EP0058092B1 - Dispositif d'impression rotatif muni d'indices inhérentes - Google Patents
Dispositif d'impression rotatif muni d'indices inhérentes Download PDFInfo
- Publication number
- EP0058092B1 EP0058092B1 EP19820300660 EP82300660A EP0058092B1 EP 0058092 B1 EP0058092 B1 EP 0058092B1 EP 19820300660 EP19820300660 EP 19820300660 EP 82300660 A EP82300660 A EP 82300660A EP 0058092 B1 EP0058092 B1 EP 0058092B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protrusions
- interposer
- printing device
- drive shaft
- printwheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007639 printing Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 101150082208 DIABLO gene Proteins 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J1/00—Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies
- B41J1/22—Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies with types or dies mounted on carriers rotatable for selection
- B41J1/24—Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies with types or dies mounted on carriers rotatable for selection the plane of the type or die face being perpendicular to the axis of rotation
- B41J1/28—Carriers stationary for impression, e.g. with the types or dies not moving relative to the carriers
- B41J1/30—Carriers stationary for impression, e.g. with the types or dies not moving relative to the carriers with the types or dies moving relative to the carriers or mounted on flexible carriers
Definitions
- This invention relates to a rotary printing device, such as a daisy-type printwheel or a cup-shaped printing element, for use in an impact printer.
- the printwheel is provided with identification features thereon which, in one form, serve to locate a "home” or reference position.
- the identification features provide to the printer, in addition to locating a "home” position, information regarding the font style, language, pitch, point size and other characteristics. This information enables the printerto select the desired characters, to increment the carriage by the correct amount, and to impact the printwheel at the proper energy level.
- a method and apparatus for in situ identification of the rotary printing device is also comprehended in this invention.
- Printing device identification to the printer may be provided directly by the user through a keyboard entry, or the printer may "read” this information directly from the loaded device. Once the identifying information has been received, the printer will make the necessary control adjustments. This may be accomplished, as taught in US-A-4,074,798 by any number of embodiments of read-only memory, in the form of optical or magnetic indicia, arranged in a circular manner on the printwheel hub.
- Xerox Disclosure Journal, Vol. 1, Nos. 9/10, Sept./Oct. 1976, p. 25 discusses, in general terms, the desirability of placing a code upon each petal to control the impact force forthat character.
- IBM Technical Disclosure Bulletin, Vol. 22, No.11, April 1980 teaches the use of optical indicia placed upon the end portion of printwheel petals for identifying the printwheel font.
- the printwheel is provided with an opening in the form of a keyway into which a locating key is positioned, upon mounting of the printwheel relative to its rotatable drive shaft.
- the keyway is fabricated to establish, within desired tolerances, the precise location of the "home" position.
- FIG. 5 of the US-A-4,209,262 Magnetically or optically readable indicia upon the printwheel may be accessed through an aperture in the loading cartridge, by a suitable magnetic or optical sensor. By use of this marking and detection method, the home position of the wheel may be sensed. In addition, this patent teaches that a predetermined pattern of similar indicia may be used to define a code to indicate the type of character font used.
- the paper record member is a bonded composite material made up of diverse particulate ingredients. These include: the bulk particles of small discrete cellulosic fibers of wood pulp, fillers such as clay, sizing such as rosin, coloring dyes, and bonding agents such as starches. When the paper is repeatedly impacted at high speeds and energy, clouds of particles are beaten off this composite material resulting in a contamination of the interior of the printer. Clearly, the particulates will detract from the effectiveness of the optical sensing devices and may even render them totally inoperative after a period of prolonged usage.
- a further drawback of the sensed indicia approach resides in the increased manufacturing costs of the printwheel bearing the optical or magnetic indicia. Affixing the indicia, in the form of reflective stripes, requires integrally molding them or adhering them to the wheel by some other means. Both approaches are costly. Similarly, the use of magnetic indicia in conjunction with magnetic sensors also elevates the cost of the printwheel elements.
- the rotary printing device of the present invention is provided with mounting means for coupling the printing device to a drive shaft, without regard to angular alignment, "home" position identifying means and characteristic identifying means, comprising two precisely located protrusions.
- mounting means for coupling the printing device to a drive shaft without regard to angular alignment, "home" position identifying means and characteristic identifying means, comprising two precisely located protrusions.
- a foolproof method and apparatus for the in situ interpretation of both identifying means is also comprehended.
- FIG. 1 and 2 an overall view of a representative printer with which one form of the novel printing device of this invention may be used.
- the illustrated printer provides one suitable environment for supporting, rotating, sensing and impacting the device.
- the novel printing device of this invention may be in the form of a disk-shaped printwheel (as illustrated), a cup-shaped element (as referred to above), or any other suitable construction, and may be used in conjunction with any suitable impact printer mechanism.
- frame 10 External support for the printer is provided by rectangular frame 10 which carries a cylindrical platen 12 having end knobs 14 and 16 for manually rotating the platen to advance and retract a paper record member wrapped thereon. Spanning the long dimension of the frame 10 are smooth, parallely-aligned support rods 18 and 20 upon which carriage 22 is mounted for reciprocating linear movement from one end of the frame to the other end, on low-friction roller assemblies 24 and 26.
- the motive force for carriage 22 is provided by carriage motor 28 secured to frame 10 by suitable fastening members.
- the motor 28 has drive shaft 30 extending outwardly therefrom upon which is mounted a drive pulley 32, in the form of a capstan.
- Anchored to the pulley 32 are left cable segment 34 and right cable segment 36, each counterwound thereon.
- Cable segment 34 passes to idler pulleys 38 and 40, then over a portion of carriage pulley 42 (see Figure 2) and is firmly secured to tensioning anchor 44 mounted upon the frame 10.
- cable segment 36 passes to idler pulleys 46 and 48, over a portion of carriage pulley 42 (in the opposite direction) and has its end firmly secured to anchor 50 mounted upon the opposite frame wall.
- Accurate control of the energization of carriage motor 28, by the machine logic circuitry enables the carriage to be moved incrementally, either to the left or to the right (as viewed in Figure 1), by the desired amount and at the desired speed.
- a paper feed motor 52 fixed to the right wall of frame 10 (as viewed in Figure 1), drives the platen 12 through a gear train 54.
- paper may be advanced incrementally.
- a printwheel drive motor 56 to which is secured a printwheel 58, a hammer assembly 60, and a ribbon cartridge 62.
- Inked ribbon 64 stored within and advanced by the ribbon cartridge, is interposed between the printwheel type elements and the paper 66 wrapped upon platen 12.
- the printwheel drive motor 56 has a central axiat shaft 68 extending outwardly beyond the motor, both forwardly and rearwardly.
- the forward end of shaft 68 comprises a splined printwheel engaging and driving head 70 upon which the printwheel 58 may be mounted for being positively driven thereby.
- a transducer 72 including a rotatable disk 74, mounted upon and for rotation with shaft 68, and a fixed disk 76, secured to the motor housing.
- the transducer provides position signals representative of the rotational position of shaft 68 (and thus printwheel 58) to the printer control electronics in a known manner, as more specifically set forth in US-A-3,839,665 and 3,954,163.
- the printwheel 58 includes a central hub portion 78 from which a plurality of spokes 80 extend radially outwardly, each spoke terminating in a pad 82 upon which a character element is formed.
- the material of the printwheel is fabricated is of no import in the context of this invention. Preferably, it is molded of a suitable plastics material, however, heavy duty composite (i.e. plastics and metal combination) printwheels are also prevalent today and may be constructed to incorporate the instant invention.
- the printwheel includes a handling cap 84, secured to one side of the printwheel, and having central cavity 86 in axial alignment with a central opening in hub 78.
- the cavity 86 is illustrated as being splined for receiving splined head 76 of drive shaft 68.
- any positive drive configuration may be used, such as a common square or hexagonal mating arrangement.
- mounting and withdrawal of the printwheel from the shaft 68 is a simple and casual manual operation for the operator, since no attention need be paid to proper alignment of the printwheel, as heretofore required.
- cap 84 may be eliminated entirely, it being sufficient to provide the printwheel hub with some suitable mating arrangementfor receiving the drive shaft.
- protrusions 88A and 888 Extending axially from the hub 78, are a pair of protrusions or identification pins 88A and 888.
- the protrusions are illustrated as being of circular cross-section, it should be understood that they may be of any desired shape. They are preferably disposed on a common circle and are spaced from one another by a predetermined identification angle a, which must be less than 180° (its complementary angle is designated as (3).
- One of the pins (88A for the sake of this description) is the home position indicator. Dashed radius "R", tangential to the pin 88A, will be the reference position from which the angular rotation to each of the characters is counted. The included angle a, between the pins, will identify to the printer all the information necessary to operate that particular printwheel properly.
- font style viz. Pica, OCR, Emphasis
- pitch viz. 10,12, PS
- font language viz. French, German, English
- a suitable detector device is required.
- One such detector embodiment 90 is disclosed in Figures 2 and 4. It includes a selectively movable interposer 92 which may be moved by solenoid actuator 94 mounted upon carriage 22, or any other suitable device.
- a detection cycle is effected. Since prudent practice dictates deenergizing the printer when the cover is opened for replacement of the printwheel, the detection cycle may be included in the usual power-up sequence.
- a representative detection cycle may include the following steps: first, the printwheel drive motor 56 is energized to rotate the printwheel at a slow speed, i.e. less than one and one-half revolutions per second (as compared to its normal print speed, i.e.
- the interposer 92, of detector 90 is moved by means of the solenoid 94 into interference relationship with the pins 88A and 88B; third, the printwheel drive motor is stopped when one of the pins 88 contacts the interposer 92, stopping the drive motor and arresting the train of signals from the transducer; fourth, the direction of printwheel motor 56 is reversed and printwheel 58 will be slowly rotated until the other of the pins 88 contacts the interposer 92, again stopping the drive motor and arresting the train of signals from the transducer; and finally, the interposer is retracted by the solenoid 94.
- the angle between pins 88A and 88B can easily be ascertained by counting the number of transducer-generated zero-crossing signals transmitted during the reverse rotation of the printwheel motor. Rotation of the printwheel during the first step of the detection cycle (i.e. before introduction of the interposer 92) is effected to prevent jamming or locking of the drive motor, which could result if one of the pins were in direct alignment with the interposer at the time the solenoid actuator 94 is energized, and the interposer is urged against a pin.
- the drive motor and the interposer solenoid may be energized simultaneously rather than sequentially, as set forth above.
- the printwheel 58 may be mounted upon the shaft 68 without iegard to aligning it at a home position.
- the interposer may measure either the angle a or the angle ⁇ .
- the printer control electronics are programmed to identify an angle between 0° and 180°. In the event that an angle greater than 180° is measured, that angle is merely subtracted from 360° to determine the printwheel characteristic identification angle.
- the printer control electronics may be programmed to generate the same output identification for the a or (3 angle.
- the printwheel "home” or reference position may be arbitrarily selected to be adjacent to pin 88A in the a zone. Therefore, it is determined by the juxtaposition of wall "r" of interposer 92 and pin 88A. Clearly, if the measured angle is ⁇ , the opposite walls of interposer 92 and pin 88A will be in contact, thus, the printer control electronics must also be programmed to compensate for the pin and interposer dimensions, to correctly determine the angle a and to locate the home position, in the event that angle (3 is measured.
- a detector including a fixed interposer, is mounted on the left frame element (as viewed in Figure 1) adjacent a carriage stop, also mounted upon the left frame element.
- the carriage At the initiation of the power-up sequence, the carriage will be moved fully to the left until it abuts the stop. Prior to contacting the stop, the printwheel drive motor will begin to rotate the wheel at the slow detection speed.
- the interposer will be in a position to interfere with the free rotation of the printwheel, but because of the premature rotation, the drive motor will not jam, if they happen to be in direct alignment.
- Ths subsequent detection cycle steps as set forth above may then be carried out, namely, the printwheel is rotated in a first direction until it hits one of the pins, then the printwheel is rotated in the opposite direction until it is again stopped by the other pin.
- the measured angle a or ⁇ is determined and the printer control electronics are armed with all the information necessary for proper utilization of the new printwheel.
- the printer control electronics restore the carriage to its previous location relative to the platen (and document) after the printwheel has been identified, so that the task may be completed.
- FIG. 6 An alternative embodiment of the unique printing device is identified as 58' in Figures 6 and 7 wherein the protrusions 88A' and 88B' are on opposite sides of the printwheel and the interposer 92' is in the form of a U-shaped element. It is contemplated that this form of the printing device be utilized with the detector device and detection cycle described in the preceding paragraph, wherein the interposer 92' is fixed on the printer frame and the printwheel carriage is brought into interference relationship with the interposer during the detection cycle. It should be apparent that this embodiment will be practical only with a disk-shaped printing device.
- a further embodiment of the printing device is suggested.
- the printwheel 58" illustrated in Figure 8 having protrusions 88A and 88B on one side (as in Figure 3) and a third protrusion 88C located on the opposite side, a further identification region of substantially 360° becomes possible.
- the identification region defined by the angle y between protrusion 88C and reference (“R"), may be measured by a second interposer 93 moved into interference relationship with the protrusion 88C at the appropriate time.
- interposer 93 has been shown in Figure 8 at the 3 o'clock position, it should be understood that it may be mounted in any advantageous location as long as it is able to perform its desired function.
- the method of in situ identification will follow the series of steps set forth above, with respect to the Figure 3 embodiment, with the addition of the further steps of removing interposer 92, rotating the printwheel at the slow speed, and moving the interposer 93 into interference position. Since the printer electronics would have already determined the location of the reference position it is a simple matter to measure the angle (up to 360°) between that position and the third protrusion, in either direction. Therefore, it is a matter of choice to rotate the printwheel in the direction or in the second direction.
- FIG. 9 for a graphic representation of the printer control electronics capable of carrying out the in situ identification of the embodiment illustrated in Figures 1 through 5.
- the printwheel drive motor 56 rotates the printwheel 58 relative to the interfering interposer 92.
- the transducer 72 also carried on the shaft of the drive motor 56, generates a cyclical signal, as the drive shaft rotates, whose cycles are sensed by the processor 96 as an indication of a predetermined incremental rotation of the printwheel.
- the processor 96 may be similar to the processor 76 disclosed in US-A-4,058,195 and found in the Hy Type II serial printer manufactured by Diablo Systems Inc. of Hayward, California.
- the cyclical signal train is used by the control elements of the processor 96, referred to generally as the controller 98, to increment a counter defined in a storage location of a random access memory (RAM) 100, within the processor 96.
- the counter will be reset by the controller, during the identification cycle, upon the first incidence of arrested movement of the drive motor, indicating that the first protrusion has been contacted. Continued rotation of the drive motor will again allow the transducer to generate cyclical position signals. Each cycle is then counted by the RAM counter until the second incidence of arrested movement stops the train of signals, at which time the counter is also stopped by the controller.
- the value stored in the RAM counter indicates the number of cycles, of the cyclical signal train, between protrusions 88A and 88B.
- the stored value is applied as an address to a table read-only-memory (ROM) 102 which contains all the characterizing data for each printwheel to be used with the printer.
- ROM read-only-memory
- the table ROM will also be programmed to generate the same characterizing data for a stored RAM value indicative of the a angle or angle.
Landscapes
- Character Spaces And Line Spaces In Printers (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23353881A | 1981-02-11 | 1981-02-11 | |
US233538 | 1981-02-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0058092A2 EP0058092A2 (fr) | 1982-08-18 |
EP0058092A3 EP0058092A3 (en) | 1984-03-28 |
EP0058092B1 true EP0058092B1 (fr) | 1987-07-22 |
Family
ID=22877653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19820300660 Expired EP0058092B1 (fr) | 1981-02-11 | 1982-02-10 | Dispositif d'impression rotatif muni d'indices inhérentes |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0058092B1 (fr) |
JP (1) | JPS57163573A (fr) |
CA (1) | CA1186265A (fr) |
DE (1) | DE3276797D1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4496254A (en) * | 1983-03-18 | 1985-01-29 | Primages, Inc. | Method and apparatus for mounting a daisy print wheel on the shaft of a print head |
IT1158917B (it) * | 1983-03-30 | 1987-02-25 | Olivetti & Co Spa | Stampante seriale |
CH656836A5 (fr) * | 1984-05-22 | 1986-07-31 | Caracteres Sa | Disque porte-caracteres pour machine imprimante. |
US6260950B1 (en) | 1995-04-21 | 2001-07-17 | Canon Kabushiki Kaisha | Ink jet printing system using printers with interchangeable printing units |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE757619A (fr) * | 1969-12-11 | 1971-04-01 | Ibm | Dispositif d'impression-serie |
GB1290090A (fr) * | 1970-03-30 | 1972-09-20 | ||
US4091911A (en) * | 1976-05-03 | 1978-05-30 | Xerox Corporation | Control apparatus for serial printer |
US4074798A (en) * | 1976-09-01 | 1978-02-21 | Xerox Corporation | Encoded print wheel system |
DE2710427A1 (de) * | 1977-03-10 | 1978-09-14 | Adlerwerke Kleyer Ag H | Einrichtung zum antrieb und zur ansteuerung eines vorzugsweise als typenscheibe ausgebildeten typentraegers |
JPS5478220A (en) * | 1977-12-05 | 1979-06-22 | Ricoh Kk | Serial impact printer |
US4264220A (en) * | 1979-12-12 | 1981-04-28 | International Business Machines Corporation | Printwheel homing apparatus |
-
1982
- 1982-01-26 CA CA000394906A patent/CA1186265A/fr not_active Expired
- 1982-02-03 JP JP1693382A patent/JPS57163573A/ja active Pending
- 1982-02-10 DE DE8282300660T patent/DE3276797D1/de not_active Expired
- 1982-02-10 EP EP19820300660 patent/EP0058092B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3276797D1 (en) | 1987-08-27 |
JPS57163573A (en) | 1982-10-07 |
CA1186265A (fr) | 1985-04-30 |
EP0058092A2 (fr) | 1982-08-18 |
EP0058092A3 (en) | 1984-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4428694A (en) | Rotary printing device with identifying means and method and apparatus for in situ identification | |
EP0351515B1 (fr) | Assemblage pour ruban | |
US4655624A (en) | Ink ribbon cassette | |
US4091913A (en) | Printing apparatus with printing material non-motion detector | |
CA1317152C (fr) | Imprimante thermique commandee par un microprocesseur | |
EP0888220B1 (fr) | Detecteur d'identification de ruban d'imprimante | |
CA1302543C (fr) | Codeur a effet hall | |
US4797018A (en) | Ribbon cassette and method for operating an electronically controlled typewriter | |
CA1295709C (fr) | Codeur a effet hall pour marguerite | |
EP0139937B1 (fr) | Appareil pour initialiser une imprimante à roue d'impression en forme de marguérite | |
EP0058092B1 (fr) | Dispositif d'impression rotatif muni d'indices inhérentes | |
US5290114A (en) | Ink ribbon unit and ink ribbon cassette | |
US4078485A (en) | Print wheel control | |
CA1184427A (fr) | Machine d'impression rotative avec dispositif d'identification et methode et appareil d'identification in situ | |
US4894533A (en) | Optical rotary encoder | |
US4128346A (en) | Daisy type print wheel apparatus | |
CA1321320C (fr) | Codeur a roues d'impression | |
EP0440464A1 (fr) | Imprimante à mosaique avec réglage de tête dépendant de l'excentricité du cylindre | |
US4778289A (en) | Rotary character-carrying member and selector device therefor for a print unit in typewriters | |
CA1106068A (fr) | Traduction non-disponible | |
US5005995A (en) | Method of automatically identifying a print wheel | |
EP0669602A3 (fr) | Procédé d'asservissement de la longueur d'impression pour une machine à affranchir | |
CA1090733A (fr) | Imprimante a roue | |
JPS599902Y2 (ja) | プリンタ装置 | |
JPH0374327B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19840710 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 3276797 Country of ref document: DE Date of ref document: 19870827 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19891222 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900131 Year of fee payment: 9 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19911031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19911101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19990119 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990211 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000229 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000229 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000210 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |