EP0059490A1 - Annular combustion chamber with an annular burner for gas turbines - Google Patents

Annular combustion chamber with an annular burner for gas turbines Download PDF

Info

Publication number
EP0059490A1
EP0059490A1 EP82200099A EP82200099A EP0059490A1 EP 0059490 A1 EP0059490 A1 EP 0059490A1 EP 82200099 A EP82200099 A EP 82200099A EP 82200099 A EP82200099 A EP 82200099A EP 0059490 A1 EP0059490 A1 EP 0059490A1
Authority
EP
European Patent Office
Prior art keywords
ring
gas
burner
channels
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82200099A
Other languages
German (de)
French (fr)
Other versions
EP0059490B1 (en
Inventor
Bernard Dipl.-Ing. Matt
Theo Woringer
Gerassime Dr.Dipl.-Ing. Zouzoulas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0059490A1 publication Critical patent/EP0059490A1/en
Application granted granted Critical
Publication of EP0059490B1 publication Critical patent/EP0059490B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply

Definitions

  • the present invention relates to an annular combustion chamber with an annular burner for gas turbines according to the preamble of patent claim 1.
  • ring combustion chambers Compared to individual combustion chambers, ring combustion chambers have i.a. the advantage of a more compact design of the gas turbines.
  • Today's burners for ring combustion chambers consist of a relatively small number of individual burners distributed over the circumference of the ring combustion chamber, generally 10 to 20, in exceptional cases up to 48.
  • the temperature distribution in the gas stream at the inlet to the turbine is therefore, as already said, not as evenly as desired would be worth it, especially with a small number of individual burners.
  • these burners require a satisfactory flame stabilization, a large recirculation zone which is generated with swirl generators or flame holders with large blocking, which contribute to the pressure losses in the combustion chamber.
  • Another disadvantage of such conventional burners is that, at least in the ignition zone of the fuel / air mixture, there are stoichiometric conditions and thus locally high flame temperatures, which favors the formation of undesirable nitrogen oxides.
  • the total air flow through the burner apart from the cooling air flow for the combustion chamber wall, is divided into a primary air flow that flows through the combustion zone and one or more mixed air flows, which have to be mixed and swirled with the combustion gases further downstream after the burner outlet. for which high speeds with correspondingly large pressure losses are required.
  • the concept on which the invention is based is that very good, intimate mixing of the air with the gaseous and / or liquid fuel is to take place even before the ignition zone, which is a lower temperature peak, a more even temperature distribution in front of the gas turbine and reduced nitrogen oxide formation. A correspondingly selected air speed prevents reignitions. In addition, this eliminates the usual, strongly increasing elements for generating turbulence or a backflow, so that the associated pressure losses are avoided.
  • the ring combustion chamber with ring burner according to the invention should also be able to be set up for both gaseous and liquid fuels and for simultaneous operation with gaseous and liquid fuels.
  • combustion chamber 1 shows the arrangement of an annular combustion chamber according to the invention with an annular burner within an otherwise conventional gas turbine.
  • the combination of combustion chamber 2 and burner 3 is designated 1 here and has a common housing.
  • the combustion chamber 2 and the burner 3 will be separate components, in particular in the case of larger units, since in these, as will be explained below, the ring burner 3 is preferably composed of sectors.
  • the combustion air is, apart from a small amount of cooling air, which is branched off at taps 4, 5 and 6 for cooling the shaft channel and the housing, from the compressor 7 through an annular diffuser 8, which widens in front of the ring burner 3 to form a shock diffuser 9 Burner 3 promoted, where it is mixed intimately with the fuel gas or in addition to the fuel gas with an atomized liquid fuel over the entire channel cross section.
  • the combustion mixture ignites and the combustion gases pass through the combustion chamber 2, where the cooling air branched off in front of the burner is fed to the turbine 10 for work.
  • an annular trip bar 11 is provided, which serves as a turbulence generator and thus causes an approximately uniform speed distribution over the height of the diffuser channel.
  • the combustion chamber 2 can, as a result of the advantageous properties of the ring burner yet to be explained, be designed as an essentially smooth duct according to FIG. 1 without the usual internals for swirling the combustion mixture.
  • the description of the invention is therefore limited to the ring burner alone, which, as already mentioned, is generally designed as a component separate from the ring combustion chamber.
  • the ring burner 3 is preferably composed of circular ring sectors, in particular in the case of larger units. The number of such sectors will generally depend on the size of the burner.
  • the sector 12 shown in FIGS. 2 and 3 in a view and in a radial section covers 22.5 ° , ie that the associated entire burner consists of 16 such sectors.
  • the outermost part of the sector is formed by the gas distributor box 13, which, as shown in FIG. 3, is divided by a partition 14 into a main gas chamber 15 and an ignition gas chamber 16, to which the gas is supplied through the gas supply lines 17 and 18. These two gas supply lines in turn branch off from a manifold, not shown.
  • Radial plate channels 19 and 20 branch off from the gas distribution box 13 from the two gas chambers 15 and 16 and are cut perpendicularly by plate channels 21 and 22 running in the circumferential direction.
  • the plate channels 19 to 22 form a grid-like channel network communicating with the gas distribution box 13, which limits honeycombs of approximately square cross section, into which gas flows during operation from nozzles 23, 24 which are provided in all channel walls.
  • Out 3 shows that a row of nozzles lying in one plane is provided for each honeycomb for both the main gas and the ignition gas.
  • two or more such rows of nozzles could also be provided, which can either be aligned in the flow direction or staggered one behind the other.
  • honeycomb gas is supplied only from two radial and from one circumferential plate channel.
  • the cross section of the flame holder is U-shaped, with baffle plates 29 being provided in the web of flame holder nozzles 28 and in the slot-shaped outlet channel in front of the flame holder nozzles, which are offset from one another in the manner shown in FIG to achieve escaping gas jet for the support flame.
  • the support flame is ignited, which then ignites the gas flowing out of the pilot gas nozzles 24 at the burner outlet. Since both the Zündgasdüsen 24 are fed gas chamber and the flame holder nozzles 28 ünd- of the Z, the flow of gas for the support flame is approximately proportional to the flow of gas from the Zündgasdüsen with which the turbine is idling and possibly operated at low load can. For higher performance 23 main gas is switched on from the main gas nozzles.
  • the gas Due to the many gas nozzles 23 and 24 distributed evenly over the inner circumference of the honeycomb channels in connection with the long mixing path up to the burner outlet, the gas is mixed very well with the air even before the burner outlet, without swirling, so that with a small pressure drop there is one very good combustion with a large excess of air takes place over the entire cross-section of the burner.
  • the temperature of the turbine is also correspondingly balanced by the combustion gases, to which the cooling air extracted at the tapping points 4, 5 and 6 in the combustion chamber is only supplied through slots 30 in the combustion chamber wall in the edge zone.
  • FIG. 4 shows a radial section through a sector of a dual burner that can be operated with liquid and gaseous fuel.
  • this has fuel nozzles 31 arranged in a radial row in front of the burner outlet, which are connected in rows or in groups via fuel lines 32, depending on the load condition, in addition to the gas or alone after the burner with the ignition gas has been ramped up to the idle power, that to the operation supply the combustion gas required under load, the pilot gas being able to be switched off since the flame stabilization is then brought about by the backflow zone prevailing at the burner outlet as a result of the eddies.
  • the axes of the fuel nozzles 31 are aligned with the intersection lines of the radial and the circumferentially extending plate channels, so that the fuel jet is atomized into the four honeycomb channels at the points of intersection of the plates.
  • FIG. 5 to 7 schematically show this distribution of the fuel jets and the fuel nozzles active under different load conditions, namely FIG. 5 at idle, FIG. 6 at partial load and FIG. 7 at full load.
  • Different combinations of active fuel nozzles are possible for part load in a known manner, depending on the individual case.
  • the ignition gas supplied via the ignition gas chamber 32, ignition gas channels 33 and longitudinal pipes 34 branching from the latter to a pipe grid provided at the burner outlet only serves to stabilize the flame.
  • the turbine is operated exclusively by main gas, which passes from the main gas chamber 35 into radial plate channels 36 and from these through main gas nozzles 37 into the air channels formed by adjacent plate channels 36.
  • the longitudinal pipes 34 parallel to the turbine axis open into the aforementioned pipe grid network at the nodes, which are formed by intersecting radial pipes 38 and ring pipes 39.
  • Both the radial tubes 38 and the ring tubes 39 are each with two Provided rows of flame holder nozzles 40 and 41, the axes of which are inclined at an acute angle to the flow direction of the burner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

Der Ringbrenner der Ringbrennkammer ist durch radiale und durch in Umfangsrichtung verlaufende Plattenkanale (19, 20 bzw. 21, 22) oder durch radiale Plattenkanäle (36) und Längsrohre (34), Radialrohre (38) sowie Ringrohre (39) wabenförmig in eine grosse Zahl achsparalleler Kanäle für die Verbrennungsluft unterteilt, in die aus Düsen (23, 24; 37) in den Begrenzungswänden Brenngas eingeführt wird. Am Brenneraustritt sind über den Stirnflächenbereich der Plattenkanale bzw. Rohre Flammenhalterdüsen vorgesehen. Für den Betrieb als Dualbrenner mit gasformigen und flüssigen Brennstoffen werden vor dem Brennereintritt Brennstoffdüsen vorgesehen.The ring burner of the ring combustion chamber is honeycomb-shaped in large numbers by radial and by circumferential plate channels (19, 20 or 21, 22) or by radial plate channels (36) and longitudinal tubes (34), radial tubes (38) and annular tubes (39) axially parallel channels for the combustion air divided into which fuel gas is introduced from nozzles (23, 24; 37) in the boundary walls. Flame holder nozzles are provided at the burner outlet via the end face area of the plate channels or pipes. For operation as a dual burner with gaseous and liquid fuels, fuel nozzles are provided before the burner inlet.

Description

Die vorliegende Erfindung betrifft eine Ringbrennkammer mit Ringbrenner für Gasturbinen nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to an annular combustion chamber with an annular burner for gas turbines according to the preamble of patent claim 1.

Gegenüber Einzelbrennkammern haben Ringbrennkammern u.a. den Vorteil einer kompakteren Bauweise der Gasturbinen.Compared to individual combustion chambers, ring combustion chambers have i.a. the advantage of a more compact design of the gas turbines.

Der Druckverlust, den eine Ringbrennkammer herkömmlicher Bauart verursacht, liegt jedoch eher über demjenigen einer Einzelbrennkammer. Beiden gemeinsam ist aber, dass die Temperaturverteilung vor der Turbine nicht befriedigt.However, the pressure loss caused by an annular combustion chamber of a conventional type is rather higher than that of a single combustion chamber. Common to both is that the temperature distribution in front of the turbine is not satisfactory.

Die heute üblichen Brenner für Ringbrennkammern bestehen aus einer relativ kleinen Anzahl von über den Umfang der Ringbrennkammer verteilten Einzelbrennern, im allgemeinen 10 bis 20, in Ausnahmefällen bis zu 48. Die Temperaturverteilung im Gasstrom am Eintritt in die Turbine ist daher, wie schon gesagt, nicht so gleichmässig wie es wünschenswert wäre, insbesondere bei einer geringen Anzahl von Einzelbrennern. Dazu kommt, dass bei diesen Brennern eine zufriedenstellende Flammenstabilisierung eine grosse Rezirkulationszone benötigt, die mit Drallerzeugern oder Flammenhaltern grosser Blockierung erzeugt wird, die zu den Druckverlusten in der Brennkammer beitragen.Today's burners for ring combustion chambers consist of a relatively small number of individual burners distributed over the circumference of the ring combustion chamber, generally 10 to 20, in exceptional cases up to 48. The temperature distribution in the gas stream at the inlet to the turbine is therefore, as already said, not as evenly as desired would be worth it, especially with a small number of individual burners. In addition, these burners require a satisfactory flame stabilization, a large recirculation zone which is generated with swirl generators or flame holders with large blocking, which contribute to the pressure losses in the combustion chamber.

Nachteilig ist bei solchen konventionellen Brennern ferner, dass zumindest in der Zündzone des Brennstoff/Luft-Gemisches stöchiometrische Verhältnisse und damit örtlich hohe Flammentemperaturen herrschen, was die Bildung unerwünschter Stickoxide begünstigt. Der gesamte Luftdurchsatz durch den Brenner ist dabei, abgesehen vom Kühlluftstrom für die Brennkammerwandung, aufgeteilt in einen Primärluftstrom, der durch die Brennzone strömt, und in einen oder mehrere Mischluftströme, die nach dem Brenneraustritt weiter stromabwärts mit den Verbrennungsgasen gut vermischt und verwirbelt werden müssen, wozu grosse Geschwindigkeiten mit entsprechend grossen Druckverlusten erforderlich sind.Another disadvantage of such conventional burners is that, at least in the ignition zone of the fuel / air mixture, there are stoichiometric conditions and thus locally high flame temperatures, which favors the formation of undesirable nitrogen oxides. The total air flow through the burner, apart from the cooling air flow for the combustion chamber wall, is divided into a primary air flow that flows through the combustion zone and one or more mixed air flows, which have to be mixed and swirled with the combustion gases further downstream after the burner outlet. for which high speeds with correspondingly large pressure losses are required.

Mit der vorliegenden, im kennzeichnenden Teil des Patentanspruchs 1 definierten Ringbrennkammer mit Ringbrenner sollen die vorerwähnten Nachteile der bekannten Bauarten von Ringbrennkammern mit Einzelbrennern vermieden werden.With the present ring combustion chamber with ring burner defined in the characterizing part of patent claim 1, the aforementioned disadvantages of the known designs of ring combustion chambers with individual burners are to be avoided.

Die der Erfindung zugrundeliegende Konzeption besteht darin, dass bereits vor der Zündzone eine sehr gute, innige Vermischung der Luft mit dem gasförmigen und/oder flüssigen Brennstoff stattfinden soll, was niedrigere Temperaturspitzen, eine gleichmässigere Temperaturverteilung vor der Gasturbine und eine verminderte Stickoxidbildung zur Folge hat. Durch eine entsprechend gewählte Luftgeschwindigkeit werden dabei Rückzündungen vermieden. Ausserdem entfallen dadurch die üblichen, stark widerstandserhöhenden Elemente zur Erzeugung von Turbulenz oder einer Rückströmung, so dass auch die damit verbundenen Druckverluste vermieden werden.The concept on which the invention is based is that very good, intimate mixing of the air with the gaseous and / or liquid fuel is to take place even before the ignition zone, which is a lower temperature peak, a more even temperature distribution in front of the gas turbine and reduced nitrogen oxide formation. A correspondingly selected air speed prevents reignitions. In addition, this eliminates the usual, strongly increasing elements for generating turbulence or a backflow, so that the associated pressure losses are avoided.

Die erfindungsgemässe Ringbrennkammer mit Ringbrenner soll ausserdem vom Prinzip her sowohl für gasförmige als auch für flüssige Brennstoffe sowie für den gleichzeitigen Betrieb mit gasförmigen und flüssigen Brennstoffen eingerichtet werden können.In principle, the ring combustion chamber with ring burner according to the invention should also be able to be set up for both gaseous and liquid fuels and for simultaneous operation with gaseous and liquid fuels.

Die Erfindung wird im folgenden unter Bezugnahme auf die in den Zeichnungen dargestellten Ausführungsbeispiele näher beschrieben. In den Zeichnungen stellen dar:

  • Fig. 1 einen schematischen Ausschnitt aus einer Gasturbine mit einer erfindungsgemässen Ringbrennkammer/ Ringbrenner-Kombination,
  • Fig. 2 eine Vorderansicht auf einen Sektor eines Ringbrenners als Bestandteil der vorliegenden Erfindung,
  • Fig. 3 einen Radialschnitt gemäss dem Schnittverlauf III-III von Fig. 2,
  • Fig. 4 einen Radialschnitt durch einen mit Gas und mit flüssigem Brennstoff betreibbaren Dualringbrenner gemäss der Erfindung, die
  • Fig. 5 bis 7 in schematischer Form die wirksamen Brennzonen des Dualringbrenners nach Fig. 4 bei verschiedenen Lastzuständen,
  • Fig. 8 einen Radialschnitt durch einen Sektor einer weiteren Ausführungsform eines für Gasbetrieb vorgesehenen Ringbrenners, und die
  • Fig. 9 einen Querschnitt gemäss dem in Fig. 8 eingetragenen Schnittverlauf IX - IX.
The invention is described below with reference to the embodiments shown in the drawings. In the drawings:
  • 1 shows a schematic section of a gas turbine with an annular combustion chamber / annular burner combination according to the invention,
  • 2 is a front view of a sector of a ring burner as part of the present invention,
  • 3 shows a radial section along the section line III-III of FIG. 2,
  • Fig. 4 shows a radial section through a gas and liquid fuel operated dual ring burner according to the invention, the
  • 5 to 7 in schematic form the effective combustion zones of the dual ring burner according to FIG. 4 under different load conditions,
  • 8 shows a radial section through a sector of a further embodiment of a ring burner provided for gas operation, and the
  • FIG. 9 shows a cross section according to the section IX - IX shown in FIG. 8.

Aus Fig. 1 geht die Anordnung einer erfindungsgemässen Ringbrennkammer mit Ringbrenner innerhalb einer ansonsten konventionellen Gasturbine hervor. Die Kombination Brennkammer 2 und Brenner 3 ist hier mit 1 bezeichnet und besitzt ein gemeinsames Gehäuse. Praktisch werden die Brennkammer 2 und der Brenner 3 getrennte Bauteile sein, insbesondere bei grösseren Einheiten, da bei diesen, wie unten dargelegt wird, der Ringbrenner 3 vorzugsweise aus Sektoren zusammengesetzt ist. Die Verbrennungsluft wird, abgesehen von einer geringen Kühlluftmenge,die an Abzapfstellen 4, 5 und 6 zur Kühlung des Wellenkanals und des Gehäuses abgezweigt wird, vom Verdichter 7 durch einen Kreisringdiffusor 8, der sich vor dem Ringbrenner 3 zu einem Stossdiffusor 9 erweitert, in den Brenner 3 gefördert, wo sie mit dem Brenngas oder zusätzlich zum Brenngas noch mit einem zerstäubten flüssigen Brennstoff über den ganzen Kanalquerschnitt gleichmässig innig vermischt wird. Am Brenneraustritt entzündet sich das Brenngemisch und die Verbrennungsgase gelangen durch die Brennkammer 2, wo ihnen die vor dem Brenner abgezweigte Kühlluft zugeführt wird, zur Arbeitsleistung in die Turbine 10. Im Kreisringdiffusor 8 ist eine ringförmige Stolperleiste 11 vorgesehen, die als Turbulenzerzeuger dient und damit eine etwa gleichmässige Geschwindigkeitsverteilung über die Höhe des Diffusorkanals bewirkt.1 shows the arrangement of an annular combustion chamber according to the invention with an annular burner within an otherwise conventional gas turbine. The combination of combustion chamber 2 and burner 3 is designated 1 here and has a common housing. In practice, the combustion chamber 2 and the burner 3 will be separate components, in particular in the case of larger units, since in these, as will be explained below, the ring burner 3 is preferably composed of sectors. The combustion air is, apart from a small amount of cooling air, which is branched off at taps 4, 5 and 6 for cooling the shaft channel and the housing, from the compressor 7 through an annular diffuser 8, which widens in front of the ring burner 3 to form a shock diffuser 9 Burner 3 promoted, where it is mixed intimately with the fuel gas or in addition to the fuel gas with an atomized liquid fuel over the entire channel cross section. At the burner outlet, the combustion mixture ignites and the combustion gases pass through the combustion chamber 2, where the cooling air branched off in front of the burner is fed to the turbine 10 for work. In the annular diffuser 8, an annular trip bar 11 is provided, which serves as a turbulence generator and thus causes an approximately uniform speed distribution over the height of the diffuser channel.

Die Brennkammer 2 kann als Folge der noch zu erläuternden vorteilhaften Eigenschaften des Ringbrenners als im wesentlichen glatter Kanal gemäss Fig. l ohne die sonst üblichen Einbauten zur Verwirbelung des Brenngemisches ausgeführt werden. Die Beschreibung der Erfindung beschränkt sich daher im folgenden auf den Ringbrenner allein, der, wie schon erwähnt, im allgemeinen als ein von der Ringbrennkammer getrennter Bauteil ausgeführt wird.The combustion chamber 2 can, as a result of the advantageous properties of the ring burner yet to be explained, be designed as an essentially smooth duct according to FIG. 1 without the usual internals for swirling the combustion mixture. The description of the invention is therefore limited to the ring burner alone, which, as already mentioned, is generally designed as a component separate from the ring combustion chamber.

Der Ringbrenner 3 wird vorzugsweise, insbesondere bei grösseren Einheiten, aus Kreisringsektoren zusammengesetzt. Die Anzahl solcher Sektoren wird im allgemeinen von der Grösse des Brenners abhängen. Der in den Fig. 2 und 3 in Ansicht und in einem Radialschnitt dargestellte Sektor 12 überdeckt 22,50, d.h., dass der zugehörige ganze Brenner aus 16 solcher Sektoren besteht. Den äussersten Teil des Sektors bildet der Gasverteilerkastm13, der, wie Fig. 3 zeigt, durch ein Trennschott 14 in eine Hauptgaskammer 15 und eine Zündgaskammer 16 unterteilt ist, denen das Gas durch die Gaszuleitungen 17 und 18 zugeführt wird. Diese beiden Gaszuleitungen zweigen ihrerseits von einer nicht dargestellten Sammelleitung ab. Vom Gasverteilerkasten 13 zweigen von den beiden Gaskammern 15 und 16 radiale Plattenkanäle 19 bzw. 20 ab, die von in Umfangsrichtung verlaufenden Plattenkanälen 21 bzw. 22 senkrecht geschnitten werden. Die Plattenkanäle 19 bis 22 bilden ein mit dem Gasverteilerkasten 13 kommunizierendes, gitterartiges Kanalnetz, das Waben von angenähert quadratischem Querschnitt begrenzt, in die während des Betriebes aus Düsen 23, 24, die in allen Kanalwandungen vorgesehen sind, Gas einströmt. Aus Fig. 3 geht hervor, dass sowohl für das Hauptgas als auch für das Zündgas für jede Wabe je eine Reihe von in einer Ebene liegenden Düsen vorgesehen ist. Es könnten aber natürlich auch, je nach Brennerleistung, zwei oder mehr solcher Düsenreihen vorgesehen sein, die entweder in Strömungsrichtung fluchtend oder gestaffelt hintereinander angeordnet sein können.The ring burner 3 is preferably composed of circular ring sectors, in particular in the case of larger units. The number of such sectors will generally depend on the size of the burner. The sector 12 shown in FIGS. 2 and 3 in a view and in a radial section covers 22.5 ° , ie that the associated entire burner consists of 16 such sectors. The outermost part of the sector is formed by the gas distributor box 13, which, as shown in FIG. 3, is divided by a partition 14 into a main gas chamber 15 and an ignition gas chamber 16, to which the gas is supplied through the gas supply lines 17 and 18. These two gas supply lines in turn branch off from a manifold, not shown. Radial plate channels 19 and 20 branch off from the gas distribution box 13 from the two gas chambers 15 and 16 and are cut perpendicularly by plate channels 21 and 22 running in the circumferential direction. The plate channels 19 to 22 form a grid-like channel network communicating with the gas distribution box 13, which limits honeycombs of approximately square cross section, into which gas flows during operation from nozzles 23, 24 which are provided in all channel walls. Out 3 shows that a row of nozzles lying in one plane is provided for each honeycomb for both the main gas and the ignition gas. Of course, depending on the burner output, two or more such rows of nozzles could also be provided, which can either be aligned in the flow direction or staggered one behind the other.

Bei der dargestellten Ausführung bestehen bei den zwei mittleren Wabenreihen alle vier Begrenzungen aus den Plattenkanälen 19 bzw. 20, während bei der äussersten und der innersten Wabenreihe die radial äussere bzw. radial innere Begrenzung von Abschirmblechen 25 bzw. 26 gebildet wird.In the embodiment shown, in the two middle rows of honeycombs all four boundaries consist of the plate channels 19 and 20, while in the outermost and innermost rows of honeycombs the radially outer and radially inner boundaries of shielding plates 25 and 26 are formed.

In diese beiden Wabenreihen wird also nur aus zwei radialen und aus einem in Umfangsrichtung verlaufenden Plattenkanal Gas zugeführt..In these two rows of honeycomb gas is supplied only from two radial and from one circumferential plate channel.

Am Brenneraustritt, d.h., am vorderen Ende aller Plattenkanäle für das Zündgas s-ind Flammenhalter 27 vorgesehen, die bei den zwei mittleren Wabenreihen den aus Fig. 2 ersichtlichen doppeltrapezförmigen Umriss aufweisen. Zur Wahrung der Uebersichtlichkeit ist die vollständige Vorderansicht dieser Flammenhalter nur für zwei mittlere und zwei äussere Waben eingezeichnet.At the burner outlet, i.e. at the front end of all plate channels for the ignition gas s-ind flame holder 27 are provided, which have the double trapezoidal outline shown in FIG. 2 in the two middle honeycomb rows. To maintain clarity, the complete front view of these flame holders is only shown for two middle and two outer honeycombs.

Wie Fig. 3 zeigt, ist der Querschnitt der Flammenhalter U-förmig, wobei im Steg Flarnmenhalterdüsen 28 und im schlitzförmigen Austrittskanal vor den Flamnenhalterdüsen Prallplatten 29 vorgesehen sind, die in der aus Fig. 2 ersichtlichen Weise gegeneinander versetzt sind, um eine gute Verwirbelung des austretenden Gasstrahles für die Stützflamme zu erzielen.As shown in FIG. 3, the cross section of the flame holder is U-shaped, with baffle plates 29 being provided in the web of flame holder nozzles 28 and in the slot-shaped outlet channel in front of the flame holder nozzles, which are offset from one another in the manner shown in FIG to achieve escaping gas jet for the support flame.

Zum Anfahren des Brenners wird die Stützflamme gezündet, die dann das gleichzeitig aus den Zündgasdüsen 24 ausströmende Gas am Brenneraustritt entzündet. Da sowohl die Zündgasdüsen 24 als auch die Flammenhalterdüsen 28 von der Zünd- gaskammer gespeist werden, ist der Gasstrom für die Stützflamme etwa proportional dem Gasstrom aus den Zündgasdüsen, mit dem die Turbine im Leerlauf und eventuell bei Schwachlast betrieben werden kann. Für höhere Leistung wird aus den Hauptgasdüsen 23 Hauptgas zugeschaltet.To start the burner, the support flame is ignited, which then ignites the gas flowing out of the pilot gas nozzles 24 at the burner outlet. Since both the Zündgasdüsen 24 are fed gas chamber and the flame holder nozzles 28 ünd- of the Z, the flow of gas for the support flame is approximately proportional to the flow of gas from the Zündgasdüsen with which the turbine is idling and possibly operated at low load can. For higher performance 23 main gas is switched on from the main gas nozzles.

Durch die vielen, gleichmässig über den inneren Umfang der Wabenkanäle verteilten Gasdüsen 23 und 24 in Verbindung mit dem langen Mischungsweg bis zum Brenneraustritt findet bereits vor dem Brenneraustritt auch ohne Verwirbelung eine sehr gute Vermischung des Gases mit der Luft statt, so dass bei kleinem Druckabfall eine sehr gute, über den ganzen Brennerquerschnitt gleichmässige Verbrennung mit grossem Luftüberschuss stattfindet. Dementsprechend ausgeglichen ist auch die Temperaturbeaufschlagung der Turbine durch die Verbrennungsgase, denen in der Brennkammer lediglich noch in der Randzone die an den Abzapfstellen 4, 5 und 6 entnommene Kühlluft durch Schlitze 30 in der Brennkammerwand zugeführt wird.Due to the many gas nozzles 23 and 24 distributed evenly over the inner circumference of the honeycomb channels in connection with the long mixing path up to the burner outlet, the gas is mixed very well with the air even before the burner outlet, without swirling, so that with a small pressure drop there is one very good combustion with a large excess of air takes place over the entire cross-section of the burner. The temperature of the turbine is also correspondingly balanced by the combustion gases, to which the cooling air extracted at the tapping points 4, 5 and 6 in the combustion chamber is only supplied through slots 30 in the combustion chamber wall in the edge zone.

Die Fig. 4 zeigt einen Radialschnitt durch einen Sektor eines mit flüssigem und gasförmigem Brennstoff betreibbaren Dualbrenners. Dieser besitzt zusätzlich zu den Elementen des für seinen Gasbetrieb vorgesehenen Brenners vor dem Brenneraustritt in einer radialen Reihe angeordnete Brennstoffdüsen 31, die über Brennstoffleitungen 32 reihen- oder gruppenweise, je nach Lastzustand, zusätzlich zum Gas zugeschaltet oder aber allein, nachdem der Brenner mit dem Zündgas über die Leerlaufleistung hochgefahren worden ist, das zum Betrieb unter Last erforderliche Verbrennungsgas liefern, wobei das Zündgas abgeschaltet werden kann, da die Flammenstabilisierung dann durch die am Brenneraustritt infolge der Wirbeln herrschende Rückströmzone bewirkt wird.4 shows a radial section through a sector of a dual burner that can be operated with liquid and gaseous fuel. In addition to the elements of the burner intended for its gas operation, this has fuel nozzles 31 arranged in a radial row in front of the burner outlet, which are connected in rows or in groups via fuel lines 32, depending on the load condition, in addition to the gas or alone after the burner with the ignition gas has been ramped up to the idle power, that to the operation supply the combustion gas required under load, the pilot gas being able to be switched off since the flame stabilization is then brought about by the backflow zone prevailing at the burner outlet as a result of the eddies.

Die Achsen der Brennstoffdüsen 31 fluchten mit den Schnittlinien der radialen und der sich in Umfangsrichtung erstrekkenden Plattenkanäle, so dass der Brennstoffstrahl an den Kreuzungspunkten der Platten in jeweils vier Wabenkanälen hinein zerstäubt wird.The axes of the fuel nozzles 31 are aligned with the intersection lines of the radial and the circumferentially extending plate channels, so that the fuel jet is atomized into the four honeycomb channels at the points of intersection of the plates.

Die Fig. 5 bis 7 zeigen schematisch diese Aufteilung der Brennstoffstrahlen und die bei verschiedenen Lastzuständen aktiven Brennstoffdüsen, und zwar die Fig. 5 bei Leerlauf, die Fig. 6 bei einer Teillast und die Fig. 7 bei Volllast. Für Teillast sind in bekannter Weise je nach Einzelfall verschiedene Kombinationen von aktiven Brennstoffdüsen möglich.5 to 7 schematically show this distribution of the fuel jets and the fuel nozzles active under different load conditions, namely FIG. 5 at idle, FIG. 6 at partial load and FIG. 7 at full load. Different combinations of active fuel nozzles are possible for part load in a known manner, depending on the individual case.

Bei der in der Fig. 8 und 9 dargestellten Variante eines Brenners für ausschliesslichen Gasbetrieb dient das über die Zündgaskammer 32, Zündgaskanäle 33 und von letzteren abzweigenden Längsrohren 34 einem am Brenneraustritt vorgesehenen Rohrgitternetz zugeführte Zündgas nur zur Flammenstabilisierung. Die Turbine wird über den ganzen Lastbereich ausschliesslich durch Hauptgas betrieben, das aus der Hauptgaskammer 35 in radiale Plattenkanäle 36 und aus diesen durch Hauptgasdüsen 37 in die von benachbarten Plattenkanälen 36 gebildeten Luftkanälen gelangt. Die zur Turbinenachse parallelen Längsrohre 34 münden in das erwähnte Rohrgitternetz an den Knoten, die von sich kreuzenden Radialrohren 38 und Ringrohren 39 gebildet werden. Sowohl die Radialrohre 38 als auch die Ringrohre 39 sind mit je zwei Reihen von Flammenhalterdüsen 40 bzw. 41 versehen, deren Achsen zur Durchströmungsrichtung des Brenners unter einem spitzen Winkel geneigt sind.In the variant of a burner for exclusive gas operation shown in FIGS. 8 and 9, the ignition gas supplied via the ignition gas chamber 32, ignition gas channels 33 and longitudinal pipes 34 branching from the latter to a pipe grid provided at the burner outlet only serves to stabilize the flame. Over the entire load range, the turbine is operated exclusively by main gas, which passes from the main gas chamber 35 into radial plate channels 36 and from these through main gas nozzles 37 into the air channels formed by adjacent plate channels 36. The longitudinal pipes 34 parallel to the turbine axis open into the aforementioned pipe grid network at the nodes, which are formed by intersecting radial pipes 38 and ring pipes 39. Both the radial tubes 38 and the ring tubes 39 are each with two Provided rows of flame holder nozzles 40 and 41, the axes of which are inclined at an acute angle to the flow direction of the burner.

Das Rohrgitternetz dieser Ausführungsform bildet zwar keine geschlossen begrenzten Kanäle wie bei den Ausführungen nach den Fig. 2 bis 4, infolge der dichten Verteilung der Hauptgasdüsen 37 über die Kanalhöhe und insgesamt über den Brennerquerschnitt ist aber ebenfalls eine gute, gleichmässige Vermischung von Gas und Luft mit den eingangs beschriebenen Vorteilen gewährleistet.2 to 4, due to the dense distribution of the main gas nozzles 37 over the channel height and overall over the burner cross section, a good, uniform mixing of gas and air is also with guaranteed the advantages described above.

Claims (5)

1. Ringbrennkammer mit Ringbrenner für Gasturbinen, mit über den Umfang,des im wesentlichen kreisringzylindrischen Eintrittsquerschnittes der Ringbrennkammer in regelmässiger Verteilung angeordneten Brennerelementen
, gekennzeichnet durch sich radial und in Umfangsrichtung erstreckende Gaskanäle (19, 20, 21, 22; 36, 38 39), die ein zusammenhängendes,unter sich leitend verbundenes,gitterartiges Kanalsystem bilden, und dass die Gaskanäle (19, 20, 21, 22; 36, 38, 39) Reihen von Düsen (23, 24, 28; 40, 41) aufweisen, die parallel zur Längserstreckung der genannten Gaskanäle angeordnet sind.
1. Ring combustion chamber with ring burner for gas turbines, with burner elements arranged over the circumference of the substantially circular cylindrical inlet cross-section of the ring combustion chamber in a regular distribution
, characterized by gas channels (19, 20, 21, 22; 36, 38 39) extending radially and in the circumferential direction, which form a coherent, interconnected, grid-like channel system, and in that the gas channels (19, 20, 21, 22 ; 36, 38, 39) have rows of nozzles (23, 24, 28; 40, 41) which are arranged parallel to the longitudinal extension of the gas channels mentioned.
2. Ringbrennkammer mit Ringbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Gaskanäle als
Plattenkanäle (19, 20, 21, 22) ausgebildet sind, die Wabenkanäle von annähernd quadratischem Querschnitt für die Mischung des Gases mit der Verbrennungsluft begrenzen, dass ein Teil der Gaskanäle (19, 21) für die Zuführung von Hauptgas und die übrigen Gaskanäle (20, 22) für die Zuführung von Zündgas ausgebildet sind, und dass die am Brenneraustritt der Plattenkanäle für das Zündgas vorgesehenen Düsen als Flammenhalterdüsen (28) mit davor angeordneten Prallplatten (29) ausgebildet sind.
2. ring combustion chamber with ring burner according to claim 1, characterized in that the gas channels as
Plate channels (19, 20, 21, 22) are formed, the honeycomb channels of approximately square cross section for the mixing of the gas with the combustion air limit that part of the gas channels (19, 21) for the supply of main gas and the other gas channels (20 , 22) are designed for the supply of ignition gas, and that the nozzles provided at the burner outlet of the plate channels for the ignition gas are designed as flame holder nozzles (28) with baffle plates (29) arranged in front of them.
3. Ringbrennkammer mit Ringbrenner nach Anspruch 2 zur Verwendung als Dualringbrenner, dadurch gekennzeichnet, dass in einer Ebene vor dem Brennereintritt Brennstoffdüsen (31) für flüssige Brennstoffe vorgesehen sind, wobei die Düsenachsen mit den Achsen der von den radialen und sich in in Umfangsrichtung erstreckenden Plattenkanälen (19, 20, 21, 22) gebildeten Knoten fluchten.3. ring combustion chamber with ring burner according to claim 2 for use as a dual ring burner, characterized in that fuel nozzles in one plane before the burner entry (31) are provided for liquid fuels, the nozzle axes being aligned with the axes of the nodes formed by the radial and circumferentially extending plate channels (19, 20, 21, 22). 4. Ringbrennkammer mit Ringbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Hauptgaskanäle als radiale Plattenkanäle (36) ausgeführt sind, dass für die Zuführung des Zündgases radiale Zündgaskanäle (33), Längsrohre (34), Radialrohre (38) und Ringrohre (39) vorgesehen und dass die Düsen in den Radialrohren (38) und in den Ringrohren (39) als Flammenhalterdüsen (40, 41) ausgebildet sind.4. ring combustion chamber with ring burner according to claim 1, characterized in that the main gas channels are designed as radial plate channels (36) that for the supply of the ignition gas radial ignition gas channels (33), longitudinal tubes (34), radial tubes (38) and annular tubes (39) and that the nozzles in the radial tubes (38) and in the ring tubes (39) are designed as flame holder nozzles (40, 41). 5. Ringbrennkammer mit Ringbrenner nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Ringbrenner in Kreisringsektoren unterteilt ist.5. ring combustion chamber with ring burner according to one of claims 1 to 4, characterized in that the ring burner is divided into circular ring sectors.
EP82200099A 1981-03-04 1982-01-27 Annular combustion chamber with an annular burner for gas turbines Expired EP0059490B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1439/81 1981-03-04
CH143981 1981-03-04

Publications (2)

Publication Number Publication Date
EP0059490A1 true EP0059490A1 (en) 1982-09-08
EP0059490B1 EP0059490B1 (en) 1984-12-12

Family

ID=4210486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200099A Expired EP0059490B1 (en) 1981-03-04 1982-01-27 Annular combustion chamber with an annular burner for gas turbines

Country Status (5)

Country Link
US (1) US4455840A (en)
EP (1) EP0059490B1 (en)
JP (1) JPS57157936A (en)
CA (1) CA1189330A (en)
DE (1) DE3261484D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549143A1 (en) * 1995-12-29 1997-07-03 Abb Research Ltd Gas turbine ring combustor
EP0818658A1 (en) * 1996-07-11 1998-01-14 SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION -Snecma Low NOx annular combustion chamber
EP1614963A1 (en) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Premix Combustion System and Method
EP1816400A2 (en) * 2006-02-02 2007-08-08 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber with fuel injection over the whole combustion chamber ring
CN109028147A (en) * 2017-06-09 2018-12-18 通用电气公司 Toroidal throat rotates detonating combustion device and corresponding propulsion system

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082724A (en) * 1983-10-13 1985-05-10 Agency Of Ind Science & Technol Gas turbine combustor
DE3662462D1 (en) * 1985-07-30 1989-04-20 Bbc Brown Boveri & Cie Dual combustor
JPS63121310U (en) * 1987-01-31 1988-08-05
JPS63121317U (en) * 1987-01-31 1988-08-05
CH684963A5 (en) * 1991-11-13 1995-02-15 Asea Brown Boveri Annular combustion chamber.
FR2694624B1 (en) * 1992-08-05 1994-09-23 Snecma Combustion chamber with several fuel injectors.
US5323604A (en) * 1992-11-16 1994-06-28 General Electric Company Triple annular combustor for gas turbine engine
US5289685A (en) * 1992-11-16 1994-03-01 General Electric Company Fuel supply system for a gas turbine engine
US5303542A (en) * 1992-11-16 1994-04-19 General Electric Company Fuel supply control method for a gas turbine engine
US5943866A (en) * 1994-10-03 1999-08-31 General Electric Company Dynamically uncoupled low NOx combustor having multiple premixers with axial staging
US5881756A (en) * 1995-12-22 1999-03-16 Institute Of Gas Technology Process and apparatus for homogeneous mixing of gaseous fluids
US6109038A (en) * 1998-01-21 2000-08-29 Siemens Westinghouse Power Corporation Combustor with two stage primary fuel assembly
SE514341C2 (en) 1998-06-18 2001-02-12 Abb Ab Procedure for starting a burner device for a gas turbine
EP0976982B1 (en) * 1998-07-27 2003-12-03 ALSTOM (Switzerland) Ltd Method of operating the combustion chamber of a liquid-fuel gas turbine
US6295801B1 (en) * 1998-12-18 2001-10-02 General Electric Company Fuel injector bar for gas turbine engine combustor having trapped vortex cavity
US6286298B1 (en) * 1998-12-18 2001-09-11 General Electric Company Apparatus and method for rich-quench-lean (RQL) concept in a gas turbine engine combustor having trapped vortex cavity
US6442939B1 (en) * 2000-12-22 2002-09-03 Pratt & Whitney Canada Corp. Diffusion mixer
US6427447B1 (en) * 2001-02-06 2002-08-06 United Technologies Corporation Bulkhead for dual fuel industrial and aeroengine gas turbines
JP2003074856A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Combustion equipment of gas-turbine engine
JP2003074853A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Combustion equipment of gas-turbine engine
JP2003074854A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Combustion equipment of gas-turbine engine
EP1507120A1 (en) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Gasturbine
US7249461B2 (en) * 2003-08-22 2007-07-31 Siemens Power Generation, Inc. Turbine fuel ring assembly
EP2199674B1 (en) * 2008-12-19 2012-11-21 Alstom Technology Ltd Burner of a gas turbine having a special lance configuration
US8234871B2 (en) * 2009-03-18 2012-08-07 General Electric Company Method and apparatus for delivery of a fuel and combustion air mixture to a gas turbine engine using fuel distribution grooves in a manifold disk with discrete air passages
JP5629321B2 (en) 2009-09-13 2014-11-19 リーン フレイム インコーポレイテッド Inlet premixer for combustion equipment
US8276385B2 (en) * 2009-10-08 2012-10-02 General Electric Company Staged multi-tube premixing injector
EA019766B1 (en) * 2011-08-29 2014-06-30 Геннадий Борисович Варламов Tubular-type low-emission burner with directed air stream
EA021650B1 (en) * 2011-08-29 2015-08-31 Геннадий Борисович Варламов Multichamber gas burner of tubular type
US8429915B1 (en) * 2011-10-17 2013-04-30 General Electric Company Injector having multiple fuel pegs
US9341376B2 (en) * 2012-02-20 2016-05-17 General Electric Company Combustor and method for supplying fuel to a combustor
US9677766B2 (en) * 2012-11-28 2017-06-13 General Electric Company Fuel nozzle for use in a turbine engine and method of assembly
JP6239943B2 (en) * 2013-11-13 2017-11-29 三菱日立パワーシステムズ株式会社 Gas turbine combustor
WO2015176908A1 (en) * 2014-05-23 2015-11-26 Siemens Aktiengesellschaft Burner with fuel distributor ring
USD791930S1 (en) 2015-06-04 2017-07-11 Tropitone Furniture Co., Inc. Fire burner
US10197291B2 (en) 2015-06-04 2019-02-05 Tropitone Furniture Co., Inc. Fire burner
US11226092B2 (en) 2016-09-22 2022-01-18 Utilization Technology Development, Nfp Low NOx combustion devices and methods
US11326521B2 (en) * 2020-06-30 2022-05-10 General Electric Company Methods of igniting liquid fuel in a turbomachine
US11333360B2 (en) * 2020-09-25 2022-05-17 General Electric Company Fuel injector for a turbomachine
EP4027059A1 (en) * 2021-01-12 2022-07-13 Crosstown Power GmbH Burner, combustor, and method for retrofitting a combustion appliance
GB202104885D0 (en) * 2021-04-06 2021-05-19 Siemens Energy Global Gmbh & Co Kg Combustor for a Gas Turbine
US12060997B1 (en) 2023-02-02 2024-08-13 Pratt & Whitney Canada Corp. Combustor with distributed air and fuel mixing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB568681A (en) * 1943-04-15 1945-04-16 Fred Umpleby Improvements in and relating to internal combustion turbine plant
US2592748A (en) * 1944-02-17 1952-04-15 Rateau Soc Annular combustion chamber with hollow air guide vanes with radial gasiform fuel slots for gas turbines
US2635424A (en) * 1947-08-02 1953-04-21 Szczeniowski Boleslaw Combustor for high flow velocities
CH305532A (en) * 1951-06-25 1955-02-28 Parsons & Co Ltd C A Gas turbine plant.
FR1166520A (en) * 1956-11-20 1958-11-12 Continental Aviat & Eng Corp Pilot burner for reactors
DE1120820B (en) * 1957-05-09 1961-12-28 Bristol Siddeley Engines Ltd Device for the finely divided supply of a liquid into a gas stream
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2701444A (en) * 1950-01-26 1955-02-08 Solar Aircraft Co Burner for jet engines
US2712221A (en) * 1952-04-22 1955-07-05 Westinghouse Electric Corp Gas turbine afterburner apparatus
US3046731A (en) * 1955-10-07 1962-07-31 Edward Pohlmann Flame stabilization in jet engines
JPS4921515A (en) * 1972-05-22 1974-02-26
GB1559779A (en) * 1975-11-07 1980-01-23 Lucas Industries Ltd Combustion assembly
US4158949A (en) * 1977-11-25 1979-06-26 General Motors Corporation Segmented annular combustor
GB2036296B (en) * 1978-11-20 1982-12-01 Rolls Royce Gas turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB568681A (en) * 1943-04-15 1945-04-16 Fred Umpleby Improvements in and relating to internal combustion turbine plant
US2592748A (en) * 1944-02-17 1952-04-15 Rateau Soc Annular combustion chamber with hollow air guide vanes with radial gasiform fuel slots for gas turbines
US2635424A (en) * 1947-08-02 1953-04-21 Szczeniowski Boleslaw Combustor for high flow velocities
CH305532A (en) * 1951-06-25 1955-02-28 Parsons & Co Ltd C A Gas turbine plant.
FR1166520A (en) * 1956-11-20 1958-11-12 Continental Aviat & Eng Corp Pilot burner for reactors
DE1120820B (en) * 1957-05-09 1961-12-28 Bristol Siddeley Engines Ltd Device for the finely divided supply of a liquid into a gas stream
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549143A1 (en) * 1995-12-29 1997-07-03 Abb Research Ltd Gas turbine ring combustor
EP0818658A1 (en) * 1996-07-11 1998-01-14 SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION -Snecma Low NOx annular combustion chamber
FR2751054A1 (en) * 1996-07-11 1998-01-16 Snecma ANTI-NOX COMBUSTION CHAMBER WITH ANNULAR TYPE FUEL INJECTION
US5937653A (en) * 1996-07-11 1999-08-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) Reduced pollution combustion chamber having an annular fuel injector
EP1614963A1 (en) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Premix Combustion System and Method
EP1816400A2 (en) * 2006-02-02 2007-08-08 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber with fuel injection over the whole combustion chamber ring
EP1816400A3 (en) * 2006-02-02 2012-07-04 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber with fuel injection over the whole combustion chamber ring
CN109028147A (en) * 2017-06-09 2018-12-18 通用电气公司 Toroidal throat rotates detonating combustion device and corresponding propulsion system

Also Published As

Publication number Publication date
DE3261484D1 (en) 1985-01-24
US4455840A (en) 1984-06-26
CA1189330A (en) 1985-06-25
EP0059490B1 (en) 1984-12-12
JPS6339812B2 (en) 1988-08-08
JPS57157936A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
EP0059490B1 (en) Annular combustion chamber with an annular burner for gas turbines
EP0029619B1 (en) Gas-turbine combustor with premixing-prevaporizing elements
EP0571782B1 (en) Gasturbine combustor and operating method
DE69220091T2 (en) PRE-MIXING GAS NOZZLE
DE69409428T2 (en) Dual-fuel burner with very low NOx emissions
DE69210715T2 (en) Low NOx burner
DE69405281T2 (en) Premix combustion chamber with concentric ring channels
DE69513542T2 (en) Fuel nozzle
DE10064259B4 (en) Burner with high flame stability
DE69205576T3 (en) GAS TURBINE COMBUSTION CHAMBER.
DE3007763C2 (en) Annular combustion chamber for gas turbine engines
DE69723348T2 (en) Optimization of the mixing of combustion gases in a gas turbine combustion chamber
EP0924470B1 (en) Premix combustor for a gas turbine
DE2417147A1 (en) GAS TURBINE COMBUSTION DEVICE AND METHOD OF OPERATING THE DEVICE
DE2157181C3 (en) Combustion chamber for a gas turbine
DE4200073A1 (en) DUAL FUEL BURNER WITH REDUCED NO (DOWN ARROW) X (DOWN ARROW) EXHAUST
EP0481111B1 (en) Gas-turbine combustion chamber
EP0401529A1 (en) Gas turbine combustion chamber
EP0193029B1 (en) Gas turbine combustor
EP0394800A1 (en) Premix burner for generating a hot gas
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
DE3741021C2 (en) Combustion chamber for a gas turbine engine
EP0751351A1 (en) Combustion chamber
DE69816383T2 (en) Gas turbine combustor
EP0882932B1 (en) Combustor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19830108

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3261484

Country of ref document: DE

Date of ref document: 19850124

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910131

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910422

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19920131

Ref country code: LI

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930312

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940127

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001

EUG Se: european patent has lapsed

Ref document number: 82200099.8

Effective date: 19920806