EP0061407B1 - Procédé pour ajuster la composition d'un alliage de zinc pour galvanisation au trempé, par ajout de compositions métalliques concentrées en additif d'alliage, et compositions d'addition - Google Patents

Procédé pour ajuster la composition d'un alliage de zinc pour galvanisation au trempé, par ajout de compositions métalliques concentrées en additif d'alliage, et compositions d'addition Download PDF

Info

Publication number
EP0061407B1
EP0061407B1 EP82400522A EP82400522A EP0061407B1 EP 0061407 B1 EP0061407 B1 EP 0061407B1 EP 82400522 A EP82400522 A EP 82400522A EP 82400522 A EP82400522 A EP 82400522A EP 0061407 B1 EP0061407 B1 EP 0061407B1
Authority
EP
European Patent Office
Prior art keywords
alloy
zinc
magnesium
aluminium
beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400522A
Other languages
German (de)
English (en)
Other versions
EP0061407A1 (fr
Inventor
Noel Dreulle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUSTRALIAN MINING AND SMELTING EUROPE Ltd
BILLITON ZINK BV
Metallurgie Hoboken-Overpelt SA
MINARRIA E METALLURGICA DI PERTUSOLA Soc
SAMIM SpA
Asturienne France SA
Societe Miniere et Metallurgique de Penarroya
Norzink AS
Original Assignee
Metallurgie Hoboken-Overpelt SA
Societe des Mines et Fonderies de Zinc de la Vieille Montagne SA
Asturienne France SA
Societe Miniere et Metallurgique de Penarroya
AUSTRALIAN MINING AND SMELTING EUROPE Ltd
MINARRIA E METALLURGICA DI PERTUSOLA Soc
SAMIM SpA
BILLITON ZINK BV
Norzink AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallurgie Hoboken-Overpelt SA, Societe des Mines et Fonderies de Zinc de la Vieille Montagne SA, Asturienne France SA, Societe Miniere et Metallurgique de Penarroya , AUSTRALIAN MINING AND SMELTING EUROPE Ltd, MINARRIA E METALLURGICA DI PERTUSOLA Soc, SAMIM SpA, BILLITON ZINK BV, Norzink AS filed Critical Metallurgie Hoboken-Overpelt SA
Publication of EP0061407A1 publication Critical patent/EP0061407A1/fr
Application granted granted Critical
Publication of EP0061407B1 publication Critical patent/EP0061407B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc

Definitions

  • the invention relates to a process for adjusting the composition of a zinc alloy, intended for the dip galvanizing of steels, including silicon steels, the alloy consisting of zinc of commercial purity with a weighted content. from 1000 to 15000 ppm of lead and as additives of aluminum, tin and magnesium at weight contents selected in the respective ranges (AI) 100 to 5000 ppm, (Sn) 300 to 20 000 ppm, and (Mg) 10 to 1000 ppm, the process consisting in adding, to the molten zinc alloy, deficient in at least one additive, at least one metallic composition, soluble in molten zinc, and comprising with a relatively high content at least one additive in quantity such that the deficit is compensated for.
  • the invention also relates to metallic compositions suitable for implementing the method.
  • Zinc with commercial purity corresponding to AFNOR NFA standards, classes Z6 and Z7 has maximum contents defined in Copper, Cadmium and Iron. In addition, it has maximum lead contents (15,000 p.p.m. for class Z6, 5,000 p.p.m. for class Z7). These lead contents, originally defined by the conditions for the production of zinc, have proved to be favorable for galvanization by lowering the viscosity of the molten zinc, so that they have been maintained while the evolution of the processes metallurgical allows the production of zinc with lead contents lower than 1000 ppm Frequently the categories Z6 and Z7 are currently obtained by adding lead to zinc.
  • the invention therefore proposes a method for adjusting the composition of a zinc alloy, intended for the dip galvanizing of steels, including silicon steels, the alloy consisting of zinc of commercial purity with a weight content of 1 000 to 15000 ppm lead, and as additives, aluminum, tin and magnesium at weight contents selected from the respective ranges (AI) 100 to 5,000 ppm, (Sn) 300 to 20,000 ppm and (Mg) 10 to 1,000 ppm, process according to which we add. to the molten zinc alloy, deficient in at least one additive, at least one metallic composition soluble in the molten zinc and comprising at relatively high content at least one additive, in an amount such that the deficit is compensated for.
  • the magnesium composition is a ternary zinc, magnesium, aluminum alloy with by weight 5000 to 50,000 p: pm of magnesium and 10 to 500 ppm of aluminum
  • the aluminum composition, n added in quantity which takes account of the possible addition of ternary zinc / magnesium / aluminum is a binary zinc / aluminum alloy, with an aluminum content by weight close to 5%.
  • composition chosen from the zinc alloy for galvanization will correspond to the preferred compositions presented by French patent 2,366,376.
  • Nickel and copper are metals to be avoided in the considered galvanizing coatings. Iron could have been tolerated in view of the traces of iron which inevitably dissolve in the alloy during the immersion of steel parts. But beryllium iron alloys hardly dissolve in zinc at 600 ° C.
  • the beryllium supply is obtained using a ternary zinc / aluminum / beryllium alloy, produced by dissolving an aluminum beryllium alloy containing 4-8% beryllium in pure zinc.
  • the weight composition of the ternary alloy is: aluminum 5,000 to 50,000 p.p.m., beryllium aluminum weight ratio 11.5 to 24 and zinc the rest.
  • the term zinc is used here in its usual meaning as a base metal containing common impurities at levels where the properties of the metal, in relation to the intended application, are not appreciably affected.
  • impurities from alloying elements or additives which, at the specified contents, act on the properties of the base metal, in relation to the intended application.
  • the base metal contains, as initial impurity an element which is intended as an additive, at a content significantly higher than that of the initial impurity, the content as an additive is understood to be the sum of the initial content in impurity, and the amount of additive added thereafter.
  • the preferred ternary alloys for supplying magnesium and beryllium respectively have weight compositions of magnesium 30,000 ⁇ 1,500 ppm, aluminum 100 ⁇ 5 ppm, and aluminum 9,000 ⁇ 450 ppm, beryllium 470 ⁇ 50 ppm, in both cases the rest being zinc.
  • zinc which constitutes at least 95% of the alloy by weight, can withstand some losses by oxidation without the composition of the alloy being substantially modified; lead and tin, less oxidizable than zinc, suffer only negligible losses by oxidation.
  • lead and tin less oxidizable than zinc, suffer only negligible losses by oxidation.
  • aluminum and magnesium disappear by oxidation relatively quickly. The readjustment of the composition of the alloy requires preferential additions of aluminum and magnesium.
  • the magnesium oxidizes in depth, and is close to its spontaneous ignition temperature in the air. Moreover, for the normal development of the galvanizing alloy, one operates so as to minimize the oxidation of aluminum and magnesium by preventing them from being in contact with air.
  • each of the metal compositions used be assigned to a particular additive metal, in the sense that the concentration of the additive targeted in the composition must be much higher than the concentration in the alloy, while the concentration ratios of the other metals in the composition are not too far from what they are in the alloy or at least that the concentration ratios of the constituents of the composition compared to that of the targeted additive are significantly lower than the ratios in the alloy.
  • aluminum there is a zinc aluminum alloy 5% by weight of aluminum, its composition corresponding to the eutectic at melting point 385 ° C., and is therefore suitable as a metallic composition assigned to aluminum. .
  • magnesium there is a zinc / magnesium eutectic at 3% by weight of magnesium, with a melting point of 367 ° C. , or during transport and essential handling.
  • the compositions sufficiently close to the eutectic to have an acceptable melting point (less than about 450 ° C.) are practically also too fragile.
  • the addition of small amounts of aluminum significantly reduced the brittleness of the zinc / magnesium binaries. The effect begins to be felt at 10 p.p.m. (by weight) of aluminum.
  • the presence of aluminum reduces the oxidation of magnesium when the ingot is poured. Around 100 p.p.m.
  • beryllium is felt for very low contents, from 4 p.p.m. (by weight). Beyond 100 p.p.m. it is observed that there occurs, at the usual temperature of the galvanizing baths in operation, a segregation of beryllium which collects on the surface and is evacuated with the dross. It has also been found, from 15 ppm by weight of beryllium, for baths with a relatively high aluminum content, greater than 550 ppm, a synergistic action of aluminum and beryllium on the kinetics of the iron-zinc reaction (formation of intermetallic compounds).
  • This table shows that, even using a binary alloy of composition corresponding to the liquidus at 696 ° C, and cooled sufficiently quickly so that the beryllium remains in supersaturation, the tonnages to be used so that the final alloy is in the range 4- 100 ppm represent from 0.5 to 12.5% of the total mass of the alloy, that is to say for a 150-ton bath, from 0.75 to 18.75 tons. Furthermore, the diffusion of beryllium in molten zinc, at temperatures far from the melting point of beryllium (1 2800C) is slow, and the development of the binary alloy at temperatures above 700 ° C is difficult due in particular to the vapor pressure of zinc (boiling point 910 ° C). The development of such alloys is prohibitive on an industrial scale.
  • Example 2 In the induction furnace used in Example 1, 495 kg of zinc Z9 is melted under a neutral atmosphere. The temperature is raised to around 600 ° C. and 4.75 kg of beryllium aluminum alloy containing 5.25% beryllium are added. The temperature is maintained at 600 ° C. until intimate dispersion of the beryllium aluminum in the zinc, under the action of electromagnetic stirring. Then, as soon as the power is turned off, the alloy is poured into energy-cooled ingot molds.
  • beryllium has also made it possible to somewhat reduce the tin bath contents, since tin is intended in particular to take over from magnesium when the content of the latter metal has lowered in the bath by oxidation, and that beryllium reduces the rate of magnesium oxidation.
  • the consumption of the components of the bath is due, on the one hand, to the sampling of alloy constituting the coverings of part, and on the other hand to the oxidation of some of these components in contact either with the galvanizing flux, or with the air entrained by the parts upon immersion in the molten alloy.
  • alloy compositions may vary within the range of the ranges indicated.
  • numerical value is understood as a central value in a usual range, such as ⁇ 5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)

Description

  • L'invention se rapporte à un procédé pour ajuster la composition d'un alliage de zinc, destiné à la galvanisation au trempé d'aciers, y compris aciers au silicium, l'alliage étant constitué de zinc de pureté commerciale avec une teneur.pondérafe de 1 000 à 15000 p.p.m. de plomb et à titre d'additifs de l'aluminium, de l'étain et du magnésium à des teneurs pondérales choisies dans les gammes respectives (AI) 100 à 5 000 p.p.m., (Sn) 300 à 20 000 p.p.m., et (Mg) 10 à 1 000 p.p.m., le procédé consistant à ajouter, à l'alliage de zinc en fusion, déficitaire en au moins un additif, au moins une composition métallique, soluble dans le zinc en fusion, et comportant à teneur relativement élevée au moins un additif en quantité telle que le déficit soit compensé. L'invention se rapporte également à des compositions métalliques adaptées à la mise en oeuvre du procédé.
  • Le brevet français 2 366 376, déposé le 1" octobre 1976 sous le n° 76 29545 et délivré le 27 octobre 1980, décrit un alliage répondant à la composition précitée, et qui s'avère efficace dans la galvanisation au trempé d'aciers au silicium, désignés usuellement par aciers semi-calmés, calmés, et à haute teneur en silicium.
  • On rappellera brièvement l'effet des composants de cet alliage. Le zinc à pureté commerciale correspondant aux normes AFNOR NFA, classes Z6 et Z7 comporte des teneurs maximales définies en Cuivre, Cadmium et Fer. En outre il comporte des teneurs maximales en plomb (15 000 p.p.m. pour la classe Z6, 5 000 p.p.m. pour la classe Z7). Ces teneurs en plomb, définies à l'origine par les conditions d'élaboration du zinc, se sont avérées favorables à la galvanisation en abaissant la viscosité du zinc en fusion, de sorte qu'elles ont été maintenues alors que l'évolution des procédés métallurgiques permet l'élaboration de zinc avec des teneurs en plomb inférieures à 1 000 p.p.m. Fréquemment les catégories Z6 et Z7 sont obtenues actuellement par ajout de plomb au zinc.
  • La présence d'aluminium réduit la réactivité du couple fer/zinc, et aux teneurs indiquées précédemment, la réactivité du zinc vis-à-vis des aciers au silicium. L'étain et le magnésium sont actifs pour réduire ou supprimer les manques de recouvrement que provoque l'alumine formée par oxydation de l'aluminium. La présence simultanée d'étain et de magnésium conduit à des résultats remarquables.
  • Cependant les bains de galvanisation au trempé voient leur composition évoluer au cours des opérations, les vitesses d'oxydations des composants, zinc, plomb et additifs, à là température d'utilisation (voisine de 450 °C) et en présence de flux de galvanisation (chlorures de zinc et d'ammonium) étant différentes, et pratiquement d'autant plus élevées que le métal est oxydable. L'oxydation se produit en surface du bain, et au contact du flux et de l'air entraîné par les pièces lors de leur immersion. Les déficits d'additifs par suite de l'oxydation portent essentiellement sur le magnésium et l'aluminium.
  • Or précisément les ajouts d'aluminium et de magnésium présentent des difficultés particulières, liées à la faible densité de ces métaux, à leur grande oxydabilité, et dans une certaine mesure au fait que ces métaux ne sont pas liquides à la température des bains de zinc en fusion vers 450 °C. En effet, durant la phase qui précède la dispersion complète des ajouts par diffusion, ces métaux légers flottent à la surface du bain où ils sont exposés à l'oxydation par l'air ambiant. La vitesse de diffusion est fonction de la diffusivité des métaux additifs dans le zinc à 450 °C, et de la surface effective de contact entre phases. Bien que les diffusivités de l'aluminium et du magnésium soient relativement élevées, la surface de contact se réduit à la surface des parties immergées des blocs de métaux additifs, et l'efficacité de diffusion est fortement réduite par la présence d'une couche d'oxydes à l'interface. L'oxydation des métaux aluminium et magnésium, dans ces conditions, est prépondérante sur la dispersion. Il ne sert à rien de fragmenter les métaux additifs pour augmenter la surface de contact avec le zinc en fusion, la surface offerte à l'oxydation croissant dans la même proportion. Enfin, à 450 °C, le magnésium, surtout finement fragmenté, risque de s'enflammer et de provoquer des explosions. Par contraste l'étain, à densité et points de fusion voisins de ceux du zinc, et possédant une vitesse de diffusion comparabie à celle de ces métaux, s'ajoute au zinc sans difficultés. Le plomb, qui diffusant mal aurait tendance à se rassembler au fond du bain, est le moins oxydable des éléments présents, et ne nécessite pratiquement jamais d'ajout dans le bain de galvanisation.
  • Il est connu en métallurgie, pour apporter à un métal de base des éléments d'alliage en quantité dosée, d'ajouter au métal de base fondu des compositions métalliques où les éléments d'alliage sont relativement concentrés. Mais, si ce concept est connu en soi, les natures et teneurs des constituants des compositions métalliques doivent être déterminées en fonction des propriétés nécessaires, et, si plusieurs compositions doivent être utilisées simultanément, de leur compatibilité.
  • On remarquera que, à partir du moment où l'on est capable de combler le déficit de chacun des additifs de l'alliage de galvanisation, on sera par là même en état de constituer cet alliage à partir de zinc de pureté commerciale et on complètera l'alliage par apport, au zinc en fusion, des additifs manquants. Autrement dit ajuster la composition de l'alliage signifie aussi bien élaborer cet alliage que lui restituer sa composition antérieure.
  • Aussi l'invention propose un procédé pour ajuster la composition d'un alliage de zinc, destiné à la galvanisation au trempé d'aciers, y compris aciers au silicium, l'alliage étant constitué de zinc de pureté commerciale avec une teneur pondérale de 1 000 à 15000 p.p.m. de plomb, et à titre d'additifs, de l'aluminium, de l'étain et du magnésium à des teneurs pondérales choisies dans les gammes respectives (AI) 100 à 5 000 p.p.m., (Sn) 300 à 20 000 p.p.m. et (Mg) 10 à 1 000 p.p.m., procédé suivant lequel on ajoute. à l'alliage de zinc en fusion, déficitaire en au moins un additif, au moins une composition métallique soluble dans le zinc en fusion et comportant à teneur relativement élevée au moins un additif, en quantité telle que le déficit soit compensé. caractérisé en ce que, tandis que la composition d'étain est ce métal à l'état pratiquement pur, la composition de magnésium est un alliage ternaire zinc, magnésium, aluminium avec en poids 5000 à 50000 p:p.m. de magnésium et 10 à 500 p.p.m. d'aluminium, et la composition d'aluminium,n ajoutée en quantité qui tient compte de l'ajout éventuel de ternaire zinc/magnésium/aluminium, est un alliage binaire zinc/aluminium, à teneur pondérale en aluminium voisine de 5 %.
  • On a déjà signalé que l'addition d'étain au zinc en fusion ne faisait aucune difficulté. On a choisi, pour apporter de l'aluminium sans pratiquement modifier la teneur des autres additifs, un eutectique zinc aluminium, possédant un point de fusion de 385 °C. Cet alliage connu en soi, est à 450 °C nettement moins oxydable que l'aluminium, du fait de la dilution de ce métal dans le zinc. Le choix de la composition métallique pour l'apport du magnésium a présenté quelques difficultés. L'eutectique binaire zinc magnésium, à 30 000 p.p.m. de magnésium, possède un point de solidification à 367 °C ; mais les alliages binaires zinc/magnésium voisins de l'eutectique sont trop fragiles pour être façonnés en lingots manipulables. L'addition d'aluminium permet de remédier la fragilité. L'action défragilisante de l'aluminium, pour les teneurs en magnésium, proche de celle de l'eutectique commence à être sensible à partir de 10 p.p.m.
  • Bien entendu, la composition choisie de l'alliage de zinc pour galvanisation correspondra aux compositions préférées présentées par le brevet français 2 366 376.
  • Cependant la poursuite des travaux qui ont conduit aux compositions d'alliages de galvanisation précitées ont fait apparaître l'intérêt d'ajouter au zinc de pureté commerciale à 1 000-15000 p.p.m. de plomb et aux additifs aluminium, étain et magnésium, du béryllium à des teneurs pondérales comprises entre 4 et 100 p.p.m. en réduisant l'oxydation superficielle de l'alliage fondu, et l'écoulement de l'alliage fondu à la surface des pièces au sortir du bain. Le béryllium est très peu soluble dans le zinc pur (vers 450 °C la.solubilité est de l'ordre de 100 p.p.m.) et il est pratiquement exclu d'apporter le béryllium sous forme de binaire zinc/béryllium. La solubilité du béryllium dans des métaux courants, n'est notable que pour le cuivre, le nickel, le fer et l'aluminium. Le nickel et le cuivre sont des métaux à éviter dans les recouvrements de galvanisation considérés. On aurait pu tolérer le fer eu égard aux traces de fer qui inévitablement se dissolvent dans l'alliage lors de l'immersion de pièces en acier. Mais les alliages fer béryllium ne se dissolvent pratiquement pas dans le zinc à 600 °C. L'apport de béryllium est obtenu à l'aide d'un alliage ternaire zinc/aluminium/béryllium, élaboré par dissolution d'un alliage aluminium béryllium à 4-8 % de béryllium dans un zinc pur. La composition pondérale de l'alliage ternaire est : aluminium 5 000 à 50 000 p.p.m., rapport pondéral aluminium béryllium 11,5 à 24 et zinc le reste.
  • On précise que le terme zinc est utilisé ici dans son acception usuelle de métal de base contenant des impuretés courantes à des teneurs où les propriétés du métal, en relation avec l'application envisagée, ne sont pas affectées de façon appréciable. On distingue ainsi les impuretés des éléments alliants ou additifs qui, aux teneurs spécifiées, agissent sur les propriétés du métal de base, en relation avec l'application envisagée. Cependant lorsque le métal de base contient, comme impureté initiale un élément qui est prévu comme additif, à une teneur nettement supérieure à celle de l'impureté initiale, la teneur à titre d'additif s'entend de la somme de la teneur initiale en impureté, et de la quantité d'additif ajoutée par la suite.
  • Une composition pondérale préférée d'alliage de galvanisation avec additifs aluminium, étain, magnésium et béryllium correspond à : étain 500 ± 25 p.p.m., aluminium 375 = 25 p.p.m., magnésium 60 ± 3 p.p.m. et béryllium 6,5 ± 0,5 p.p.m., du zinc à 1 000-15000 p.p.m. de plomb constituant le reste.
  • Les alliages ternaires préférés pour apporter respectivement du magnésium et du béryllium ont des compositions pondérales magnésium 30 000 ± 1 500 p.p.m., aluminium 100 ± 5 p.p.m., et aluminium 9 000 ± 450 p.p.m., béryllium 470 ± 50 p.p.m., dans les deux cas le reste étant du zinc.
  • Pour éviter d'avoir à contrôler trop fréquemment la teneur d'un bain de galvanisation au trempé, on peut compenser systématiquement les pertes en additifs qui se consomment au cours de la galvanisation, par des ajouts de compositions métalliques. Des essais ont montré que par tonne d'articles galvanisés en acier on devait ajouter 2 à 25 kg de ternaire au béryllium et 0,5 à 5 kg de ternaire au magnésium ; les valeurs d'ajout préférables sont de 12,5 ± 0,6 kg de ternaire au béryllium et 1,4 ± 0,07 kg de ternaire au magnésium.
  • Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, illustrée par des exemples.
  • Les développements relatifs à l'alliage pour galvanisation objet du brevet français 2 366 376 ont fait apparaître, comme il était qualitativement prévisible, que, au cours des opérations de galvanisation au trempé, la composition de l'alliage de zinc en fusion se modifiait, avec un appauvrissement en additifs les plus oxydables au fur et à mesure que des pièces étaient galvanisées. Cette oxydation, lente sur un bain en repos sur lequel se forme une couche d'oxydes protecteurs, est accélérée fortement par l'action des flux de galvanisation (chlorures de zinc et d'ammonium), et de l'air entraîné par les pièces à l'immersion. Les produits de réaction du flux et de l'alliage, en présence d'air (chlorures, oxydes, oxychlorures...), sont pour une part volatils, et pour une autre part forment les crasses superficielles éliminées par râclage ou spatulage. Il était donc très intéressant pour utilisateurs de l'alliage de galvanisation de pouvoir périodiquement réajuster la composition de l'alliage en fusion à sa composition d'origine, afin d'éviter d'avoir à vider les cuves où l'alliage était parvenu aux limites de composition convenables, et reconstituer les bains avec de l'alliage neuf. Ces opérations de renouvellement des bains de galvanisation par immersion se révélaient coûteuses au moins en immobilisation d'installation et manutention, si le fabricant d'alliage reprenait l'alliage usagé pour le rénover.
  • Parmi les constituants de l'alliage, le zinc, qui constitue au moins 95 % de l'alliage en poids, peut supporter quelques pertes par oxydation sans que la composition de l'alliage soit sensiblement modifiée ; le plomb et l'étain, moins oxydables que le zinc, ne subissent que des pertes négligeables par oxydation. Par contre l'aluminium et le magnésium disparaissent par oxydation relativement rapidement. Le réajustement de la composition de l'alliage exige des ajouts préférentiels d'aluminium et de magnésium.
  • Or, si des ajouts d'étain (densité 7,34 point de fusion 231,8 °C) et de zinc de pureté commerciale (densité 7,14 point de fusion 419 °C) ne présentent aucune difficulté d'addition à un bain de zinc allié à une température d'environ 450 °C, il n'en est pas de même pour l'aluminium (densité 2.7 point de fusion 658 °C) et le magnésium (densité 1,74 point de fusion 651 °C). La dissolution de ces derniers métaux ne peut se produire que par diffusion dans le zinc en fusion ; du fait de leur faible densité ils ont tendance à flotter sur le bain de zinc. En outre la couche d'alumine en surface de l'aluminium fait écran pour la diffusion de l'aluminium. Enfin, à la température du bain de zinc, le magnésium s'oxyde en profondeur, et est proche de sa température d'inflammation spontanée dans l'air. D'ailleurs, pour l'élaboration normale de l'alliage de galvanisation, on opère en sorte de minimiser l'oxydation de l'aluminium et du magnésium en évitant qu'ils soient en contact avec de l'air.
  • Il était donc nécessaire d'effectuer les ajouts d'aluminium et de magnésium sous forme de compositions métalliques ou alliages qui répondent aux critères suivants :
    • - ne contenir que des métaux entrant dans la composition de l'alliage de galvanisation ;
    • - ne pas être trop rapidement oxydables à la température de fusion, et ne pas nécessiter de précautions anormales d'emploi ;
    • - de préférence posséder un point de fusion voisin de 450 °C, pour aider la diffusion par une dispersion de l'additif fondu.
  • En outre il est souhaitable, pour permettre une souplesse d'ajustement de composition de l'alliage de galvanisation, que chacune des compositions métalliques utilisées soit affectée à un métal additif particulier, en ce sens que la concentration de l'additif visé dans la composition doit être très supérieure à la concentration dans l'alliage, tandis que les rapports de concentration des autres métaux dans la composition ne soient pas trop éloignés de ce qu'ils sont dans l'alliage ou tout au moins que les rapports de concentration des constituants de la composition par rapport à celle de l'additif visé soient nettement plus faibles que les rapports dans l'alliage.
  • Pour ce qui est de l'aluminium, il existe un alliage zinc aluminiumm à 5 % en poids d'aluminium, sa composition correspondant à l'eutectique à point de fusion 385 °C, et convient donc comme composition métallique affectée à l'aluminium.
  • Pour ce qui est du magnésium, il existe un eutectique zinc/magnésium à 3 % en poids de magnésium, avec un point de fusion de 367°C: Cet eutectique est malheureusement trop fragile pour être industriellement utilisable, les lingots coulés se brisant au refroidissement, ou au cours des transports et manipulations indispensables. Les compositions suffisamment voisines de l'eutectique pour avoir un point de fusion acceptable (inférieur à environ 450 °C) sont pratiquement également trop fragiles. Mais il s'est avéré que l'ajout de faibles quantités d'aluminium diminuaient de façon importante la fragilité des binaires zinc/magnésium. L'effet commence à se faire sentir à 10 p.p.m. (en poids) d'aluminium. En outre la présence d'aluminium diminue l'oxydation du magnésium à la coulée du lingot. Vers 100 p.p.m. d'aluminium la fragilité ne décroît pratiquement plus lorsque la teneur en aluminium croît ; il est inutile de dépasser 500 p.p.m. d'aluminium, aucun avantage ne venant compenser la perte de souplesse d'ajustement de la composition de l'alliage de galvanisation ; cette perte de souplesse résultant de ce qu'un déficit en magnésium seul se compense par un enrichissement en aluminium. On obtient des compositions métalliques convenables avec de 5000 à 50000 p.p.m. en poids de magnésium et les quantités d'aluminium précitées. On préfère une composition proche de l'eutectique avec 30 000 ± 1 500 p.p.m. de magnésium et 100 ± 5 p.p.m. d'aluminium.
  • Exemple 1 Elaboration d'un ternaire zinc, magnésium, aluminium.
  • Dans un four à induction à fréquence industrielle, avec un creuset de 150 litres, équipé pour travailler en atmosphère contrôlée, on met en fusion sous atmosphère neutre 485 kg de zinc qualité Z9 ; on porte la température du zinc liquide à 600 °C et on ajoute 15 kg de magnésium à 99,9 % de pureté ; puis on ajoute 50 g d'aluminium à 99,5 % de pureté. La température est alors abaissée à environ 500 °C et maintenue à cette température pendant 15 minutes, pour que le brassage électromagnétique assure l'homogénéité de l'alliage. Puis on coupe le chauffage, et on coule l'alliage en lingotières refroidies alors que la température est comprise entre 450° et 420 °C.
  • Exemple 2 Constitution d'un bain de galvanisation à l'étain, aluminium, magnésium.
  • Dans une cuve de galvanisation de capacité 150 tonnes de zinc, on met 80 tonnes de zinc Z6 à 1,4 % de plomb, 67,3 tonnes de zinc Z7 à 0,45 % de plomb, 375 kg d'étain, et 1,8 tonne d'alliage zinc aluminium à 5 % en poids d'aluminium. Après fusion des métaux, on ajoute 500 kg d'alliage élaboré selon l'exemple 1. Une analyse du bain donne en poids Plomb 9 500 p.p.m., Etain 2 500 p.p.m., Aluminium 60C p.p.m., Magnésium 99 p.p.m., le reste étant du Zinc avec les impuretés usuelles à teneur tolérée.
  • Des travaux complémentaires sur les alliages pour galvanisation par immersion précédents ont montré que le béryllium, connu comme élément réduisant la vitesse d'oxydation d'alliages de fonderies à base d'aluminium ou de zinc, avait des effets faborables sur les alliages pour galvanisation :
    • - une réduction de la vitesse de formation d'une couche superficielle d'oxyde sur les bains en fusion ;
    • - un meilleur écoulement du zinc fondu sur la surface de pièces à la sortie du bain de galvanisation, cet effet résultant sembie-t-il de la réduction de l'épaisseur et de la ténacité de la couche d'oxyde sur le recouvrement de zinc, cette couche d'oxyde retenant l'excès de zinc ;
    • - une amélioration de la facilité d'évacuation des crasses superficielles vers les bords de cuve en préalable à l'émersion des pièces, opération dite couramment spatulage.
  • L'action du béryllium se fait sentir pour des teneurs très faibles, à partir de 4 p.p.m. (en poids). Au-delà de 100 p.p.m. on constate qu'il se produit, à la température usuelle des bains de galvanisation en opération, une ségrégation du béryllium qui se rassemble en surface et est évacué avec les crasses. On a constaté en outre, à partir de 15 p.p.m. en poids de béryllium, pour des bains à teneur en aluminium relativement élevée, supérieure à 550 p.p.m., une action synergique de l'aluminium et du béryllium sur la cinétique de la réaction fer-zinc (formation de composés intermétalliques).
  • Lors des travaux préparatoires, on a consulté des études sur la solubilité du béryllium dans le zinc, en partant d'alliages frittés de béryllium à 99% de pureté et de zinc pur. La courbe de liquidus sur le diagramme binaire passe par les points suivants :
    Figure imgb0001
  • Ce tableau fait ressortir que, même en utilisant un alliage binaire de composition correspondant au liquidus à 696 °C, et refroidi suffisamment rapidement pour que le béryllium reste en sursaturation, les tonnages à utiliser pour que l'alliage final soit dans la gamme 4-100 p.p.m. représentent de 0,5 à 12,5 % de la masse totale de l'alliage, soit pour un bain de 150 tonnes, de 0,75 à 18,75 tonnes. Par ailleurs, la diffusion du béryllium dans le zinc en fusion, à des températures éloignées du point de fusion du béryllium (1 2800C) est lente, et l'élaboration de l'alliage binaire à des températures au-delà de 700 °C est difficile en raison notamment de la tension de vapeur du zinc (point d'ébullition 910 °C). L'élaboration de tels alliages est prohibitive à l'échelle industrielle.
  • Pour introduire des teneurs relativement élevées de béryllium dans le zinc, on a imaginé d'apporter ce béryllium sous forme d'un alliage aisément soluble dans le zinc en fusion à des températures raisonnablement élevées, cet alliage étant de préférence un alliage commercialisé, pour des raisons évidentes de prix de revient. On a trouvé des alliages usuels Cu-Be à 4 %, AI-Be à 5 %, Fe-Be à 10 % et Ni-Be à 25 %. La présence de cuivre ou de nickel dans les bains de galvanisation au trempé est pratiquement exclue ou tout au moins strictement limitée. comme le fer est toujours présent dans les bains de galvanisation de pièces en acier par suite de la dissolution du fer des pièces en acier par suite de la dissolution du fer des pièces, on aurait pu tolérer d'ajouter un peu de fer. Le binaire fer béryllium s'est avéré pratiquement insoluble dans le zinc à 600 °C ; après 48 heures à cette température, les quantités d'alliage fer-béryllium dissoutes sont impondérables.
  • On a par contre obtenu de bons résultats en dissolvant de l'alliage aluminium béryllium à 5 % dans le zinc, à une température où cet alliage est fondu. Pratiquement on peut utiliser un alliage binaire contenant 4 à 8 % de béryllium en poids, de sorte que le rapport pondéral aluminium/béryllium dans l'alliage ternaire sera compris entre 24 et 11,5. Les teneurs en aluminium du ternaire doivent être telles que 'le point de fusion soit de l'ordre de 450 °C, soit 0,5-5 % en poids. Toutefois il est préférable d'utiliser une teneur en aluminium vers le bas de la gamme indiquée pour réduire la tendance à la ségrégation du béryllium.
  • Exemple 3 Elaboration d'un ternaire zinc-aluminium-béryllium.
  • Dans le four à induction utilisée à l'exemple 1, on porte à fusion, sous atmosphère neutre 495 kg de zinc Z9. On élève la température vers 600 °C et on ajoute 4,75 kg d'alliage aluminium béryllium à 5,25 % de béryllium. On maintient la température de 600 °C jusqu'à dispersion intime de l'aluminium béryllium dans le zinc, sous l'action du brassage électromagnétique. Puis, dès la coupure de l'alimentation, on coule l'alliage dans des lingotières énergétiquement refroidies.
  • L'addition de béryllium a permis en outre de réduire quelque peu les teneurs de bain en étain, étant donné que l'étain est prévu notamment pour prendre le relais du magnésium lorsque la teneur de ce dernier métal s'est abaissée dans le bain par suite d'oxydation, et que le béryllium réduit la vitesse d'oxydation du magnésium.
  • Exemple 4 Constitution d'un bain de galvanisation à l'étain, aluminium, magnésium, béryllium.
  • Dans une cuve de galvanisation de capacité 150 tonnes, on met 147 tonnes de zinc Z7, à 0,31 % en poids de plomb, 75 kg d'étain et 750 kg de binaire zinc aluminium à 5 % d'aluminium. On porte à température de fusion. Puis lorsque tout le bain est en fusion, on ajoute 300 kg de ternaire zincmagnésium-aluminium préparé suivant l'exemple 1, et 2020 kg de ternaire zinc-aluminium-béryllium préparé suivant l'exemple 3.
  • Une analyse du bain donne en poids : plomb 3 000 p.p.m., étain 500 p.p.m., aluminium 370 p.p.m., magnésium 60 p.p.m., béryllium 7 p.p.m.
  • on a déjà signalé que la mise au point de l'utilisation de combinaisons métalliques concentrées en un additif avait été faite plus spécialement pour permettre de réajuster les teneurs en additifs des alliages de galvanisation au fur et à mesure de l'épuisement en additifs consécutif à la galvanisation de pièces, la première constitution des bains de galvanisation au trempé bénéficiant de la souplesse de composition permise par l'utilisation de ces combinaisons métalliques.
  • La consommation des composants du bain est due, d'une part, au prélèvement d'alliage constituant les recouvrements de pièce, et d'autre part à l'oxydation de certains de ces composants au contact soit du flux de galvanisation, soit de l'air entraîné par les pièces à l'immersion dans l'alliage en fusion.
  • Les travaux effectués par le Demandeur ont établi que, si de façon stricte les consommations en aluminium, magnésium et béryllium étaient sensiblement proportionnelles à la quantité de flux mis en ceuvre, c'est-à-dire à la surface des pièces à recouvrir, il s'établissait une péréquation entre des pièces minces et des pièces épaisses (en considérant une épaisseur fictive rapport du volume à la surface de pièce), de sorte que les apports en compositions métalliques peuvent être proportionnels au tonnage de pièces galvanisées, sans que la composition du bain de galvanisation évolue trop vite. Ceci permet d'espacer les analyses de composition, et les réajustements de composition qui y correspondent.
  • Pour un alliage de galvanisation élaboré suivant l'exemple 4, on a déterminé que le maintien de la composition nécessitait des ajouts de compositions métalliques élaborées suivant les exemples 1 et 3, respectivement dans les gammes 0,5-5,0 kg et 2,25 kg par tonne d'acier galvanisé.
  • Exemple 5
  • Entretien d'un bain de galvanisation au trempé.
  • Dans une cuve de galvanisation de capacité 150 tonnes, contenant cette quantité d'alliage de galvanisation élaboré suivant l'exemple 4, on galvanise des pièces en acier de construction au silicium, à la cadence moyenne de 20 tonnes/jour.
  • Des essais ont montré que, pour des pièces de ce genre la composition du bain était stabilisée au mieux par ajout de 1,4 kg d'alliage ternaire suivant l'exemple 1, et 12,5 kg d'aliiage ternaire suivant l'exemple 3. En conséquence, on ajoute chaque jour au bain, de préférence dans une période d'inactivité, 28 kg de composition métallique au magnésium suivant l'exemple 1, et 250 kg de composition métallique au béryllium suivant l'exemple 3.
  • On peut envisager l'élaboration de composition métallique quaternaire, telle que celle qui résulterait du mélange des ternaires suivant les exemples 1 et 3, dans les proportions correspondant aux ajouts d'entretien de l'exemple 5.
  • Pour réaliser une telle composition métallique, on porte à fusion 494 kg de zinc Z9 sous atmosphère neutre, et on élève la température jusqu'à 675 °C. On ajoute 1,5 kg de magnésium, on laisse descendre la température à 625 °C, on ajoute 4,25 kg d'alliage aluminium-béryllium à 5,25 % en poids de béryllium, et, dès que le brassage électromagnétique a assuré la dispersion de l'aluminium-béryllium, on coule en lingotières énergiquement refroidies.
  • Bien entendu l'invention n'est pas limitée aux exemples décrit, mais en embrasse toutes les variantes d'exécution. Notamment les compositions d'alliages peuvent varier dans l'étendue des fourchettes indiquées. En outre, là où une composition est indiquée par une teneur chifrée pour chaque composant, il va de soi que la valeur chiffrée s'entend comme valeur centrale dans une fourchette usuelle, telle que ±5%.

Claims (11)

1. Procédé pour ajuster la composition d'un alliage de zinc, destiné à la galvanisation au trempé d'aciers, y compris aciers au silicium, l'alliage étant constitué de zinc de pureté commerciale avec une teneur pondérale de 1 000 à 15 000 p.p.m. de plomb, et à titre d'additifs, de l'aluminium, de l'étain et du magnésium à des teneurs pondérales choisies dans les gammes respectives (AI) 100 à 5 000 p.p.m., (Sn) 300 à 20000 p.p.m., et (Mg) 10 à 1 000 p.p.m., procédé suivant lequel on ajoute, à l'alliage de zinc en fusion, déficitaire en au moins un additif, au moins une composition métallique soluble dans le zinc en fusion et comportant à teneur relativement élevée au moins un additif, en quantité telle que le déficit soit compensé, caractérisé en ce que, tandis que la composition d'étain est ce métal à l'état pratiquement pur, la composition de magnésium est un alliage ternaire zinc, magnésium et la composition d'aluminium, et 10 à 500 p.p.m. d'aluminium, aluminium avec en poids 5 000 à 50 000 p.p.m. de magnésium ajoutée en quantité qui tient compte de l'ajout éventuel de ternaire zinc/magnésium/aluminium, est un alliage binaire zinc aluminium, à teneur pondérale en aluminium voisine de 5 %.
2. Procédé suivant la revendication 1, caractérisé en ce que les gammes de teneur d'additifs de l'alliage de zinc sont (AI) 300 à 600 p.p.m., (Sn) 1 000 à 3 000 p.p.m., (Mg) 20 à 200 p.p.m.
3. Procédé suivant la revendication 2, caractérisé en ce que les teneurs choisies d'additif sont sensiblement (AI) 370 p.p.m., (Sn) 2500 p.p.m., (Mg) 100 p.p.m.
4. Procédé pour ajuster la composition d'un alliage de zinc, destiné à la galvanisation au trempé d'aciers, y compris aciers au silicium, l'alliage étant constitué de zinc de pureté commerciale avec une teneur pondérale de 1 000 à 15 000 p.p.m. de plomb, et à titre d'additif de l'aluminium, de l'étain et du magnésium à des teneurs pondérales choisies dans les gammes respectives (AI) 100 à 5000 p.p.m., de magnésium et 10 à 500 p.p.m., d'aluminium, la composition de béryllium est un alliage ternaire zinc/aluminium/béryllium avec 5 000 à 50 000 p.p.m., procédé suivant lequel on ajoute, à l'alliage de zinc en fusion, déficitaire en au moins un additif, au moins une composition métallique soluble dans le zinc en fusion et comportant à teneur relativement élevée au moins un additif, en quantité telle que le déficit soit compensé, caractérisé en ce que, l'alliage de zinc contenant à titre d'additif complémentaire, du béryllium à teneur pondérale comprise entre 7 et 100 p.p.m., la composition d'étain est ce métal à l'état pratiquement pur, la composition de magnésium est un alliage ternaire zinc/magnésium/aluminium avec en poids 5 000 à 50 000 p.p.m. (Sn) 300 à 20 000 p.p.m., (Mg) 10 à 1 000 p.p.m., en poids d'aluminium, le rapport pondéral aluminium/béryllium étant compris entre 11,5 et 24, et la composition d'aluminium, ajoutée en quantité qui tient compte des ajouts en alliages ternaires zinc/magnésium/aluminium et zinc/aluminium/béryllium, étant un alliage binaire zinc/aluminium à teneur pondérale en aluminium voisine de 5 %.
5. Procédé suivant la revendication 4, caractérisé en ce que les teneurs choisies d'additifs sont étain 500 ± 25 p.p.m., aluminium 375 ± 25 p.p.m., magnésium 60 ± 3 p.p.m., béryllium 6,5 ± 0,5 p.p.m.
6. Alliage ternaire au magnésium pour la mise en oeuvre du procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il contient en poids de 5 000 à 50 000 p.p.m. de magnésium et 10 à 500 p.p.m. d'aluminium, le reste étant du zinc.
7. Alliage selon la revendication 6, caractérisé en ce qu'il contient en poids 30 000 ± 1 500 p.p.m. de magnésium et 100 ± 5 p.p.m. d'aluminium.
8. Alliage ternaire au béryllium pour la mise en oeuvre du procédé suivant la revendication 4 ou la revendication 5, caractérisé en ce qu'il contient en poids de 5 000 à 50 000 p.p.m. d'aluminium, du beryllium en rapport pondéral avec l'aluminium 1/11,5 à 1/24, et le reste de zinc.
9. Alliage selon la revendication 8, caractérisé en ce qu'il contient en poids 9 000 ± 450 p.p.m. d'aluminium, et 470 ± 50 p.p.m. de béryllium.
10. Procédé suivant la revendication 5 pour maintenir la composition de l'alliage de zinc au cours de la galvanisation de pièces en acier, par ajout d'alliage ternaire au magnésium selon la revendication 7 et d'alliage ternaire au béryllium selon la revendication 9, caractérisé en ce que par tonne de pièces en acier galvanisées on ajoute de 2 à 25 kg de ternaire au béryllium et de 0,5 à 5 kg de ternaire au magnésium.
11. Procédé suivant la revendication 10, caractérisé en ce que, par tonne de pièces galvanisées, on ajoute 12,5 ± 0,6 kg de ternaire au béryllium et 1,4 ± 0,07 kg de ternaire au magnésium.
EP82400522A 1981-03-25 1982-03-23 Procédé pour ajuster la composition d'un alliage de zinc pour galvanisation au trempé, par ajout de compositions métalliques concentrées en additif d'alliage, et compositions d'addition Expired EP0061407B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8105955 1981-03-25
FR8105955A FR2502641B1 (fr) 1981-03-25 1981-03-25 Procede pour ajuster la composition d'un alliage de zinc pour galvanisation au trempe, par ajout de compositions metalliques concentrees en additif d'alliage, et compositions d'addition

Publications (2)

Publication Number Publication Date
EP0061407A1 EP0061407A1 (fr) 1982-09-29
EP0061407B1 true EP0061407B1 (fr) 1985-07-17

Family

ID=9256631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400522A Expired EP0061407B1 (fr) 1981-03-25 1982-03-23 Procédé pour ajuster la composition d'un alliage de zinc pour galvanisation au trempé, par ajout de compositions métalliques concentrées en additif d'alliage, et compositions d'addition

Country Status (6)

Country Link
US (1) US4439397A (fr)
EP (1) EP0061407B1 (fr)
CA (1) CA1177678A (fr)
DE (1) DE3264732D1 (fr)
FR (1) FR2502641B1 (fr)
NO (1) NO820994L (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1335867C (fr) * 1988-09-02 1995-06-13 Verdun Hildreth Farnsworth Melange de terre rare et d'aluminium pour galvanisation
ZA971076B (en) * 1996-02-23 1997-08-25 Union Miniere Sa Hot-dip galvanizing bath and process.
US6569268B1 (en) 2000-10-16 2003-05-27 Teck Cominco Metals Ltd. Process and alloy for decorative galvanizing of steel
US7182824B2 (en) * 2003-06-17 2007-02-27 Nisshin Steel Co., Ltd. Method of manufacturing zinc alloy ingot

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195566A (en) * 1938-04-23 1940-04-02 American Zinc Products Company Zinc base alloy
DE810222C (de) * 1950-06-10 1951-08-06 Karl Dipl-Ing Lorenz Verfahren und Einrichtung zum Verzinken von Blechen und Gegenstaenden in aluminiumlegierten Baedern
NL112349C (fr) * 1959-08-29
US3164464A (en) * 1961-01-09 1965-01-05 Dow Chemical Co Method of introducing magnesium into galvanizing baths
US3320040A (en) * 1963-08-01 1967-05-16 American Smelting Refining Galvanized ferrous article
FR1396546A (fr) * 1964-03-13 1965-04-23 Vallourec Procédé pour l'alimentation en zinc des cuves de galvanisation et installation pour la mise en oeuvre de ce procédé
US3480465A (en) * 1966-03-30 1969-11-25 Shichiro Ohshima Method of chemically bonding aluminum or aluminum alloys to ferrous alloys
JPS518109A (fr) * 1974-06-07 1976-01-22 British Steel Corp
FR2366376A1 (fr) * 1976-10-01 1978-04-28 Dreulle Noel Alliage destine a la galvanisation au trempe d'aciers, y compris aciers contenant du silicium, et procede de galvanisation adapte a cet alliage

Also Published As

Publication number Publication date
US4439397A (en) 1984-03-27
DE3264732D1 (en) 1985-08-22
FR2502641A1 (fr) 1982-10-01
FR2502641B1 (fr) 1986-05-23
CA1177678A (fr) 1984-11-13
NO820994L (no) 1982-09-27
EP0061407A1 (fr) 1982-09-29

Similar Documents

Publication Publication Date Title
CA1106651A (fr) Alliage destine a la galvanisation au trempe d'aciers y compris aciers contenant du silicium et procede de galvanisation adapte a cet alliage
KR20170125139A (ko) 금속-코팅된 강철 스트립
CA1337148C (fr) Procede d'obtention de fontes a graphite spheroidal
EP0061407B1 (fr) Procédé pour ajuster la composition d'un alliage de zinc pour galvanisation au trempé, par ajout de compositions métalliques concentrées en additif d'alliage, et compositions d'addition
EP1323837B1 (fr) Procédé de réalisation d'un produit sidérurgique en acier au carbone, notamment destiné à la galvanisation.
EP0233872A1 (fr) Procede de traitement des metaux et alliages en vue de leur affinage.
CA1227335A (fr) Procede de traitement de l'acier par le calcium permettant d'obtenir une grande aptitude a la mise en forme a froid et une basse teneur en silicium
EP0190089B1 (fr) Procédé de traitement de métaux liquides par fil fourre contenant du calcium
JPH11323456A (ja) アルミニウム合金鋳塊の製造方法
Kotadia et al. Influence of Zn concentration on interfacial intermetallics during liquid and solid state reaction of hypo and hypereutectic Sn-Zn solder alloys
FR2514786A1 (fr) Procede de debismuthage du plomb
EP0579642B1 (fr) Procede de galvanisation et alliage de zinc pouvant etre utilise dans ce procede
EP0148740A1 (fr) Procédé de revêtement à chaud et bain de composition améliorée pour sa mise en oeuvre
FR3079527A1 (fr) Alliage à base de silicium, procédé de production d’un tel alliage et utilisation de celui-ci
EP0456528A1 (fr) Procédé d'affinage, notamment de décuivrage, du plomb
JPH02175853A (ja) ガルバナイジング浴組成物
EP1272678B1 (fr) Procede de debismuthage du plomb fondu par addition d'alliages calcium-magnesium
EP0384862B1 (fr) Alliages CuSn désoxydés partiellement au Mg - ou au Ca - destinés aux conducteurs électriques et/ou thermiques
JPH08333664A (ja) めっき浴成分の濃度調整装置
EP1033191A1 (fr) Cylindre de laminoir composite pour le laminage à chaud ou à froid et son procédé de fabrication
FR2767725A1 (fr) Cylindre de travail composite pour le laminage a chaud & a froid en acier rapide a haut carbone et haut vanadium et son procede de fabrication par coulee centrifuge
BE436791A (fr)
FR2542015A1 (fr) Procede de transformation de charges d'aluminium secondaire
BE413744A (fr)
BE501389A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19830302

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE DES MINES & FONDERIES DE ZINC DE LA VIEIL

Owner name: SOCIETA MINARRIA E METALLURGICA DI PERTUSOLA

Owner name: SOCIETE MINIERE ET METALLURGIQUE DE PENARROYA SOC

Owner name: NORZINK A.S.

Owner name: ASTURIENNE FRANCE

Owner name: BILLITON ZINK B.V.

Owner name: AUSTRALIAN MINING AND SMELTING EUROPE LIMITED

Owner name: SAMIM S.P.A.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DREULLE, NOEL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETA MINARRIA E METALLURGICA DI PERTUSOLA

Owner name: SOCIETE MINIERE ET METALLURGIQUE DE PENARROYA SOC

Owner name: NORZINK A.S.

Owner name: METALLURGIE HOBOKEN-OVERPELT SOCIETE ANONYME DITE

Owner name: ASTURIENNE FRANCE

Owner name: BILLITON ZINK B.V.

Owner name: AUSTRALIAN MINING AND SMELTING EUROPE LIMITED

Owner name: SAMIM S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETA MINARRIA E METALLURGICA DI PERTUSOLA

Owner name: SOCIETE MINIERE ET METALLURGIQUE DE PENARROYA SOC

Owner name: NORZINK A.S.

Owner name: METALLURGIE HOBOKEN-OVERPELT SOCIETE ANONYME DITE

Owner name: ASTURIENNE FRANCE

Owner name: BILLITON ZINK B.V.

Owner name: AUSTRALIAN MINING AND SMELTING EUROPE LIMITED

Owner name: SAMIM S.P.A.

AK Designated contracting states

Designated state(s): DE GB IT NL SE

REF Corresponds to:

Ref document number: 3264732

Country of ref document: DE

Date of ref document: 19850822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19871001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881121

EUG Se: european patent has lapsed

Ref document number: 82400522.7

Effective date: 19880215