Smelting Refining | Galvanized ferrous article |
FR1396546A (en) * | 1964-03-13 | 1965-04-23 | Vallourec | Process for supplying zinc to galvanizing tanks and installation for implementing this process |
US3480465A (en) * | 1966-03-30 | 1969-11-25 | Shichiro Ohshima | Method of chemically bonding aluminum or aluminum alloys to ferrous alloys |
FR2273873A1 (en) * | 1974-06-07 | 1976-01-02 | British Steel Corp | Refining alloy steel - by top blowing with oxygen and introducing a fluid to agitate the melt |
FR2366376A1 (en) * | 1976-10-01 | 1978-04-28 | Dreulle Noel | ALLOY INTENDED FOR THE QUENCH GALVANIZATION OF STEELS, INCLUDING STEELS CONTAINING SILICON, AND GALVANIZATION PROCESS SUITABLE FOR THIS ALLOY |
-
1981
- 1981-03-25 FR FR8105955A patent/FR2502641B1/en not_active Expired
-
1982
- 1982-03-23 US US06/361,081 patent/US4439397A/en not_active Expired - Fee Related
- 1982-03-23 CA CA000399113A patent/CA1177678A/en not_active Expired
- 1982-03-23 EP EP82400522A patent/EP0061407B1/en not_active Expired
- 1982-03-23 DE DE8282400522T patent/DE3264732D1/en not_active Expired
- 1982-03-24 NO NO820994A patent/NO820994L/en unknown
Also Published As
Publication number | Publication date |
---|---|
US4439397A (en) | 1984-03-27 |
FR2502641A1 (en) | 1982-10-01 |
NO820994L (en) | 1982-09-27 |
CA1177678A (en) | 1984-11-13 |
FR2502641B1 (en) | 1986-05-23 |
DE3264732D1 (en) | 1985-08-22 |
EP0061407A1 (en) | 1982-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1106651A (en) | Alloy for temper galvanizing of steel, silicium alloyed steels, and galvanizing method of said alloy | |
EP0004819B1 (en) | Process for the production of ferrous alloys with improved mechanical properties by the use of lanthanum, and ferrous alloys obtained by this process | |
KR20170125139A (en) | Metal-coated steel strip | |
CA1337148C (en) | Production process of spheroidal graphite cast irons | |
EP0061407B1 (en) | Method to adjust the composition of a zinc alloy for tempered galvanization by adding concentrated metallic alloying additives, and compositions of the additives | |
EP1323837B1 (en) | Process for manufacturing steel product made from carbon steel particularly suitable for galvanisation. | |
EP0233872A1 (en) | Method for the treatment of metals and alloys for the refining thereof. | |
CA1227335A (en) | Process for treating steel with calcium to enhance the cold forming of the metal and reduce its silicon content | |
EP0190089B1 (en) | Process for treating liquid metals by a calcium-containing cored wire | |
JPH11323456A (en) | Production of aluminum alloy ingot | |
Kotadia et al. | Influence of Zn concentration on interfacial intermetallics during liquid and solid state reaction of hypo and hypereutectic Sn-Zn solder alloys | |
FR2514786A1 (en) | Bismuth removal from molten lead - using mixt. of calcium-magnesium alloy granules, pref. of eutectic compsn. | |
EP0579642B1 (en) | Galvanizing method and zinc alloy for use therein | |
EP0148740A1 (en) | Method for hot coating and bath composition therefor | |
FR3079527A1 (en) | Silicon-based alloy, process for producing such alloy and use thereof | |
EP0456528A1 (en) | Process for refining lead, especially for removing copper | |
JPH02175853A (en) | Composition for galvanizing bath | |
EP1272678B1 (en) | Method for eliminating bismuth from molten lead by adding calcium-magnesium alloys | |
FR2561665A1 (en) | PROCESS FOR THE PREPARATION OF A TITANIUM-CONTAINING HYDROGEN ALLOY | |
EP1033191A1 (en) | Compound roll for hot or cold rolling and method of manufacturing | |
FR2767725A1 (en) | Composite roll with high speed steel outer zone for hot and cold rolling operations | |
BE436791A (en) | ||
FR2542015A1 (en) | Process for conversion of secondary aluminium charges | |
BE413744A (en) | ||
BE501389A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19830302 |
|
ITF | It: translation for a ep patent filed | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETE DES MINES & FONDERIES DE ZINC DE LA VIEIL Owner name: SOCIETA MINARRIA E METALLURGICA DI PERTUSOLA Owner name: SOCIETE MINIERE ET METALLURGIQUE DE PENARROYA SOC Owner name: NORZINK A.S. Owner name: ASTURIENNE FRANCE Owner name: BILLITON ZINK B.V. Owner name: AUSTRALIAN MINING AND SMELTING EUROPE LIMITED Owner name: SAMIM S.P.A. |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DREULLE, NOEL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETA MINARRIA E METALLURGICA DI PERTUSOLA Owner name: SOCIETE MINIERE ET METALLURGIQUE DE PENARROYA SOC Owner name: NORZINK A.S. Owner name: METALLURGIE HOBOKEN-OVERPELT SOCIETE ANONYME DITE Owner name: ASTURIENNE FRANCE Owner name: BILLITON ZINK B.V. Owner name: AUSTRALIAN MINING AND SMELTING EUROPE LIMITED Owner name: SAMIM S.P.A. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETA MINARRIA E METALLURGICA DI PERTUSOLA Owner name: SOCIETE MINIERE ET METALLURGIQUE DE PENARROYA SOC Owner name: NORZINK A.S. Owner name: METALLURGIE HOBOKEN-OVERPELT SOCIETE ANONYME DITE Owner name: ASTURIENNE FRANCE Owner name: BILLITON ZINK B.V. Owner name: AUSTRALIAN MINING AND SMELTING EUROPE LIMITED Owner name: SAMIM S.P.A. |
|
AK | Designated contracting states |
Designated state(s): DE GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3264732 Country of ref document: DE Date of ref document: 19850822 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19860331 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19870324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19871001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19871201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881121 |
|
EUG | Se: european patent has lapsed |
Ref document number: 82400522.7 Effective date: 19880215 |